
What Are Dynamics?

• Definition: The study of atmospheric and oceanic 
motions, with emphasis on the physical laws that 
govern such motions.



Course Objectives

• To lay a mathematical and theoretical 
foundation to be used in later applications.

• To apply the laws governing fluid motion 
(laws of hydrodynamics and 
thermodynamics) to the ocean and 
atmosphere



Basic Laws
• Conservation of mass (continuity equation)
• Conservation of energy (1st law of thermodynamics)
• Newton’s 1st and 2nd Law (no resultant force → no 

change in motion, rate of change of motion of a body is 
proportional to resultant force acting on it)

• Conservation of angular momentum
• Newton’s Law of Gravitation
• equation of state, e.g. Ideal Gas Law 



Fundamental Physical 
Quantities

Quantity Symbol Units

length L meters (m)

time t seconds (s)

mass M kilograms (kg)

temperature T Kelvins (K)



Some Derived Quantities
Quantity Symbol Dimensions Units
Velocity V L/t m/s

Acceleration A L/t2 m/s2

Force F ML/t2 N = kg m/s2

Energy E ML2/t2 J = kg m2/s2

Pressure P M/Lt2 Pa = kg/m s2

Density r M/L3 kg/m3

Specific Volume a L3/M m3/kg
Bold symbols indicate vector quantities.



Non-dimensional parameters
Basic concept and applications



Expansion of Total Derivative
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But

u = west-east component of fluid velocity
v = south-north component of fluid velocity
w = vertical component of fluid velocity
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Euler’s relation (expansion of total derivative):

Term A: Total rate of change of f following the fluid motion

Term B: Local rate of change of f at a fixed location

Term C: Advection of f in x direction by the x-component flow

Term D: Advection of f in y direction by the y-component flow

Term E: Advection of f in z direction by the z-component flow



Total Derivative vs. Local Derivative

Total derivative is the temporal rate of change
following the fluid motion. Example: A thermometer
measuring changes as a balloon floats through
the atmosphere.

Local derivative is the temporal rate of change
at a fixed point. Example: An observer measures
changes in temperature at a weather station.



Advection Terms
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Assume that thin lines are contours of 
a scalar quantity f and thick arrows 
indicate the fluid motion. We wish to 
evaluate the advection term
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At point A:

At point B:

At point C:

Transport from low to high:
“negative advection of f”

Transport from high to low:
“positive advection of f”

“neutral advection of f”



Taylor Series
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A function f(x) can be computed by Taylor expansion given the 
values of the function and its derivatives at a point x0:

A truncated Taylor series can be used to approximate f(x).



Stability theory

• basics



Lorenz model



The Atmospheric Continuum
• In atmospheric dynamics (ocean dynamics also) we do 

not treat the fluid as a collection of individual molecules.
• Instead we treat the fluid as a continuous medium (or 

continuum) in which a “point” is a volume element that is 
very small compared to the total fluid volume but still 
contains a very large number of molecules.

• These volume elements are commonly called “air 
parcels” or “air particles.”

• The properties of these volume elements describe the 
state of the atmosphere.



Lattice Boltzmann





Coarse graining



Navier-Stokes 





Surface winds

An air parcel initially at rest will move from high pressure 
to low pressure (pressure gradient force)

Geostrophic wind blows parallel to the isobars because the 
Coriolis force and pressure gradient force are in 
balance. 



Dynamics

21

Equation of motion with rotation
Considering all forces:

Pressure
Gradient Force

Coriolis Force Friction

Gravity

Will later appear as f



Dynamics: Geostrophy
Equation of motion with rotation

x,y,z components:

Vertical part

Horizontal part
Neglect friction in 
free atmosphere



Dynamics: Geostrophy

In horizontal form:

Neglect friction in 
free atmosphere

Total derivative for u

This is the hydrostatic equilibrium



Viscous Force

• If the wind velocity varies 
with height, random 
molecular motions will 
cause momentum to be 
transferred vertically.

• In other words, there is a 
drag exerted by the 
layers above and below 
the level of interest.
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The stress due to the velocity shear
is given by

where µ is the dynamic viscosity
coefficient.

Using Taylor series expansion to
express the net viscous force:
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Substituting into Newton’s second law:

If the real forces acting on a fluid parcel are the pressure gradient 
force, gravitation and friction, then
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Rate of change 
of relative 
velocity following 
the relative 
motion in a 
rotating 
reference frame.

Coriolis 
acceleration

Pressure 
gradient force 
(per unit mass)

Gravity term 
(gravitation + 
centrifugal)

Friction

Vector momentum equation in rotating coordinates



Momentum Equations in Spherical 
Coordinates

• For a variety of reasons, it is useful to express 
the vector momentum equation for a rotating 
earth as a set of scalar component equations.

• The use of latitude-longitude coordinates to 
describe positions on earth’s surface makes it 
convenient to write the momentum equations in 
spherical coordinates.

• The coordinate axes are (l,f,z) where l is 
longitude, f is latitude, and z is height.



Orientation of Coordinate Axes

lf dcosadx =

The x- and y-axes are customarily defined to point east 
and north, respectively, such that

and
fdady =

Thus the horizontal velocity components are

dt
dy

v,
dt
dx

u ==



A Complication of Spherical 
Coordinates

When the x and y coordinates are defined in this way, 
the coordinate system is not strictly Cartesian, because 
the directions of the unit vectors depend on their position 
on the earth’s surface.

This dependence on position can be accounted for 
mathematically (see Holton 2.3) by adding terms to each 
component of the total derivative:
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a
vw

a
tanu

dt
dvî
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Vector momentum equation in 
rotating coordinates

Total derivative
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Vector momentum equation in 
rotating coordinates

Pressure gradient term
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Vector momentum equation in 
rotating coordinates

Gravity
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g is a positive scalar = 9.8 m s-2 at 
earth’s surface
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Vector momentum equation in 
rotating coordinates

Friction
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Momentum Equations in Spherical Coordinates
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Momentum Equations in Spherical Coordinates
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total derivative pressure
gradient

Coriolis gravity friction



Are All Of These Terms Important?
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Scale Analysis

• Goal: To determine relative importance of 
the terms in the basic equations for 
particular scales of motion.

• Approach: Estimate the following 
quantities
1) The magnitude of the field variables.
2) The amplitudes of fluctuations in the field 

variables. (Used to estimated derivatives
3) The characteristic length, depth and time 

scales on which these flucutations occur.



Scaling Quantities

U = horizontal velocity scale
W = vertical velocity scale

L = length scale
H = depth scale

dP = horizontal pressure fluctuation
T = time scale (advective) = L/U

P0 = surface pressure scale



Values of Scaling Quantities
(midlatitude large-scale motions)

Quantity Atmosphere Ocean
U 10 m s-1 10-1 m s-1

W 10-2 m s-1 10-4 m s-1

L 106 m 106 m

H 104 m 103 m

dP (horizontal) 103 Pa 104 Pa

P0 105 Pa 107 Pa

T 105 s 107 s



Physical Constants
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Scaling The Horizontal Momentum Equations
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Scaled Horizontal Momentum Equations
(a.k.a. Equations of Motion)
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Scaling The Vertical Momentum Equation
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The Hydrostatic Approximation

• For midlatitude synoptic-scale motions, vertical 
accelerations are very small compared to the vertical 
pressure gradient and gravity terms.

• This implies that vertical velocity cannot be determined 
from the vertical component of the momentum equation.
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• There is an approximate balance between the pressure gradient and 
Coriolis terms.

• Retaining only these two terms leads to the geostrophic 
approximation.

• The geostrophic approximation is a diagnostic relationship that 
cannot be used to predict the evolution of the velocity field.

Geostrophic Balance



The Geostrophic Approximation
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The Geostrophic Wind
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• The horizontal velocity field that satisfies the geostrophic 
approximation is known as the geostrophic wind.
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Hydrostatic Balance

• In the absence of atmospheric motions the gravity force 
must be exactly balanced by the vertical component of 
the pressure gradient force.

• Because vertical accelerations are very small for large-
scale atmospheric motions, this is an excellent 
approximation for the vertical dependence of pressure in 
the real atmosphere.
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For average conditions,

This is the mean sea-level pressure.
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We can define a quantity called the geopotential, which is related to 
gravity. Gravity can be represented as the gradient of the geopotential. 
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If the value of the geopotential is set to zero at mean 
sea level, the geopotential Φ(z) at height z is the 

work required to raise a unit mass to height z from 
mean sea level:
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The variation of geopotential with pressure depends on temperature.
Integrating in the vertical:
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This is the hypsometric equation, which relates the 
difference in geopotential to the layer mean temperature.
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Rather than express the hypsometric equation in terms of geopotential, 
meteorologists often rewrite it in terms of a quantity called geopotential 
height, which is defined as 

becomes

where g = 9.8 m s-2 is the global average gravity at sea level.
The geopotential height is almost identical to the geometric height in 

the troposphere and lower stratosphere.

Units of geopotential are m2 s-2, so 
units of geopotential height are m.
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where ZT is the thickness of the atmospheric layer between p1 and p2.

Thus the hypsometric equation





Nansen's Qualitative Arguments 

Nansen argued that three forces must be important:
1) Wind Stress W 

2) Friction F (otherwise the iceberg would move as fast as the wind)
Drag must be opposite the direction of the ice's velocity

3) Coriolis Force C.
Coriolis force must be perpendicular to the velocity

The forces must balance for steady flow: W + F + C = 0

Fridtjof Nansen noticed that wind 
tended to blow icebergs 20�– 40�
to the right of the wind in the Arctic. 



Blue: Dotted line is the ship Jason's journey from Iceland 
to near Sermilik fjord continuous blue: two small boats 
trying to reach the coast.

Red: Planned journey from Sermilik northwest to 
Christianhaab (today known as Qasigiannguit).

Green: Nansen's actual journey across Greenland from 
Umivik fjord to Gothaab (Nuuk).

Fridtjof Nansen's 1888 route across Greenland

Fridtjof Wedel-Jarlsberg Nansen (1861 – 1930) 

In the final decade of his life Nansen devoted himself primarily to the League of 
Nations, in 1921 as the League's High Commissioner for Refugees. 
In 1922 he was awarded the Nobel Peace Prize for his work on behalf of the 
displaced victims of the First World War and related conflicts. 

http://en.wikipedia.org/wiki/Sermiligaaq
http://en.wikipedia.org/wiki/Qasigiannguit
http://en.wikipedia.org/wiki/Nuuk
http://en.wikipedia.org/wiki/Fridtjof_Nansen
http://en.wikipedia.org/wiki/League_of_Nations
http://en.wikipedia.org/wiki/League_of_Nations
http://en.wikipedia.org/wiki/Nobel_Peace_Prize
http://en.wikipedia.org/wiki/First_World_War


General global circulation

The atmosphere is 
rotating in the same 
direction as the Earth:
westerly winds move 
faster and easterly 
winds move slower 
than the Earth's 
surface. 



Tropospheric Circulation

Intertropical Convergence Zone (ITCZ) and the Hadley cell
George Hadley [1685-1768], a British meteorologist, fromulated trade wind theory

50% of the Earth's surface 30�N - 30�S:  Hadley cells affect half the globe



Climatology



Rossby waves and the westerly 
wind belt

The jet stream is closely linked to the position of Rossby waves. 



Vorticity - the tendency to spin about an axis 

Rossby waves

On the spinnng Earth there is vorticity from the Earth�s spin (planetary vorticity) 
and local vorticity due to cyclonic/anticyclonic behaviour (relative vorticity) 
The absolute vorticity is conserved: zeta + f = constant (f = 2 \omega sin \phi)

Oscillations: Rossby waves

Topographic Rossby waves: 
standing wave fixed to a 
permanent forcing location



Rossby waves and the westerly 
wind belt

large-scale meanders of the mid-latitude jet stream. 
Here Southern Hemisphere 

Extend: 30�
of latitude 

Zeta + f = const.



Atmosphere: Large-scale meanders



• Coriolis effect
Scaling of the dynamical equations
Geostrophy
Vorticity
Wind-driven ocean circulation



Upwelling and climate variability



25 days 125 days

50 days

75 days

100 days

175 days

275 days

225 days

Kelvin wave (3 m/s, 70 days) Rossby wave (1m/s, 210 days)

sea surface height anomalies











Ekman

• the vertical flow from the surface Ekman 
layer into the geostrophic interior is 



Sverdrup Balance

Geostrophic balance



… relates the integral meridional flow throughout the vertical 
extent of the treated layer to the local windstress curl. 

Sverdrup 
Balance



Sverdrup Stream function 

Sverdrup Balance



Being that the curl is negative throughout the subtropics, it follows that the 
meridional flux must be everywhere equatorward. But such a situation, if 
sustained, will progressively empty the midlatitude oceans, while piling-up 
more and more water along the Equator; a clear physical impossibility! 
There must be somewhere a return poleward flow that `drains' the 
Equatorial region while replenishing the midlatitude missing volume. 
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N=1, k=1 Rossby wave



Rossby waves: Ocean

Existence in the oceans (Carl-Gustav 
Rossby, 1930s) has been only indirectly 
confirmed before the advent of satellite 
oceanography. 

Why is it so difficult to observe them? 

It is the big difference in the horizontal 
and vertical scale of these waves which 
makes them so difficult to observe. 

Schematic view "first-mode 
baroclinic" Rossby wave

speed varies with latitude and increases equatorward, order of 
just a few cm/s

http://stommel.tamu.edu/~baum/paleo/paleogloss/node38.html






Shallow Water Model
Case b=0

This is a formulation that we will encounter in layered models !



Shallow Water Model
Case b=0



Ocean layers

• Steady winds blowing on the sea surface produce a thin, horizontal boundary layer, the Ekman layer.
• thin: a few-hundred meters thick, compared with the depth of the water in the deep ocean. 
• A similar boundary layer exists at the bottom of the ocean and at the bottom of the atmosphere just 

above the sea surface, the planetary boundary layer or frictional layer .



Stommel (1961) Box Model
Heat, 
freshwater 
fluxes





Meridional overturning circulation

Atlantic Ocean deep sea circulation

NADW: 18 Sv

AABW: 4 Sv

Sv=106 m3/s



Symmetric solution



Simple Model of MOC

+



MOC continued



Schematic of the surface flow driven by a north-south density gradient in an 
ocean basin. The primary north-south gradient – as a result of the surface forcing
– is in balance with an eastward geostrophic current which generates a 
secondary high and low pressure system. This, in turn, drives a northward
geostrophic current, the upper branch of the



South- Equator           North- Atlantic

Conceptual Model of MOC



T and S



Box Models

• Stommel�s model almost completey 

ignored (25 years)

• Rooth, 1982: Two hemisphere 

counterpart,

• Unaware of Stommel (1961) model

• Rooth suggested to  F. Bryan: test with a 

GCM







others

• Rayleigh-Bénard convection and the
Lorenz system
Bifurcations

• Deep water circulation





Zero Solution








