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Physics in the 20. century

• Views: Elementary Particles, Quantum 
Mechanics, Theory of Relativity

• Limit of divisibility (Democritus, Aristotle: 
matter not a continuous whole: "From
infinitely small particles, the world can not be
assembled"



Grainy composition of nature

Brownian motion: shift of particles
(under the microscope)

Irregular

Brown: living material?

1. Molecules: disorderly motion collides with particles from all directions by chance
2. Molecules have a mass and are not infinitely small.







• Brown‘ Particle: climate
• Molecules: Weather



Predictability: 
Weather and Climate

• Brown‘s Particle: Climate
• Molecules: Weather







Motivation: Observational Record
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Motivation: Observational Record

Uncertainty largely due to missing
information at high latitudes

Temperature Anomaly 1930
White areas: not enough data
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anomaly
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Attribution
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Modelled circulation changes in the Holocene

Simulationen des Holozäns:
Einfluss von Erdorbitalparametern 
und Treibhausgasen
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Models in PMIP3
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Problem of the data or models?
Knowlegde of the recorder systems
Scales of the models



Marine temperature variability                 
(annual to millennial time scales)
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Power 
spectrum

Current climate models seem to underestimate variability
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Laepple and Huybers, 2014; GRL, PNAS
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relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Forcing

Response too
low

Equilibrium response

276 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).


