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Test Exam Dynamics II (Summer term 2018)

Lecturer: Prof. Dr. G. Lohmann

Instructions before you start: The perfect score for the exam is 100 points, although the sum

of the problems is 150. Therefore, you can choose among the problems to solve. 50 points are

necessary for the course. Keep in mind that each problem has a different number of points.

1-11 are for the dynamics of the atmosphere-ocean,

10-18 are for tools, statistics, and stochastic climate model,

19 and 20 are for fluid mechanics.

You are allowed to use a calculator & pen. Collaboration or use of alternative sources of informa-

tion is not allowed. Good luck!

1. Questions about atmosphere-ocean dynamics (20 points, for each Q 2 points).

Q1: Please clarify: On the Northern Hemisphere, particles tend to go to the right or left

relative to the direction of motion due to the Coriolis force?

Q2: a) How is the Coriolis parameter f defined ?

b) How is the second Coriolis parameter f1 be defined ?

Q3: Make a sketch of the Foucault pendulum and explain the horizontal dynamics of the

Foucault pendulum

ẍ = 2Ω sinϕẏ −
g

L
x (1)

ÿ = −2Ω sinϕẋ−
g

L
y (2)

with the Coriolis, Gravity forces using the sketch !

Q4: Explain the climate variability modes NAO and ENSO !
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Figure 1: Sea level pressure (hPa) field for February 2015. In February, the circulation is char-
acterized by a low pressure over the Greenland-Iceland-Norwegian Sea, and a surrounded high
pressure. Data are from Trenberth and Paolino (1980).

Q5: What is the hydrostatic approximation in the momentum equations?

Q6: Explain the Taylor-Proudman Theorem! (remember f = f0, barotropic circulation)

Q7: Please write down the barotropic potential vorticity equation for large-scale motion!

Q8: What are the two dominant terms in the horizontal momentum balance for the large-

scale dynamics at mid-latitudes? Write down the geostrophic balance !

Q9: Draw the direction of large-scale motions in the atmosphere in Fig. 1 using the geostrophic

balance.

Q10: Draw a schematic figure of the Atlantic Ocean meridional overturning! Include the

directions (N,S), (E,W), depth in your sketch.
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2. Elimination of the pressure term (6 points)

Assume a 2D flow without non-linear terms and friction, where the equations reduce to:

ρ
∂u

∂t
= −

∂p

∂x
(3)

ρ
∂v

∂t
= −

∂p

∂y
. (4)

a) Eliminate the pressure in (3,4) .

b) Show: Defining the stream function ψ through

u = −
∂ψ

∂y
; v =

∂ψ

∂x
(5)

(mass continuity being unconditionally satisfied), the incompressible Newtonian 2D mo-

mentum and mass conservation degrade into one equation:

∂t
(
∇2ψ

)
= 0 (6)

c) We now consider the rotating framework and add the Coriolis terms −ρfv and ρfu to

the left hand side of (3,4). Subtract ∂/∂y (3) from ∂/∂x (4) to eliminate the pressure terms

to derive the vorticity equation! Show that (6) changed into

∂t
(
∇2ψ

)
+ βv = 0 (7)
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Quantity Atmosphere Ocean
horizontal velocity U 10 ms−1 10−1ms−1

horizontal length L 106m 106m
vertical length H 104m 103m

horizonal Pressure changes δP (horizontal) 103 Pa 104 Pa
time scale T 105 s 107 s

Coriolis parameter at 45◦N f0 = 2Ω sinϕ0 10−4 s−1 10−4 s−1

density ρ 1 kgm−3 103 kgm−3

viscosity (turbulent) ν 10−5 kgm−3 10−6 kgm−3

Table 1: Table shows the typical scales in the atmosphere and ocean system.

3. Scaling of the dynamical equations in the atmosphere and ocean (5 points)

We work in the rotating frame of reference of the Earth. The equation can be scaled by a

length-scale L, determined by the geometry of the flow, and by a characteristic velocity U.

We can estimate the relative contributions in units of m/s2 in the horizontal momentum

equations:

∂v

∂t︸︷︷︸
U/T∼10−8

+ v · ∇v︸ ︷︷ ︸
U2/L∼10−8

= −
1

ρ
∇p︸ ︷︷ ︸

δP/(ρL)∼10−5

+ 2Ω× v︸ ︷︷ ︸
f0U∼10−5

+ fric︸ ︷︷ ︸
νU/H2∼10−13

(8)

where fric denotes the contributions of friction due to eddy stress divergence (usually ∼

ν∇2v). Typical values are given in Table 1. The values have been taken for the ocean.

a) Please repeat the estimate for the atmosphere using Table 1.

b) The Rossby number Ro is the ratio of inertial (the left hand side) to Coriolis (second term

on the right hand side) in (8): terms

Ro =
(U2/L)

(fU)
=

U

fL
. (9)

Ro is small when the flow is in a so-called geostrophic balance. Please calculate Ro for the

atmosphere and ocean using Table 1.
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4. Wind-driven ocean circulation (8 points)

the Sverdrup transport V for the depth-integrated flow is calculated by

ρ0βV =
∂

∂x
τy −

∂

∂y
τx (10)

where τx and τy are the components of the wind stress.

The Ekman transports VE, UE describe the dynamics in the upper mixed layer:

fVE = −τx/ρ0 , fUE = τy/ρ0 (11)

where UE =
∫ 0

−E udz and VE =
∫ 0

−E vdz are the depth-integrated velocities in the

thin friction-dominated Ekman layer at the sea surface. Denote wE as the Ekman vertical

velocity at the bottom of the Ekman layer. Using the continuity equation, the divergence of

the Ekman transports leads to a vertical velocity wE at the bottom of the Ekman layer:

−
∫ 0

−E

∂w

∂z
dz = wE =

∂

∂x
UE +

∂

∂y
VE =

∂

∂x

(
τy

ρ0 f

)
−

∂

∂y

(
τx

ρ0 f

)
. (12)

a) Assume that the windstress is only zonal with

τx = −τ0 cos(πy/B) (13)

for an ocean basin 0 < x < L, 0 < y < B. Calculate the Sverdrup transport, Ekman

transports, and Ekman pumping velocity for this special case. Make a schematic diagram of

the windstress, Sverdrup transport, Ekman transports, and Ekman pumping velocity.

b) Using a), at what latitudes y are |V | and |VE| maximum? Calculate their magnitudes.

Take constant f = 10−4 s−1 and β = 1.8·10−11 m−1s−1 andB = 5000 km, τ0/ρ0 =

10−4 m2s−2.

c) Using the values in b), calculate the maximum of wE for constant f .
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5. Rossby, gravity, and Kelvin waves (8 points)

Start with the shallow water equations

∂u

∂t
− fv = −g

∂η

∂x
(14)

∂v

∂t
+ fu = −g

∂η

∂y
(15)

∂η

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0 (16)

with H=const. as mean depth and η as surface anomaly.

a) With the elimination of the fast gravity waves in equation (16)

∂η

∂t
= 0

derive the dispersion relation for divergence-free Rossby waves! Ansatz: Introduce a stream-

function for u,v: Ψ ∼ exp(ikx+ ily − iωt)

b) With the assumption of f = f0 = 0 derive the dispersion relation for gravity waves!

The restoring force is related to gravity.

Ansatz: Start with the equation (16) and derive the solution.

c) Kelvin waves:

Derive the dispersion relation for Kelvin waves?

Why are Kelvin wave trapped?
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6. Rossby wave formula (long waves in the westerlies) (7 points)

Consider the vorticity equation

D

Dt

(
ζ + f

h

)
= 0 (17)

a) Assume a mean flow with constant zonal velocity u = U = const > 0 and a varying

north-south component v = v(x, t) which gives the total motion a wave-like form.

Furthermore, h =const. Write down the vorticity equation for this specific flow!

b) Use a) and the ansatz

v(x, t) = A cos[(kx− ωt)] (18)

to determine the disperion relation ω(k), group velocity ∂ω
∂k

, and the phase velocity c =

ω/k.

c) Derive the wavelength L = 2π/k of the stationary wave given by c = 0.

7. Potential vorticity: (4 points)

An air column at 53◦N with ζ = 0 initially streches from the surface to a fixed tropopause

at 10 km height. If the air column moves until it is over a mountain barrier of 2 km height at

30◦N, what is its absolute vorticity and relative vorticity as it passes the mountain top?

Assume: sin 53◦ = 0.8; sin 30◦ = 0.5

The angular velocity of the Earth Ω = 2π/(1 day). Use

D

Dt

(
ζ + f

h

)
= 0 (19)
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8. Angular momentum and Hadley cell (10 points)

Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the

atmosphere. In the inviscid upper troposphere one expects such a flow to conserve absolute

angular momentum, i.e.,

DA

Dt
= 0, (20)

where A is the absolute angular momentum per unit mass (parallel to the Earth’s rotation

axis)

A = r (u+ Ωr) = ΩR2 cos2 ϕ+ uR cosϕ . (21)

Ω is the Earth rotation rate, u the eastward wind component, r = R cosϕ is the distance

from the rotation axis,R the Earth’s radius, and ϕ latitude.

a) Show, for inviscid zonally symmetric flow, that the relation DA
Dt

= 0 is consistent with

the zonal component of the equation of motion

Du

Dt
− fv = 0 (22)

in (x, y, z) coordinates, where y = Rϕ. We assume that−1
ρ
∂p
∂x

= 0

b) Use angular momentum conservation to describe in words how the existence of the Hadley

circulation explains the existence of both the subtropical jet in the upper troposphere and the

near-surface trade winds.

c) If the Hadley circulation is symmetric about the equator, and its edge is at 20◦ latitude,

determine the strength of the subtropical jet. Use (20, 21).
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9. Analytical EBM (8 points)

The temperature is described as T (y) and the heat transport (sensible, latent and ocean) is

modelled as diffusion:

Cp ∂tT + k ∂2
yT = (1− α)Qtop

S − (A+B T ) (23)

a) Show the solution if the planetary albedo α is chosen as a constant parameter. Use the

ansatz with a global component and a latitude component

T (y, t) = T0(t) + T1(t) · cos

(
2 y

R

)
(24)

Qtop
S = Q0 +Q1 · cos

(
2 y

R

)
(25)

with y = Rϕ,R is the Earth radius, ϕ the latitude.

Separate the dynamics for T0 and T1. Use the orthogonal functions’ theory or just

∫ 90◦

−90◦
cos(2ϕ) dϕ = 0 (26)

b) Based on (23), one can introduce a climate-dependent formulation of the planetary albedo

α on the global temperature:

α(T ) = α0 − α1 · T0 (27)

Solve the Energy balance model for the case α(T0) as in (27).

c) Show that the stability of the solution depends onB − α1Q0 !

d) Explain the ice-albedo effect through this solution!
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10. Questions about advection (3 points)

I. A ship is steaming northward at a rate of 10 km/h. The surface pressure increases

toward the northwest at a rate of 5 Pa/km. What is the pressure tendency recorded at a

nearby island station if the pressure aboard the ship decreases at a rate of 100Pa/3h?

II. The temperature at a point 50 km north of a station is 3◦C cooler than at the station. If

the wind is blowing from the northeast at 20m/s and the air is being heated by radiation

at a rate of 1◦C/h, what is the local temperature change at the station?

III. The following data were received from 50 km to the east, north, west and south of a sta-

tion, respectively: 90 degree, 10m/s; 120 degree,4m/s; 90degree,8m/s; 60 degree, 4m/s.

Given are the angle and absolute value of the wind speed. Calculate the approximate

horizontal divergence at the station.

11. Estimates of overturning (4 points)

It is observed that water sinks in to the deep ocean in polar regions of the Atlantic basin at a

rate of 15 Sv. (Atlantic basin: 80, 000, 000 km2area× 4 km depth.)

I. How long would it take to ’fill up’ the Atlantic basin?

II. Supposing that the local sinking is balanced by large-scale upwelling, estimate the

strength of this upwelling. Hint: Upwelling = area × w. Express your answer in

m y−1.

III. Compare this number with that of the Ekman pumping ! The order of magnitude of the

Ekman vertical velocitywE can be estimated as from a typical wind stress variation of

0.2Nm−2 per 2000 km in y-direction:

wE ' −
∆τx

ρ f0∆y
(28)
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12. Questions about tools and statistics (16 points, for each Q 2 points).

Q11: Calculate∇f , and the divergence of∇f for the function

f(x, y, z) = x5 + 3x− 4xz + z4 + cos(3y) (29)

Q12: a) Please write down the Euler forward numerical scheme for d
dt
x = f(x) !

b) Consider also the special case f(x) = rx2 − x3.

Q13: What is the necessary condition for stability in a linear system d
dt
x = Ax

with real vector x and n× n matrixA?

Q14: Consider Q13 for the case of a non-linear system d
dt
x = f(x) = ax− bx3.

Q15: a) What is the Fourier transform of a function x(t) ?

b) What is the Fourier transform of the δ(t)-function?

Q16: a) What is the definition of auto-correlation and auto-covariance?

b) How is the Fourier transformation of the auto-covariance called?

Q17: The Laplace transform is given by

L{x(t)} = L(s) =

∫ ∞
0

e−stx(t)dt (30)

Show that integration by parts leads to

L
{
d

dt
x(t)

}
= sL(s)− x(0) (31)

Q18: Show that

L{exp(−at)} =
1

s+ a
(32)
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13. Bifurcations (8 points)

Consider the dynamical system

dx

dt
= b+ x2 (33)

a) Analyze the stability/instability of the equilibria through linearization. The control pa-

rameter is b.

b) Explain the graphical method to obtain stability or instability (Fig. 2) !

like . . . filled circles with positive slope are unstable . . .

c) Calculate the potential and show the stability with a diagram for b = −1 !

d) Draw the bifurcations as in Fig. 2 for dx
dt

= bx(1− x)

Figure 2: Saddle-node bifurcation diagram using the graphical method.
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14. Stochastic climate model (6 points)

Imagine that the temperature of the ocean mixed layer of depth h is governed by

dT

dt
= −λT +

Qnet

γO
, (34)

where coefficient γO is given by the heat capacity cpρh, and λ is the typical damping rate

of a temperature anomaly. The air-sea fluxes due to weather systems are represented by a

white-noise process Qnet = Q̂ωe
iωt where Q̂ω is the amplitude of the random forcing at

frequency ω. Q̂∗ is the complex conjugate.

a) Solve Eq. 34 for the temperature response T = T̂ωe
iωt and hence show that:

T̂ω =
Q̂ω

γO (λ+ iω)
(35)

b) Show that it has a spectral density T̂ω T̂ ∗ω is given by:

T̂ T̂ ∗ =
Q̂ Q̂∗

γ2
O (λ2 + ω2)

(36)

and the spectrum

S(ω) =< T̂ T̂ ∗ >=
1

γ2
O (λ2 + ω2)

. (37)

The brackets< · · · > denote the ensemble mean. < Q̂ Q̂∗ >= 1

c) Make a sketch of the spectrum using a log-log plot and show that fluctuations with a

frequency greater than λ are damped.
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15. Short programming questions. (6 points)

Write down the output for the following R-commands:

a) a<-c(0,-5,3,24); mean(a)

b) max(a)-min(a)

c) paste("The mean value of a is",mean(a),"for sure",sep="_")

d) a*2+c(1,1,-1,0)

e) my.fun<-function(n){return(n*n+1)}

my.fun(10)-my.fun(1)

f) Plot the potential (related to 11d)

y=-100:100

x=y/50

r=1

z=-r * x^2/2 + r * x^3/3

plot(x,z,type=’l’)

CDO-related part of the exam: Assume that you have been asked to do some research on

climate model output that has been provided to you in a file named ’output.nc’. This file

contains various climate-related quantities, including variables ’siced’, ’snacl’, ’u’, ’precip’,

and ’tsurf’. We assume that all data present in the file has global distribution (0-360 E, -90-90

N), the time resolution is one time step per month, and each time step represents a monthly

mean. For each of your answers, give the full CDO command that you would employ when

performing this task at your computer. Apply the correct CDO syntax. Since there is more

than one variable present in the file, for some of the problems it may be necessary to select a

specific variable in your CDO command to derive the correct result. Single quotes given in

the problems highlight the exact variable name or file name and should be ommitted in your

commands. Allowed supporting material to be used by you:
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# d e r i v e in format ion on the t ime a x i s o f a f i l e
cdo showdate i n p u t . nc

# d e r i v e in format ion on the s p a t i a l o r g a n i s a t i o n of data ( i . e . on the gr id ) o f a f i l e
cdo g r i d d e s i n p u t . nc

# d e r i v e in format ion on the v e r t i c a l o r g a n i s a t i o n of data ( i . e . the l e v e l s ) o f a f i l e
cdo s h o w l e v e l i n p u t . nc

# d e r i v e in format ion on the c l i m a t e data ( v a r i a b l e s ) in a f i l e
cdo p a r d e s i n p u t . nc

# e x t r a c t a v a r i a b l e named "varname" from f i l e input . nc
cdo s e l v a r , varname i n p u t . nc o u t p u t . nc

# e x t r a c t the f i r s t month of a l l years in f i l e input . nc
cdo selmon , 1 i n p u t . nc o u t p u t . nc

# c a l c u l a t e a t ime average over a time s e r i e s input . nc
cdo t immean i n p u t . nc o u t p u t . nc

# g e n e r a t e a s e a s o n a l mean from input . nc
cdo seasmean i n p u t . nc o u t p u t . nc

# g e n e r a t e an annual mean from input . nc
cdo yearmean i n p u t . nc o u t p u t . nc

# c a l c u l a t e an average annual c y c l e from f i l e input . nc
cdo ymonmean i n p u t . nc o u t p u t . nc

# s e l e c t a r eg io n from input . nc , spreading from l o n g i t u d e "a" to "b" , and from l a t i t u d e "c" to "d"
cdo s e l l o n l a t b o x , a , b , c , d i n p u t . nc o u t p u t . nc

# c a l c u l a t e a s p a t i a l average of f i e l d input . nc
cdo f ldmean i n p u t . nc o u t p u t . nc

# w r i t e the output o f a cdo operator "a" to the sc r ee n ( omits c r e a t i o n of an output f i l e )
cdo o u t p u t −a i n p u t . nc

# c a l c u l a t e the d i f f e r e n c e between two NetCDF f i l e s input1 . nc and input2 . nc
cdo sub i n p u t 1 . nc i n p u t 2 . nc o u t p u t . nc

# m u l t i p l y two f i e l d s input1 . nc and input2 . nc
cdo mul i n p u t 1 . nc i n p u t 2 . nc o u t p u t . nc

#add a s k a l a r c o n s t a n t va lue "a" to f i e l d input . nc
cdo addc , a i n p u t . nc o u t p u t . nc

# s e l e c t only r e g i o n s o f input2 . nc , f o r which mask input1 . nc i s t rue ( i . e . 1 ) , r e p r e s e n t s an i f−then programming
cdo i f t h e n i n p u t 1 . nc i n p u t 2 . nc o u t p u t . nc

# use input2 . nc , where mask input1 . nc i s t rue − o t h e r w i s e use input3 . nc , r e p r e s e n t s an i f−then−e l s e programming
cdo i f t h e n e l s e i n p u t 1 . nc i n p u t 2 . nc i n p u t 3 . nc o u t p u t . nc

# reduce a data range ( a , b ) in input . nc to the c o n s t a n t va lue "c"
cdo s e t r t o c , a , b , c i n p u t . nc o u t p u t . nc

# r e p l a c e a data range ( a , b ) in input . nc by the miss ing va lue ("NaN")
cdo s e t r t o m i s s , a , b i n p u t . nc o u t p u t . nc

# c a l c u l a t e trend of t ime s e r i e s input . nc ; o f f s e t "a" and s l o p e "b" of the r e g r e s s i o n l i n e ; s t o r e d in a . nc , b . nc
cdo t r e n d i n p u t . nc a . nc b . nc

# c a l c u l a t e the h o r i z o n t a l area covered by each gr id c e l l o f input . nc , s t o r e the r e s u l t in f i l e output . nc
cdo g r i d a r e a i n p u t . nc o u t p u t . nc

# i n t e r p o l a t e a s p a t i a l data input . nc us ing n e a r e s t neighbor to a s p e c i f i c g e o l o c a t i o n of l o n g i t u d e X and l a t i t u d e Y,
s t o r e the r e s u l t in f i l e output . nc (X and Y being g e o l o c a t i o n s in degrees )

cdo remapnn , l o n =X/ l a t =Y i n p u t . nc o u t p u t . nc
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16. cdo question 1 (6 points)

Derive information on the climate model output in file ’output.nc’ using the climate data

operators (CDO). Explain how you would identify the following listed items of information:

a) the physical quantity stored in the variable ’snacl’

b) the various vertical levels present for variable ’u’ (hint: the result of your command should

be a list of all vertical levels on which ’u’-data is available, so do not use an operator that

provides only the number of levels)

c) information on the spatial resolution (number of grid cells in lon/lat-direction, longitude

and latitude values, ...)

17. cdo question 2 (6 points)

Compute spatial and temporal averages of climate model output in file ’output.nc’ using the

climate data operators (CDO). Explain how you would compute the following characteristics

of climate data:

a) the average of variable ’precip’ in the Northern Hemisphere (longitudes 0-360E, latitudes

0-90N)

b) the global average and time average of variable ’tsurf’

c) the time average and spatial average in the Northern Hemisphere (longitudes 0-360E,

latitudes 0-90N) of variable ’tsurf’

18. cdo question 3 (6 points)

Devise CDO commands that compute characteristics of climate model output in file ’out-

put.nc’ in order to answer some scientific questions. For each of the problems, note down

how you would further analyse the output of the CDO command devised by you in order to

answer the question. The problems to solve are:

a) How much colder is the month January than the month July in the Northern Hemisphere

(longitudes 0-360E, latitudes 0-90N) based on the data in variable ’temp2’?

b) What is the monthly average temperature at the location of Bremen (geographical coordi-
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nates 53.0793 N, 8.8017 E) based on the data in variable ’temp2’? Note: In case you need

to employ remapping to interpolate the global data set to the geolocation of Bremen, apply

nearest neighbour remapping (CDO operator remapnn). Further note that the result of your

CDO command will contain multiple time steps!

c) Which month is coldest at the location of Bremen (geographical coordinates 53.0793 N,

8.8017 E) based on the data in variable ’tsurf’? Note: In case you need to employ remap-

ping to interpolate the global data set to the geolocation of Bremen, apply nearest neighbour

remapping (CDO operator remapnn).
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19. Questions about fluid mechanics (6 points, for each Q 2 points).

Q18: Name three different dimensionless parameters which can characterize the flow.

Q19: a) Please state: The dimensionless Reynolds number is Re = U/(Lν) or Re =

UL/ν orRe = U2L/ν ? ν denotes the kinematic viscosity, L a length-scale L determined

by the geometry of the flow, and U a characteristic velocity.

b) In which context does the Reynolds number play a role?

Q20: Describe in words the Rayleigh-Bénard instability. The basic state possesses a steady-

state solution in which there is no motion, and the temperature varies linearly with depth:

u = w = 0 (38)

Teq = T0 +

(
1−

z

H

)
∆T (39)

When this solution becomes unstable, ... (please continue)

Benard−Cell

(high temperature)

(low temperature)

H/a

H

T0 +∆Tx

y

z
T0

g

Figure 3: Geometry of the Rayleigh-Bénard system.
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20. Concept of dynamic similarity (7 points)

For the case of an incompressible flow, assuming the temperature effects are negligible and

external forces are neglected, the Navier-Stokes equations consist of conservation of mass

∇ · u = 0 (40)

and conservation of momentum

∂tu + (u · ∇)u = −
1

ρ0

∇p+ ν∇2u (41)

where u is the velocity vector and p is the pressure, ν denotes the kinematic viscosity.

a) Show: The equations (40,41) can be made dimensionless by a length-scale L, determined

by the geometry of the flow, and by a characteristic velocity U. For example: u = U · ud.

Note: the units of [ρ0] = kg/m3, [p] = kg/(ms2), and [p]/[ρ0] = m2/s2. Therefore

the pressure gradient term in (41) has the scaling U2/L.

b) Show: The scalings vanish completely in front of the terms except for the ∇2ud-term!

The dimensionless parameter is the Reynolds number and the only parameter left!

Remark: For large Reynolds numbers, the flow is turbulent. In most practical flows Re is

rather large (104 − 108), large enough for the flow to be turbulent.
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Solution for

1 7 .
a ) e n t e r t h e command : cdo o u t p u t −f ldmean −s e l l o n l a t b o x , 0 , 3 6 0 , 0 , 9 0 −s e l v a r , p r e c i p o u t p u t . nc

t h e h e m i s p h e r i c a v e r a g e w i l l be w r i t t e n o u t f o r each of t h e 12 t ime s t e p s

b ) e n t e r t h e command : cdo o u t p u t −f ldmean −t immean −s e l v a r , t s u r f o u t p u t . nc
t h e g l o b a l and t ime a v e r a g e w i l l be w r i t t e n o u t a n a l o g t o t h e f o l l o w i n g o u t p u t :
287 .583

c ) e n t e r t h e command : cdo o u t p u t −t immean −f ldmean −s e l l o n l a t b o x , 0 , 3 6 0 , 0 , 9 0 −s e l v a r , t s u r f o u t p u t . nc
t h e h e m i s p h e r i c t ime a v e r a g e w i l l be w r i t t e n o u t a n a l o g t o t h e f o l l o w i n g o u t p u t :
288 .405

1 8 .
a ) e n t e r t h e command : cdo o u t p u t −f ldmean −s e l l o n l a t b o x , 0 , 3 6 0 , 0 , 9 0 −s e l v a r , temp2 o u t p u t . nc

a monthly c l i m a t o l o g y w i l l be w r i t t e n o u t from which t h e t e m p e r a t u r e d i f f e r e n c e between J a n u a r y and
J u l y can be computed by hand , e . g . :

280 .697
281 .270
283 .700
287 .003
290 .257
292 .723
294 .116
293 .857
291 .883
288 .688
285 .066
282 .221
=> J a n u a r y i s c o l d e r t h a n J u l y by : 294 .116 K − 280 .697 K = 13 .419 K
−−−
an even b e t t e r answer would be ( such answer s c o u l d be awarded e x t r a p o i n t s i f t h i s i s f e a s i b l e ) :
e n t e r t h e command : cdo o u t p u t −sub −selmon , 7 −f ldmean −s e l l o n l a t b o x , 0 , 3 6 0 , 0 , 9 0 −s e l v a r , temp2 o u t p u t . nc

\
−selmon , 1 −f ldmean −s e l l o n l a t b o x , 0 , 3 6 0 , 0 , 9 0 −s e l v a r , temp2 o u t p u t . nc

in t h i s case t h e d i f f e r e n c e i s d i r e c t l y computed by CDO, t h e r e s u l t 13 .4187 K i s s l i g h t l y d i f f e r e n t
due t o h i g h e r i n t e r n a l p r e c i s i o n o f CDO

b ) e n t e r t h e command : cdo o u t p u t −remapnn , l o n = 8 . 8 0 1 7 / l a t =53.0793 −s e l v a r , temp2 o u t p u t . nc
t h e monthly a v e r a g e t e m p e r a t u r e temp2 , i n t e r p o l a t e d t o t h e g e o l o c a t i o n o f Bremen , w i l l be w r i t t e n o u t

a n a l o g t o :
271 .787
272 .398
275 .225
279 .338
283 .944
286 .991
288 .495
287 .624
284 .712
280 .792
276 .465
273 .783

c ) e n t e r t h e command : cdo o u t p u t −remapnn , l o n = 8 . 8 0 1 7 / l a t =53.0793 −s e l v a r , t s u r f o u t p u t . nc
t h e monthly c l i m a t o l o g y of t e m p e r a t u r e t s u r f , i n t e r p o l a t e d t o t h e g e o l o c a t i o n o f Bremen , w i l l be

w r i t t e n o u t a n a l o g t o :
271 .689
272 .348
275 .277
279 .499
284 .253
287 .271
288 .671
287 .760
284 .761
280 .768
276 .365
273 .663
from t h i s o u t p u t i t can be i n f e r r e d t h a t t h e f i r s t month ( J a n u a r y ) i s t h e c o l d e s t , w i th a t e m p e r a t u r e

o f 271 .689 K


