What Are Dynamics?

« Definition: The study of atmospheric and oceanic
motions, with emphasis on the physical laws that
govern such motions.




Course Objectives

* To lay a mathematical and theoretical
foundation to be used in later applications.

* To apply the laws governing fluid motion
(laws of hydrodynamics and
thermodynamics) to the ocean and
atmosphere



Basic Laws

Conservation of mass (continuity equation)
Conservation of energy (15t law of thermodynamics)

Newton’s 1st and 2" Law (no resultant force — no
change in motion, rate of change of motion of a body is
proportional to resultant force acting on it)

Conservation of angular momentum
Newton’s Law of Gravitation
equation of state, e.g. Ideal Gas Law



Fundamental Physical

Quantities
Quantity Symbol Units
length L meters (M)
time t seconds (S)
Mass M kilograms (kg)
temperature T Kelvins (K)




Some Derived Quantities

Quantity Symbol | Dimensions Units
Velocity \'} L/t m/s
Acceleration A L/t2 m/s?
Force F ML/t2 N = kg m/s?
Energy E ML2/t2 J = kg m?/s?
Pressure P M/Lt2 Pa = kg/m s?
Density P M/L3 kg/m?3
Specific Volume o L3/M m3/kg

Bold symbols indicate vector quantities.




Non-dimensional parameters

Basic concept and applications

u = U-uq (4.22)
t = T-t, (4.23)
x = L-x4 (4.24)

with U = L/T. From these scalings, we can also derive

5] 1 0

O = —=—.— (4.25)
ot T 0Oty
5] 1 5]

9, = —=—.— (4.26)
ox L 0Oxq4

Note furthermore the units of [pg] = kg/m3, [p] = kg/(ms?), and [p]/[po] = m?/s>.
Therefore the pressure gradient term in (4.8) has the scaling U?/L. Furthermore, devide the
equation (4.8) by U?/L and the scalings vanish completely in front of the terms except for the

V2uq4-term! This procedure yields therefore for (4.20,4.21):

Vi-ug=0 (4.27)
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Expansion of Total Derivative

If f:f(x,y,z,t) then

df _of ofdx o dyv o d-
dt ot oxdt dydt oz dt

dx dy dz

But u=—, v=—"-, w=—

dt dt’ dt

u = west-east component of fluid velocity
v = south-north component of fluid velocity
w = vertical component of fluid velocity



df _of o[, dy f [dz
dt or ox\dr) 2 \dt

Euler’s relation (expansion of total derivative):

af _of o o o

=ty VW

dt ot ox Oy Oz
A B C D E

Term A: Total rate of change of f following the fluid motion
Term B: Local rate of change of f at a fixed location

Term C: Advection of fin x direction by the x-component flow
Term D: Advection of fin y direction by the y-component flow

Term E: Advection of fin z direction by the z-component flow



Total Derivative vs. Local Derivative

Total derivative is the temporal rate of change
following the fluid motion. Example: A thermometer
measuring changes as a balloon floats through

the atmosphere.

Local derivative is the temporal rate of change
at a fixed point. Example: An observer measures
changes in temperature at a weather station.




Advection Terms

Assume that thin lines are contours of ‘B X
a scalar quantity f and thick arrows .
indicate the fluid motion. We wish to low < high
evaluate the advection term 57 A C
u - —
ox

At point A: u>0, Gf >0y -2 of ~ () =p Transport from low to high:

X ox “negative advection of 7
— O af O i O \ = (
AtpointB: U= >0—>u = “neutral advection of 1
Ox Ox
of

AtpointC: u<0,—>0—>u @ < () =p Transport from high to low:
ox ox “positive advection of 7’



Taylor Series

A function 7{x) can be computed by Taylor expansion given the
values of the function and its derivatives at a point x:

_ : 2 fm(xo) 3
f(x)= f(x0)+ £ (0 Nx —xg )+ 5 (x—xp )" + Y (x—xp ) +...

A truncated Taylor series can be used to approximate 7(x).



Stability theory

® b a S I CS 2.3.1 Linear stability analysis

Consider the continuous dynamical system described by the ODE

= f(x,\) f:R"xXR—>R".

re 2.7: Saddle-node bifurcation diagram using the graphical method.
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Figure 5.5: Geometry of the Rayleigh-Bénard system (see text for details).



The Atmospheric Continuum

In atmospheric dynamics (ocean dynamics also) we do
not treat the fluid as a collection of individual molecules.

Instead we treat the fluid as a continuous medium (or
continuum) in which a “point” is a volume element that is
very small compared to the total fluid volume but still
contains a very large number of molecules.

These volume elements are commonly called “air
parcels” or “air particles.”

The properties of these volume elements describe the
state of the atmosphere.



Lattice Boltzmann
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Figure 3.1: Discrete lattice velocities for the D2Q9 model.

particle distribution functions (hereafter DFs) according to:

B—1
p= Z fa (macroscopic fluid density)
a=0
B—1
L 1 R . .
and U = — Z fa€a (macroscopic velocity).
p a=0

The DFs at each lattice point are updated using the equation:

_ [fa(‘f’t) - qu(‘f’t)]

T

.fa(ff + éaét’ t+ 5t) - fa(ff’ t)

Streaming

Collision

(3.52)

(3.53)

(3.54)



mass and momentum are invariant. The equilibrium DFs can be obtained from the local Maxwell-
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Figure 3.2: Illustration of the streaming process on a D2@Q9 lattice. Note that the magnitude of

the DFs remain unchanged, but they move to a neighbouring node according to their direction.
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Figure 3.3: Illustration of the collision process on a D2Q9 lattice. Note that the local density p
and velocity ¥ are conserved, but the DFs change according to the relaxation-to-local-Maxwellian

rule.



Coarse graining

| E—— | E——
Mechanical motion of Coarse-graining,
ensemble, S=const S increases

Figure 3.6: The Ehrenfests coarse-graining: two motion - coarse-graining cycles in 2D (values of
probability density are presented by hatching density).



Navier-Stokes

Inertia (per volume)

A\ - Divergence of stress
8 u 7 - N
2
p( 5 TWY)=_VptpViut B
N Advective Pressure Viscosity Other
Unsteady acceleration gradient body

acceleration forces




4.4 Elimination of the pressure term

Taking the curl of the Navier-Stokes equation results in the elimination of pressure. This is espe-
cially easy to see if 2D Cartesian flow is assumed (w = 0 and no dependence of anything on z),
where the equations reduce to:

(8u n ou n 8u) op n (82u n 82u) “.14)
— du— 4 v— | = —— — 4+ — :
p ot Ox Oy T H

(8'0 n ov n 8'0) op n (82'0 n 82'0) “.15)
—tu—4v— | = —— — 4+ — . :
Plat T "oz T Yoy ay ' H\oxz T 5y

Differentiating the first with respect to y, the second with respect to x and subtracting the resulting

equations will eliminate pressure and any potential force. Defining the stream function 1) through

w=2% . ,=_9% (4.16)
ox



Surface winds

An air parcel initially at rest will move from high pressure
to low pressure (pressure gradient force)

Pressure
Gradient
Force

ﬁ

Coriolis Resulting
Force Path

Geostrophic wind blows parallel to the isobars because the
Coriolis force and pressure gradient force are in
balance.
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Dynamics

Equation of motion with rotation

Considering all forces:

Friction
Pressure
Gradient Force \ /
dv T[= 5 = - |
I — Fp +H Fo 4| Frl+H Fgle=—" Gravity
dv 1o - 1 [
kA ——Vp|—2Q x v —|avlH|g
dt P




Dynamics: Geostrophy

Equation of motion with rotation

X,y,Z components:

Neglect friction in

Horizontal part free atmosphere
ou ou ou ou . 10p
E—I—u&—l—v@—l—wg—fv—l—fw = o ox

ov ov ov ov 10p

E+u8_x+v8—y+wa+fu = 50y
ow ow ow ow 10p
E—I—ua—x—i—vw—l—wg—fu = —;E—g

Vertical part



Dynamics: Geostrophy

In horizontal form:;

Neglect friction in

free atmosphere
Total derivative for u

ou ou ou 10p
at Tlax T Vay —N = T pox
ov ov ov 10p
E"I’Ua_x‘l_va_y +fU = —;E
B 10p

= pa: €

This is the hydrostatic equilibrium



Viscous Force

 If the wind velocity varies
with height, random

molecular motions will

cause momentum to be

transferred vertically.

* |n other words, there is a x
drag exerted by the
layers above and below
the level of interest.



The stress due to the velocity shear
IS given by
L
zX ILl aZ
where p is the dynamic viscosity
coefficient.

oz
Using Taylor series expansion to
express the net viscous force:
0T, Oz ok e

+ zx 5 _ _ zx 5

R R
ot

=—= 0z oy ox

or

zX

0z

oz

2




Substituting into Newton’s second law:

) _XF
dr | m
inertial
;L R F
d—V+2Q><V—QzR ==
dt m

If the real forces acting on a fluid parcel are the pressure gradient
force, gravitation and friction, then

Vo 2o -LvprstE

dt/' pl.\\

Rate of change Coriolis Pressure Gravity term Friction
of relative acceleration  gradient force (gravitation +

velocity following (per unit mass) centrifugal)

the relative

motion in a

rotating

reference frame.

Vector momentum equation in rotating coordinates




Momentum Equations in Spherical
Coordinates

« For a variety of reasons, it is useful to express
the vector momentum equation for a rotating
earth as a set of scalar component equations.

* The use of latitude-longitude coordinates to
describe positions on earth’s surface makes it
convenient to write the momentum equations in
spherical coordinates.

* The coordinate axes are (4,¢,z) where A4 is
longitude, ¢ is latitude, and z is height.



Orientation of Coordinate Axes

The x- and y-axes are customarily defined to point east
and north, respectively, such that

dx=acos@dA
and

dy=adg
Thus the horizontal velocity components are
dx dy
- — , V= —
dt dt

u



A Complication of Spherical
Coordinates

When the x and y coordinates are defined in this way,
the coordinate system is not strictly Cartesian, because
the directions of the unit vectors depend on their position
on the earth’s surface.

This dependence on position can be accounted for
mathematically (see Holton 2.3) by adding terms to each
component of the total derivative:

dﬁ_(du_uvtan¢ uwjf (dv uztan¢+vaq (dw u2+vzj]‘ff

— = +— [+ —+ J+
dt dt a

dt a a dt a a



00OxV —le + 3+ ﬁr Vector momentum equation in
P, rotating coordinates

<KTo’ral derivative

du wuvtang Luw

dt a a
dv u’tang wvw

+ +—=
dt a a

dw  u’ +v*

dt a



d_V : lvp+§ L F Vector momentum equation in
dt P : rotating coordinates

\Coriolis acceleration

i k
—20xV =-2Q/0 cos¢ sing
u v w

= (2Qvsin g —2Qwcos ¢ )i —2Qu sin ¢ ] +2Q cos ok

du wuvtang Luw 20vsin ¢ —2Qwcosd+ ...

dt a a
dv u’tan YW :

+ ¢+ =2Qusmeo+...
dt a a

2 2
dw_u”+v =2Qucosg+...
dt a

Qsin @

Qcos @



a — _20x g+ Ia Vector momentum equation in
dt \ : rotating coordinates

Pressure gradient term

du _uvtan¢+uw:2stin¢_2gwcos¢_la_p+m
" . 4 0 Ox
2
dv+u tan¢+vw:_2Qusin¢_la_p+m
dt a a p@y
2 2
dw_u il :2Qucos¢—la—p+..-

dt a p 0z




a — 0%}V — 1 Vp E Vector momentum equation in
dt P ‘\’” rotating coordinates

§ =—gk g is a positive scalar = 9.8 m s at
earth’s surface

Gravity

du _uvtan¢+uw:2stin¢_2gwcos¢_la_p+m
dt a a p ox
2
dv+u tan¢+vw:_2Qusin¢_la_p+m
dt a a p&y
2 2
dw_u B4 :2Qucos¢—la—p—g+.--

dt a p 0z —



d_V — 0%}V — le +g @ Vector momentum equation in
dt P \rotating coordinates

Friction
du_uvtan¢+“w:2stin¢—2chos¢—la—p+Frx
d  a  a p o —

2
dv  u taﬂ¢+"wz_2gusm¢—la—p+Fw
dt a a pay -
2 2
dw _u"+v :2Qucos¢—la—p—g+ﬂz

dt a p Oz



Momentum Equations in Spherical Coordinates

du _uvtan¢ i :—la—p+2§2vsin¢—29wcos¢+F

dt a a 0 Ox -

2
dv+u tan¢+vw —la—p—ZQusin¢+F

dt a a p Oy v

2 2
dw_u TV :_lﬁ_p+2£2ucos¢|—g + b,
dt a p Oz




Momentum Equations in Spherical Coordinates

4+ 2Qvsin ¢ —2Qwcos g+ F
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—2Qusin g+ F

+2Qucosgt- g
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total derivative pressure

gradient
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Coriolis gravity



Are All Of These Terms Important?

du _uvtang LBV —la—p+2QVSin¢—2QWCOS¢+Eﬂx
dt a a  pox

dv u’ tan¢+vw 1 op

n =————-2Qusing+ F
dt a a p Oy ’ .

2 2
dw_u TV :_la_p+2£2ucos¢—g+FrZ
dt a p Oz




Scale Analysis

» Goal: To determine relative importance of
the terms in the basic equations for
particular scales of motion.

» Approach: Estimate the following
guantities
1) The magnitude of the field variables.

2) The amplitudes of fluctuations in the field
variables. (Used to estimated derivatives

3) The characteristic length, depth and time
scales on which these flucutations occur.



Scaling Quantities

U = horizontal velocity scale
W = vertical velocity scale
L = length scale
H = depth scale
OP = horizontal pressure fluctuation
T = time scale (advective) = L/U
P, = surface pressure scale



Values of Scaling Quantities
(midlatitude large-scale motions)

Quantity Atmosphere Ocean
U 10 m st 101 ms!
W 102 m s 104 m s
L 10 m 105 m
H 10 m 103 m
SP (horizontal) 103 Pa 10% Pa
Po 10> Pa 107 Pa
T 10~ s 107 s




Physical Constants

g = 10 mS‘z gravity

a~10"m radius of earth

@, =45°

£, =2Qsing, =2Qcosg, =107"s™
p, =1kgm™

density

p,=10° kg m™

-5 2 -1
v, =107 m"s o
viscosity

-6 2 -1
v =107 m”s



Scaling The Horizontal Momentum Equations

—”%‘b +}{=—la—p+2gvsm¢—m os<|>+><
p OX
S< ¢ ——la—p—%)usin(l) J><

>
A
L a a pL H

104 10° 108 103 103 106 1012



Scaled Horizontal Momentum Equations
(a.k.a. Equations of Motion)

du = —l@—p+2ﬂvsin(|)
dt p OX
ﬂ:—la—p—ﬂlusin(b
dt p Oy




Scaling The Vertical Momentum Equation

% b§< —16—p+2£2 oscl)—gJ><

uw U’ P
L a pH H’

107 10° 10 103 10 10"



The Hydrostatic Approximation

P _

Py —PE

e For midlatitude synoptic-scale motions, vertical
accelerations are very small compared to the vertical
pressure gradient and gravity terms.

e This implies that vertical velocity cannot be determined
from the vertical component of the momentum equation.



Geostrophic Balance

}l{: —16—p+29vsin(|)
d p OX

104 10-3 10-3
There is an approximate balance between the pressure gradient and
Coriolis terms.

Retaining only these two terms leads to the geostrophic
approximation.

The geostrophic approximation is a diagnostic relationship that
cannot be used to predict the evolution of the velocity field.



The Geostrophic Approximation

10
P e
p Ox .
f =2Qsm ¢
1 op
fu - B 5 Coriolis parameter




The Geostrophic Wind

e The horizontal velocity field that satisfies the geostrophic
approximation is known as the geostrophic wind.

L = 1 op
= Lo
% . n
pf Ox Vo= Fx——vp
Lo Lo : of

° pfoy




Hydrostatic Balance

dp _

7 —Pg

e In the absence of atmospheric motions the gravity force
must be exactly balanced by the vertical component of
the pressure gradient force.

e Because vertical accelerations are very small for large-
scale atmospheric motions, this is an excellent
approximation for the vertical dependence of pressure in
the real atmosphere.



dp
T8

dp =—pg dz
p(2)=] pgd:

Pressure at any point is the weight per square meter
of the atmospheric column overlying that point.

For average conditions,
p(0) = f og dz =101.325 kPa

This is the mean sea-level pressure.



We can define a quantity called the geopotential, which is related to
gravity. Gravity can be represented as the gradient of the geopotential.

VD =5

Because g — —g]a then P = (D(Z), 622 =g
Z

If the value of the geopotential is set to zero at mean
sea level, the geopotential d(z) at height z is the
work required to raise a unit mass to height z from
mean sea level:

Units of geopotential

z
D = I g dZ are J kg1, which are
0

equivalent o m2 s2,




O = jozg dz implies that dO = g dz

Since gdZZ—ld]?:—Oldp
Jo
then d® =—a dPI—EdPZ—RTd(IHp)
P

The variation of geopotential with pressure depends on temperature.
Integrating in the vertical:

®(z,)-D(z,) =R LfT d(In p)

This is the hypsometric equation, which relates the
difference in geopotential to the layer mean temperature.



Rather than express the hypsometric equation in terms of geopotential,
meteorologists often rewrite it in terms of a quantity called geopotential
height, which is defined as

Z _ (D / Units of geopotential are m? s, so
= (Z) g, units of geopotential height are m.

where g = 9.8 m s is the global average gravity at sea level.
The geopotential height is almost identical to the geometric height in
the troposphere and lower stratosphere.

Thus the hypsometric equation

B(z,)~P(z) = R[ 'T d(Inp)

becomes
R ¢n
7. =7,-7Z =—|{"Td(n p)
g P>

where Zt is the thickness of the atmospheric layer between p; and p..
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Nansen's Qualitative Arguments

Coriolis

Wind
Wind Velocity of Drag Fridtjof Nansen noticed that wind
. . tended to blow icebergs 20° — 40°
/ Allfomesabotegnal to the right of the wind in the Arctic.

Coriolis

C Wi Drag
F
Coriolis

Drag (Friction) Force

Weak Coriolis force

Nansen argued that three forces must be important:
1) Wind Stress W

2) Friction F (otherwise the iceberg would move as fast as the wind)
Drag must be opposite the direction of the ice's velocity

3) Coriolis Force C.
Coriolis force must be perpendicular to the velocity

The forces must balance for steady flow: W+ F + C =0



e e I1AtjOf Nansen's 1888 route across Greenland

7
,,,,,

"""
.
-
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Cape Farewell

Blue: Dotted line is the ship Jason's journey from Iceland
to near Sermilik fjord continuous blue: two small boats
trying to reach the coast.

Red: Planned journey from Sermilik northwest to
Christianhaab (today known as Qasigiannguit).

Green: Nansen's actual journey across Greenland from
Umivik fjord to Gothaab (Nuuk).

Fridtjof Wedel-Jarlsberg Nansen (1861 — 1930)

In the final decade of his life Nansen devoted himself primarily to the League of
Nations, in 1921 as the League's High Commissioner for Refugees.

In 1922 he was awarded the Nobel Peace Prize for his work on behalf of the

displaced victims of the First World War and related conflicts.
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General global circulation

Polar high The atmosphere is
rotating in the same

direction as the Earth:

westerly winds move
faster and easterly
winds move slower
than the Earth's
surface.
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Tropospheric Circulation
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Intertropical Convergence Zone (ITCZ) and the Hadley cell

George Hadley [1685-1768], a British meteorologist, fromulated trade wind theory
50% of the Earth's surface 30° N - 30° S: Hadley cells affect half the globe



Climatology
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January 1979-1998 sea—level pressure (mb)




Rossby waves and the westerly
wind belt
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Figure 7-10 Jet streams. (a) Appraximate pasitions of the
pelar and subteepical jet streams. Nate that thess fasbmaoving
currents are ganerally not continueus araund the eatire globe.
() A Cross-sactional views of the palar and sublropizal juls.

The jet stream is closely linked to the position of Rossby waves.



Rossby waves

Vorticity - the tendency to spin about an axis @

negative vorticity positive vorticity
(anticyclones in NH) (cyclones in NH)

On the spinnng Earth there is vorticity from the Earth’ s spin (planetary vorticity)
and local vorticity due to cyclonic/anticyclonic behaviour (relative vorticity)
The absolute vorticity is conserved: zeta + f = constant (f = 2 \omega sin \phi)

N} N |
AN . W L
Oscillations: Rossby waves
Topographic Rossby waves:
standing wave fixed to a
F increases £ decreases permanent forcing location

=> ( decreases => ( increases



Rossby waves and the westerly
wind belt

large-scale meanders of the mid-latitude jet stream.
Here Southern Hemisphere

Warmer air

Equatorward swing Poleward swing
¢ Anticyclonically (“”';’ flow Cyclonically curved flow

a Extend: 30°
Upper trough of Of IatitUde
Low pressure
Colder air

L_/ppor ridge of Upper ridge of
High pressure High pressure

Zeta + f = const.



Atmosphere: Large-scale meanders

Idealized air faw of the westedies at the 340.

milltar leved. The five lang-wavelength undulatians, calles
Posshy waves, compose this flow. The jet stream is the fast care
of Lhis wavy Flaw.




« Coriolis effect
Scaling of the dynamical equations
Geostrophy
Vorticity
Wind-driven ocean circulation



Upwelling and climate variability

El Nino Conditions
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Kelvin wave (3 m/s, 70 days) Rossby wave (1m/s, 210 days)

25days | E — 125 days

50 days 175 days

A
i

§iF§q
§iF§q

75 days =2 225 days ‘@

EERR!

[ER R

275 days

100 days ]

I EEERY

FEis

sea surface height anomalies



Ekman Mass Transport

Integral of the Ekman Velocities down to a depth d:

-0 .0
Mg, = / pUg dz, M Ey — / oV dz
d J—d

Ekman transport relates the surface wind stress:

f AIH;{/ — _frf: (0)
f A’[Elf — r/ 7y:: (0)

Mass transport is perpendicular to wind stress

In the northern hemisphere, fis positive, and the mass
transport is in the x direction, to the east.



Coastal Upwelling

Land
(California)

'|
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Courtesy of Prof. Robert Stewart. Used with permission.

Upwelling enhances biological
productivity, which feeds fisheries.

Cold upwelled water alters local
weather. Weather onshore of
regions of upwelling tend to have
fog, low stratus clouds, a stable
stratified atmosphere, little
convection, and little rain.

Spatial variability of transports in
the open ocean leads to upwelling
and downwelling, which leads to
redistribution of mass in the
ocean, which leads to wind-driven
geostrophic currents via Ekman

pumping.

Source: Introduction to Physical Oceanography, http://oceanworld tamu.edu/home/course_book_htm



Ekman Pumping

The horizontal variability of the wind blowing on the sea surface
leads to horizontal variability of the Ekman transports.

Because mass must be conserved, the spatial variability of the
Itransports must lead to vertical velocities at the top of the Ekman
ayer.

To calculate this velocity, we first integrate the continuity equation in
the vertical direction:

/'U Ju N v + o ] 0
) . . _ dz = (
P oz "oy o-

o[ o "o
pe— YU Az e yvadz — —0 — (12
dx . rf[ ()U J—d / / J—d 0z

()J[E; —I— (‘.)i?'[E!/
O Dy

= —p[w(0) — w(—d)]



Ekman v. Reality

Inertial currents dominate

Flow is nearly independent of depth within the mixed layer on time
periods on the order of the inertial period (i.e. the mixed layer moves
like a slab)

Current shear is strongest at the top of the thermocline

Flow averaged over many inertial periods is almost exactly that
calculated by Ekman

Ekman depth is typically on target with experiments, but velocities
are often as much as half the calculated value

Angle between wind and flow at surface depends on latitude and is
near 45 degrees at mid-latitudes



Ekman

 the vertical flow from the surface Ekman
layer into the geostrophic interior is
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Sverdrup Balance
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Windstress Curl

Sverdrup = »

E
Balance T "
/ Stresses
WE Important
Geostrophic T
tOp h>>hy Interior Unimportant

V = d
| vdz N f
\thO

Wien = Wg = 1 (ory _ 0
p T TET pf \0z oy

BV = 1 (% _ %)
po \ Oz Oy
... relates the integral meridional flow throughout the vertical
extent of the treated layer to the local windstress curl.




Sverdrup Balance

Sverdrup Stream function

oy 1 (87‘,,_%)
oxr Oy

1 = [0y, O
"f)(x):ﬁ[m (B_J_E) dz



Latitude

10°N

120°E 150°E 180° 150°'W 120°W
Longitude

Being that the curl is negative throughout the subtropics, it follows that the
meridional flux must be everywhere equatorward. But such a situation, if
sustained, will progressively empty the midlatitude oceans, while piling-up
more and more water along the Equator; a clear physical impossibility!
There must be somewhere a return poleward flow that "drains' the
Equatorial region while replenishing the midlatitude missing volume.
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Figure 10.20: Schematic diagram showing the classification of ocean gyres and major
ocean current systems and their relation to the prevailing zonal winds. The pattern of
Ekman transport and regions of upwelling and downwelling are also marked.

Copyright © 2008, Elsevier Inc. All rights reserved.
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Figure 10.21: (left) The zonal-average of the zonal wind stress over the Pacific
Ocean. (middle) The Sverdrup transport stream function (in Sv = 10° m? s-7)
obtained by evaluation of Eq. 10-20 using climatological wind stresses, Fig. 10.2.
Note that no account has been made of islands; we have just integrated right
through them. The transport of the western boundary currents (marked by the

N & S arrows) can be read off from ¥ ., .. (right) The zonal-average zonal
current over the Pacific obtained from surface drifter data shown in Fig. 9.14. Key
features corresponding to Fig. 9.13 are indicated.

Copyright © 2008, Elsevier Inc. All rights reserved.



NORTHERN HEMISPHERE
CYCLONIC WIND ANTICYCLONIC WIND

Ekman Pumping
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Distribution of Primary Production: red represents regions of high productivity
and purple indicating areas of low productivity
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N=1, k=1 Rossby wave

n=1, k*=1, Equatorial Rossby
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Rossby waves: Ocean

Schematic view "first-mode
baroclinic" Rossby wave

Existence in the oceans (Carl-Gustav -

. . W< >E (not to scale)
Rossby, 1930s) has been only indirectly
confirmed before the advent of satellite ﬁ
oceanography.

Direction of
propagation

Why is it so difficult to observe them?

It is the big difference in the horizontal
and vertical scale of these waves which
makes them so difficult to observe.

speed varies with latitude and increases equatorward, order of
just a few cm/s



http://stommel.tamu.edu/~baum/paleo/paleogloss/node38.html

8.3.3 Extratropical Rossby Waves

From the equations (8.7,8.8,8.9), we drop the term 9;m and introduce the stream function 1)

through

o) 'v:—% (8.36)

u=— ;
Oy ox

such that (8.9) is fulfilled. Taking 8% of (8.7) and subtract % of (8.8) elimintates the 7 term as in

section 4.4:
8(82+82)¢— Bav’b (8.37)
ot \9x2  dy? - T oz '
With the ansatz
1 = exp(ikx + ily — iwt) (8.38)

and assumption that 3 is just a parameter, w is given by

Bk

w(k,l) = —ma

(8.39)



Exercise 71 - Rossby waves

Consider the vorticity equation
i+ pm=o
with h =const., u and v are the velocity components.
1. Assume a mean flow with constant zonal velocity U
u=U = const >0
and a varying north-south component

v =wv(x,t)

(8.41)

(8.42)

(8.43)



Shallow Water Model

Case b=0

du . e \ Ol - &
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This is a formulation that we will encounter in layered models !



Shallow Water Model

Case b=0
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Ocean layers Ekman pumping/suction

RS =

Thermocline

warm, salty
stratified

cold, fresh
well mixed

Pole Equator Pole

Copyright © 2008, Elsevier Inc. All rights reserved.

Steady winds blowing on the sea surface produce a thin, horizontal boundary layer, the Ekman layer.
thin: a few-hundred meters thick, compared with the depth of the water in the deep ocean.

A similar boundary layer exists at the bottom of the ocean and at the bottom of the atmosphere just
above the sea surface, the planetary boundary layer or frictional layer .



Stommel (1961) Box Model

Heat,
freshwater
fluxes

Tropical
Box
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Meridional overturning circulation

Atlantic Ocean deep sea circulation
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Symmetric solution

Figare 2.15: Atlantic croulation model according to (von Lenz, 1847Ta, b),
fipare after (Morz and Wost, 1922)



Simple Model of MOC

It is instructive to derive a simple concept of the meridional overturning
based on vorticity dynamics in the (y,z)-plane. The dynamical model in two

dimensions read

d 1 dp

d 1 Op g
by - 1o 9. — kw 2.03
= e " (P — po) (2.93)

with x as parameter for Rayleigh friction. Using the continuity equation

Ov ow
0 = — + = 2.94
dy 0z ( )
one can introduce a streamfunction ®(y, z) with v = 0,9 and w = —9,9.

The associated vorticity equation in the (y,z)-plane is therefore

du ) .
ST (2.05)

d 72
av ¢ 0z po Oy

We can choose the ansatz! satisfying that the normal velocity at the boundary

vanishes, ® = 0:

® = P, sin(ny/L) x sin(nz/D) (2.97)



MOC continued

The parameters L and D dentote the meridional and depth extend. With
the assumption that the Coriolis term is absorbed into the viscous terms, we
derive:

d a

d_(I)m.aI = _I(pnorth. - psouth) T /"‘:'(I)-ma;r (298)
t Po

with a = gLD?/4(L? + D?).}

This shows that the overturning circulation depends on the density dif-
ferences on the right and left boxes. In the literature, (2.98) is simplified to

a diagnostic relation

1l

(I,'m.a:t - (p'n.o-rt.h. - Psouth-) (299)
Po K

because the adjustement of ®,,,, 1s quasi-instantaneous due to Kelvin waves

(section 2.3).
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Schematic of the surface flow driven by a north-south density gradient in an
ocean basin. The primary north-south gradient — as a result of the surface forcing
— is in balance with an eastward geostrophic current which generates a
secondary high and low pressure system. This, in turn, drives a northward
geostrophic current, the upper branch of the



Conceptual Model of MOC

South- Equator North-  Atlantic
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Figure 2.16: a) The Atlantic surface density is mainly related to tempera-
ture differences. b) But the pole-to-pole differences are caused by salinity
differences.



« Stommel ‘'s model almost completey
ignored (25 years)

* Rooth, 1982: Two hemisphere
counterpart,

* Unaware of Stommel (1961) model

* Rooth suggested to F. Bryan: test with a
GCM



Application: Climate-Box-Model
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others

» Rayleigh-Bénard convection and the

Lorenz system
Bifurcations

* Deep water circulation



Applicaton: Rayleigh-Bénard convection
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Zero Solution

Such a system possesses a steady-state solution in which there is no motion, and the temperature

varies linearly with depth:

v=20

-2
(Y]

z

When this solution becomes unstable, convection should develop.



Then, the dynamics can be formulated for ¥ and ©, which is the departure of temperature from

that occurring in the state of no convection (2.3):

0 o(¥,V20) 4 0O
V¥ = — + vV + gaa—
d(x, z) dx

a(v, AT o
_Q 4+ 4+ gV?O
d(x, z) H oOx

The notation

oW, V20)
oz, 2)

known as the determinant of the Jacobian matrix (or simply “the Jacobian™), stands for

OU VU v VU
or 0z Oz Ox

The constants g, a, v. and Kk denote, respectively, the acceleration of gravity, the coefficient of

thermal expansion, the kinematic viscosity, and the thermal conductivity of the fluid. The problem

is most tractable (analytically) when both the upper- and the lower-boundaries are taken to be free,

in which case ¥ and V2W vanish at both boundaries.



Laplace transform

The Fourier transform is intimately related with the Laplace transform F'(s), which is also used
for the solution of differential equations and the analysis of filters (https://en.wikipedia.

org/wiki/Laplace_transform). We introduce the complex variable s = —iw.
LA{x(t)} = F(s) = / e *tx(t)dt (1.31)
0

It follows (integration by parts for 1.32)

d
L {aw(t)} = sF(s) —x(0) (1.32)



1.3 Covariance and spectrum

A stationary process exhibits an autocovariance function of the form
Couv(r) = ((z(t + 7) — (2)) (x(t) — (z))) (1.58)

where (... ) denotes the statistical ensemble mean.® Normalized to the variance (i.e. the autoco-

variance function at 7 = 0) one gets the autocorrelation function C'(7) :
C(t) = Cov(1)/Cov(0) . (1.59)
Many stochastic processes in nature exhibit short-range correlations, which decay exponentially:
C(t) ~ exp(—71/7), for T — oo (1.60)
The Fourier transformation of the random variable z is

T/2

Z(w) :/ac(t)ei‘“t dt = lim x(t)e™* dt (1.62)
R

T— oo —T/2

and is also a ramdom variable, but its power spectral density S (w) is not:

Sw) = (&27) = (|&(w)|*) . (1.63)

S(w) = Cov(r) ,



