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Test Exam Dynamics II (Summer 2021)

Lecturer: Prof. Dr. G. Lohmann

Time: July 5, 2021, 15:00-17:00h

Instructions before you start: The perfect score for the exam is 100 points, although the sum

of the problems is 150. Therefore, you can choose among the problems to solve. 50 points are

necessary for the course. Keep in mind that each problem has a different number of points.

You are allowed to use a calculator & pen. Collaboration or use of alternative sources of informa-

tion is not allowed. Good luck!

1. Questions about fluid mechanics (6 points, for each Q 2 points).

a) Name three different dimensionless parameters which can characterize the flow.

b) ν denotes the kinematic viscosity, L a length-scale L determined by the geometry of the

flow, and U a characteristic velocity.

Is the dimensionless Reynolds number given asRe = U/(Lν) ?

In which context does the Reynolds number play a role?

c) Describe in words the Rayleigh-Bénard instability (Fig. 1). The basic state possesses a

steady-state solution in which there is no motion, and the temperature varies linearly with

depth:
u = w = 0 (1)

Teq = T0 +

(
1−

z

H

)
∆T (2)

When this solution becomes unstable, ... (please continue)
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Figure 1: Geometry of the Rayleigh-Bénard system.

2. Concept of dynamic similarity (8 points)

For the case of an incompressible flow, assuming the temperature effects are negligible and

external forces are neglected, the Navier-Stokes equations consist of conservation of mass

∇ · u = 0 (3)

and conservation of momentum

∂tu + (u · ∇)u = −
1

ρ0

∇p+ ν∇2u (4)

where u is the velocity vector and p is the pressure, ν denotes the kinematic viscosity.

a) Show: The equations (3,4) can be made dimensionless by a length-scale L, determined by

the geometry of the flow, and by a characteristic velocity U. For example: u = U · ud.

Note: the units of [ρ0] = kg/m3, [p] = kg/(ms2), and [p]/[ρ0] = m2/s2. Therefore

the pressure gradient term in (4) has the scaling U2/L.

b) Show: The scalings vanish completely in front of the terms except for the ∇2ud-term!

The dimensionless parameter is the Reynolds number and the only parameter left!
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Figure 2: Sea level pressure (hPa) field for July 1, 2018. Source: NCEP/NCAR reanalysis.

3. Questions about atmosphere-ocean dynamics (16 points, for each 2 points).

a) Please clarify: On the Northern Hemisphere, particles tend to go to the right or left relative

to the direction of motion due to the Coriolis force?

b) How is the Coriolis parameter f defined ?

c) What is the hydrostatic approximation in the momentum equations?

d) Please write down the barotropic potential vorticity equation for large-scale motion!

Which quantity is conserved along the streamlines?

e) What are the two dominant terms in the horizontal momentum balance for the large-scale

dynamics at mid-latitudes for the atmosphere and ocean flow ?

f) Draw the direction of large-scale motions in the atmosphere in Fig. 2 using the geostrophic

balance.

g) Explain the Taylor-Proudman Theorem! (remember f = f0, barotropic circulation)

h) Draw a schematic figure of the Atlantic Ocean meridional overturning! Include the direc-

tions (N,S), (E,W), depth in your sketch.
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4. Elimination of the pressure term (10 points)

Assume a 2D flow without non-linear terms and friction, where the equations reduce to:

ρ
∂u

∂t
= −

∂p

∂x
(5)

ρ
∂v

∂t
= −

∂p

∂y
. (6)

a) Eliminate the pressure in (5,6) .

b) Show: Defining the stream function ψ through

u = −
∂ψ

∂y
; v =

∂ψ

∂x
(7)

(mass continuity being unconditionally satisfied), the dynamics degrade into one equation:

∂t
(
∇2ψ

)
= 0 (8)

c) We now consider the rotating framework and add the Coriolis terms −ρfv and ρfu to

the left hand sides of (5,6). Show that (8) changed into

∂t
(
∇2ψ

)
+ βv = 0 (9)

d) Consider the non-linear case, is the following correct ?

Dt

(
∇2ψ

)
+ βv = 0 (10)
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Quantity Atmosphere Ocean
horizontal velocity U 10 ms−1 10−1ms−1

horizontal length L 106m 106m
vertical length H 104m 103m

horizonal Pressure changes δP (horizontal) 103 Pa 104 Pa
time scale T 105 s 107 s

Coriolis parameter at 45◦N f0 = 2Ω sinϕ0 10−4 s−1 10−4 s−1

density ρ 1 kgm−3 103 kgm−3

viscosity (turbulent) ν 10−5 kgm−3 10−6 kgm−3

Table 1: Table shows the typical scales in the atmosphere and ocean system.

5. Scaling of the dynamical equations in the atmosphere and ocean (4 points)

We work in the rotating frame of reference of the Earth. The equation can be scaled by a

length-scale L, determined by the geometry of the flow, and by a characteristic velocity U.

We can estimate the relative contributions in units of m/s2 in the horizontal momentum

equations:

∂v

∂t︸︷︷︸
U/T∼10−8

+ v · ∇v︸ ︷︷ ︸
U2/L∼10−8

= −
1

ρ
∇p︸ ︷︷ ︸

δP/(ρL)∼10−5

+ 2Ω× v︸ ︷︷ ︸
f0U∼10−5

+ fric︸ ︷︷ ︸
νU/H2∼10−13

(11)

where fric denotes the contributions of friction due to eddy stress divergence (usually ∼

ν∇2v). Typical values are given in Table 1. The values have been taken for the ocean.

a) Please repeat the estimate for the atmosphere using Table 1.

b) The Rossby number Ro is the ratio of inertial (the left hand side) to Coriolis (second term

on the right hand side) in (11): terms

Ro =
(U2/L)

(fU)
=

U

fL
. (12)

Ro is small when the flow is in a so-called geostrophic balance. Please calculate Ro for the

atmosphere and ocean using Table 1.
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6. Wind-driven ocean circulation (9 points)

The Sverdrup transport V for the depth-integrated flow is calculated by

ρ0βV =
∂

∂x
τy −

∂

∂y
τx (13)

where τx and τy are the components of the wind stress.

The Ekman transports VE, UE describe the dynamics in the upper mixed layer:

fVE = −τx/ρ0 , fUE = τy/ρ0 (14)

where UE =
∫ 0

−E udz and VE =
∫ 0

−E vdz are the depth-integrated velocities in the thin

friction-dominated Ekman layer at the sea surface.

Ekman vertical velocity wE: Using the continuity equation, the divergence of the Ekman

transports leads to a vertical velocity wE at the bottom of the Ekman layer:

wE = −
∫ 0

−E

∂w

∂z
dz =

∂

∂x
UE +

∂

∂y
VE =

∂

∂x

(
τy

ρ0 f

)
−

∂

∂y

(
τx

ρ0 f

)
. (15)

a) Assume that the windstress is only zonal with

τx = −τ0 cos(πy/B) for an ocean basin with 0 < x < L, 0 < y < B. (16)

Calculate the Sverdrup transport, Ekman transports, and Ekman pumping velocity for this

special case.

b) Make a schematic diagram of the windstress, Sverdrup transport, Ekman transports, and

Ekman pumping velocity.

c) Using a), at what latitudes y are |V | and |VE| maximum? Calculate their magnitudes.

Take constant f = 10−4 s−1 and β = 1.8·10−11 m−1s−1 andB = 5000 km, τ0/ρ0 =

10−4 m2s−2.

d) Using the values in b), calculate the maximum of wE for constant f .
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7. Rossby, gravity, and Kelvin waves (9 points)

Start with the shallow water equations

∂u

∂t
− fv = −g

∂η

∂x
(17)

∂v

∂t
+ fu = −g

∂η

∂y
(18)

∂η

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0 (19)

with H=const. as mean depth and η as surface anomaly.

a) With the elimination of the fast gravity waves in equation (19)

∂η

∂t
= 0

derive the dispersion relation for divergence-free Rossby waves! Ansatz: Introduce a stream-

function for u,v: Ψ ∼ exp(ikx+ ily − iωt)

b) With the assumption of f = f0 = 0 derive the dispersion relation for gravity waves!

The restoring force is related to gravity.

Ansatz: Start with the equation (19) and derive the solution.

c) Kelvin waves:

Derive the dispersion relation for Kelvin waves?

Why are Kelvin waves trapped along the equator and the coasts? Make a sketch!
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8. Rossby wave formula (long waves in the westerlies) (7 points)

a) Assume a mean flow with constant zonal velocity u = U = const > 0 and a varying

north-south component v = v(x, t) which gives the total motion a wave-like form.

Furthermore, h =const.

Write down the vorticity equation for this specific flow! Remember that the vorticity equa-

tion is D

Dt

(
ζ + f

h

)
= 0 (20)

b) Use a) and the ansatz v(x, t) = A cos[(kx− ωt)] (21)

to determine the disperion relation ω(k), the group velocity ∂ω
∂k

, and the phase velocity

c = ω/k.

c) Derive the wavelength L = 2π/k of the stationary wave given by c = 0.

9. Potential vorticity in the atmosphere: (6 points)

a) An air column at 53◦N with ζ = 0 initially streches from the surface to a fixed tropopause

at 8 km height. If the air column moves until it is over a mountain barrier of 3 km height at

30◦N, what is its absolute vorticity and relative vorticity as it passes the mountain top?

b) An air column at 53◦N with ζ = 0 initially streches from the surface to a fixed tropopause

at 8 km height. If the air column moves until it is over a mountain barrier of 2 km height at

64◦N, what is its absolute vorticity and relative vorticity as it passes the mountain top?

c) Draw a scetch for a) and b).

Assume: sin 53◦ = 0.8; sin 30◦ = 0.5; sin 64◦ = 0.9

The angular velocity of the Earth Ω = 2π/(1 day).

Use the vorticity equationDt

(
ζ+f
h

)
= 0



9

10. Questions about advection (9 points)

a) A ship is steaming northward at a rate of 10 km/h. The surface pressure increases toward

the northwest at a rate of 5 Pa/km. What is the pressure tendency recorded at a nearby island

station if the pressure aboard the ship decreases at a rate of 100Pa/3h?

b) The temperature at a point 50 km north of a station is 3◦C cooler than at the station. If the

wind is blowing from the northeast at 20m/s and the air is being heated by radiation at a rate

of 1◦C/h, what is the local temperature change at the station?

c) The following data were received from 50 km to the east, north, west and south of a

station, respectively: 90 degrees, 10m/s; 120 degrees, 4m/s; 90 degrees, 8m/s; 60 degrees,

4m/s. Given are the angle and absolute value of the wind speed. Calculate the approximate

horizontal divergence at the station.

11. Estimates of overturning (6 points)

It is observed that water sinks in to the deep ocean in polar regions of the Atlantic basin at

a rate of 15 Sv. (Atlantic basin: 80, 000, 000 km2area × 4 km depth.) a) How long

would it take to ’fill up’ the Atlantic basin?

b) Supposing that the local sinking is balanced by large-scale upwelling, estimate the strength

of this upwelling. Hint: Upwelling = area× w. Express your answer inm y−1.

c) Compare this number with that of the Ekman pumping ! The order of magnitude of

the Ekman vertical velocity wE can be estimated as from a typical wind stress variation of

0.2Nm−2 per 2000 km in y-direction:

wE ' −
∆τx

ρ f0∆y
(22)
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12. Angular momentum and Hadley Cell (10 points)

Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the

atmosphere. In the inviscid upper troposphere one expects such a flow to conserve absolute

angular momentum, i.e., DA

Dt
= 0, (23)

where A is the absolute angular momentum per unit mass (parallel to the Earth’s rotation
axis). Denoting Ω is the Earth rotation rate, u the eastward wind component, r = R cosϕ

the distance from the rotation axis,R the Earth’s radius, and ϕ latitude, it follows

A = r (Ωr + u) = ΩR2 cos2 ϕ+ uR cosϕ . (24)

a) Show, for inviscid zonally symmetric flow, that the relation DA
Dt

= 0 is consistent with

the zonal component of the equation of motion
Du

Dt
+
uv

R
tanϕ− fv = 0 (25)

where y = Rϕ. We assume that−1
ρ
∂p
∂x

= 0

b) In the upper troposphere, the flow leaves the rising branch of the Hadley Cell at the

equator with angular momentum density A0 = ΩR2, assuming that the flow rises from

the ground there with no relative motion. Show that the zonal flow can then be described as

u = ΩR2 sin2 ϕ/ cosϕ .

c) Show that the zonal flow will be greatest at the edge of the cell, where ϕ is greatest,

thus producing the subtropical jet. If the Hadley circulation is symmetric about the equator,

and its edge is at 30◦ latitude, determine the strength of the subtropical jet. Use: ΩR2 =

2π
86400 s

· (6.371 · 106m)2 = 3 · 109m2s−1.

d) Consider the tropical Hadley circulation in northern winter. The circulation rises at 10◦S,

moves northward across the equator and sinks at 20◦N . Assuming that the air leaves the

boundary layer at 10◦S with zonal velocity u = 0, calculate the zonal wind in the upper

troposphere and provide the numbers for the equator, 10◦N , and 20◦N .
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13. Questions about tools (12 points, for each 2 points).

a) Please write down the Euler forward numerical scheme for d
dt
x = f(x) !

Consider also the special case f(x) = rx− x3.

b) What is the necessary condition for stability in a linear system d
dt
x = Ax

with real vector x and n× n matrixA?

c) What is the Fourier transform of a function x(t) ?

What is the Fourier transform of the δ(t)-function?

d) What is the definition of auto-correlation and auto-covariance?

How is the Fourier transformation of the auto-covariance called?

e) The Laplace transform is given by

L{x(t)} = L(s) =

∫ ∞
0

e−stx(t)dt (26)

Show that integration by parts leads to

L
{
d

dt
x(t)

}
= sL(s)− x(0) (27)

f) Show that

L{exp(−at)} =
1

s+ a
(28)
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14. Bifurcations (10 points)

Consider the dynamical system

dx

dt
= b+ x2 (29)

a) Analyze the stability/instability of the equilibria through linearization. The control pa-

rameter is b.

b) Explain the graphical method to obtain stability or instability (Fig. 3) !

like . . . filled circles with positive slope are unstable . . .

c) Calculate the potential and show the stability with a diagram for b = −1 !

d) Draw the bifurcations as in Fig. 3 for dx
dt

= bx(1− x). Analyze the stability/instability

of the equilibria through linearization.

Figure 3: Saddle-node bifurcation diagram using the graphical method.
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15. Spectrum of the stochastic climate model (8 points)

Imagine that the temperature of the ocean mixed layer of depth h is governed by

dT

dt
= −λT +Qnet , (30)

where λ is the typical damping rate of a temperature anomaly and Qnet is given by the

stochastic heat flux divided by the heat capacity. The air-sea fluxes are represented by a

white-noise process Qnet = Q̂ωe
iωt where Q̂ω is the amplitude of the random forcing at

frequency ω. Q̂∗ is the complex conjugate of Q̂.

a) What is a white-noise process? Remember that

∫
R

exp(iωt)δ(t− 0)dt = 1 (31)

and use the Fourier transformation.

b) Solve (30) for the temperature response T = T̂ωe
iωt and hence show that:

T̂ω =
Q̂ω

(λ+ iω)
(32)

c) Show that it has a spectral density T̂ω T̂ ∗ω is given by:

T̂ T̂ ∗ =
Q̂ Q̂∗

(λ2 + ω2)
(33)

and the spectrum
S(ω) =< T̂ T̂ ∗ >=

1

(λ2 + ω2)
. (34)

The brackets< · · · > denote the ensemble mean. < Q̂ Q̂∗ >= 1

d) Make a sketch of the spectrum using a log-log plot and show that fluctuations with a

frequency greater than λ are damped.
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16. Short programming questions. (5 points)

Write down the output for the following R-commands:

a) a<-c(0,-5,4,20); mean(a)

b) max(a)-min(a)

c) a*2+c(3,1,-1,0)

d) my.fun<-function(n){return(n*n+n-1)}

my.fun(6)-my.fun(1)

CDO-related part of the exam:

Assume that you have been asked to do some research on climate model output that has

been provided to you in a file named ’output.nc’. This file contains various climate-related

quantities, including variables ’siced’, ’snacl’, ’u’, ’precip’, and ’tsurf’. We assume that all

data present in the file has global distribution (0-360 E, -90-90 N), the time resolution is

one time step per month, and each time step represents a monthly mean. For each of your

answers, give the full CDO command that you would employ when performing this task at

your computer. Apply the correct CDO syntax. Since there is more than one variable present

in the file, for some of the problems it may be necessary to select a specific variable in your

CDO command to derive the correct result. Single quotes given in the problems highlight the

exact variable name or file name and should be ommitted in your commands. Avoid creating

intermediate files by using the CDO piping syntax (a hyphen before the operator) wherever

possible. Allowed supporting material to be used by you: the CDO cheat sheat provided

with this exam.
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17. cdo question 1 (5 points)

Derive information on the climate model output in file ’output.nc’ using the climate data

operators (CDO). Explain how you would identify the following listed items of information:

a) the unit of variable ’siced’

b) information on the dates for which climate data is present in the file.

18. cdo question 2 (5 points)

Compute spatial and temporal averages of climate model output in file ’output.nc’ using the

climate data operators (CDO).

Explain how you would compute the following characteristics of climate data:

a) the global average of variable ’precip’

b) the time average of variable ’tsurf’ averaged over the longitudes 0-10 E and 0-20 N

19. cdo question 3 (5 points)

Devise CDO commands that compute characteristics of climate model output in file ’out-

put.nc’ in order to answer some scientific questions. For each of the problems, note down

how you would further analyse the output of the CDO command devised by you in order to

answer the question. The problems to solve are:

a) Which is the coldest month in the spatial average over the Southern Hemisphere (longi-

tudes 0-360 E, latitudes -90-0 N) based on the data in variable ’tsurf’?

b) What is the time average temperature at the location of Bremen (geographical coordinates

53.0793 N, 8.801 E) based on the data in variable ’tsurf’? Note: In case you need to em-

ploy remapping to interpolate the global data set to the geolocation of Bremen, apply nearest

neighbour remapping (CDO operator remapnn).
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# d e r i v e in format ion on the t ime a x i s o f a f i l e
cdo showdate i n p u t . nc

# d e r i v e in format ion on the s p a t i a l o r g a n i s a t i o n of data ( i . e . on the gr id ) o f a f i l e
cdo g r i d d e s i n p u t . nc

# d e r i v e in format ion on the v e r t i c a l o r g a n i s a t i o n of data ( i . e . the l e v e l s ) o f a f i l e
cdo s h o w l e v e l i n p u t . nc

# d e r i v e in format ion on the c l i m a t e data ( v a r i a b l e s ) in a f i l e
cdo p a r d e s i n p u t . nc

# e x t r a c t a v a r i a b l e named "varname" from f i l e input . nc
cdo s e l v a r , varname i n p u t . nc o u t p u t . nc

# e x t r a c t the f i r s t month of a l l years in f i l e input . nc
cdo selmon , 1 i n p u t . nc o u t p u t . nc

# c a l c u l a t e a t ime average over a time s e r i e s input . nc
cdo t immean i n p u t . nc o u t p u t . nc

# g e n e r a t e a s e a s o n a l mean from input . nc
cdo seasmean i n p u t . nc o u t p u t . nc

# g e n e r a t e an annual mean from input . nc
cdo yearmean i n p u t . nc o u t p u t . nc

# c a l c u l a t e an average annual c y c l e from f i l e input . nc
cdo ymonmean i n p u t . nc o u t p u t . nc

# s e l e c t a r eg io n from input . nc , spreading from l o n g i t u d e "a" to "b" , and from l a t i t u d e "c" to "d"
cdo s e l l o n l a t b o x , a , b , c , d i n p u t . nc o u t p u t . nc

# c a l c u l a t e a s p a t i a l average of f i e l d input . nc
cdo f ldmean i n p u t . nc o u t p u t . nc

# w r i t e the output o f a cdo operator "a" to the sc r ee n ( omits c r e a t i o n of an output f i l e )
cdo o u t p u t −a i n p u t . nc

# c a l c u l a t e the d i f f e r e n c e between two NetCDF f i l e s input1 . nc and input2 . nc
cdo sub i n p u t 1 . nc i n p u t 2 . nc o u t p u t . nc

# m u l t i p l y two f i e l d s input1 . nc and input2 . nc
cdo mul i n p u t 1 . nc i n p u t 2 . nc o u t p u t . nc

#add a s k a l a r c o n s t a n t va lue "a" to f i e l d input . nc
cdo addc , a i n p u t . nc o u t p u t . nc

# s e l e c t only r e g i o n s o f input2 . nc , f o r which mask input1 . nc i s t rue ( i . e . 1 ) , r e p r e s e n t s an i f−then programming
cdo i f t h e n i n p u t 1 . nc i n p u t 2 . nc o u t p u t . nc

# use input2 . nc , where mask input1 . nc i s t rue − o t h e r w i s e use input3 . nc , r e p r e s e n t s an i f−then−e l s e programming
cdo i f t h e n e l s e i n p u t 1 . nc i n p u t 2 . nc i n p u t 3 . nc o u t p u t . nc

# reduce a data range ( a , b ) in input . nc to the c o n s t a n t va lue "c"
cdo s e t r t o c , a , b , c i n p u t . nc o u t p u t . nc

# r e p l a c e a data range ( a , b ) in input . nc by the miss ing va lue ("NaN")
cdo s e t r t o m i s s , a , b i n p u t . nc o u t p u t . nc

# c a l c u l a t e trend of t ime s e r i e s input . nc ; o f f s e t "a" and s l o p e "b" of the r e g r e s s i o n l i n e ; s t o r e d in a . nc , b . nc
cdo t r e n d i n p u t . nc a . nc b . nc

# c a l c u l a t e the h o r i z o n t a l area covered by each gr id c e l l o f input . nc , s t o r e the r e s u l t in f i l e output . nc
cdo g r i d a r e a i n p u t . nc o u t p u t . nc

# i n t e r p o l a t e a s p a t i a l data input . nc us ing n e a r e s t neighbor to a s p e c i f i c g e o l o c a t i o n of l o n g i t u d e X and l a t i t u d e Y,
s t o r e the r e s u l t in f i l e output . nc (X and Y being g e o l o c a t i o n s in degrees )

cdo remapnn , l o n =X/ l a t =Y i n p u t . nc o u t p u t . nc


