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General framework: Climate dynamics

Over the last century, humans have altered the composition of the Earth’s atmosphere and surface

to the extent that these factors measurably affect current climate conditions. Paleoclimate recon-

structions, in particular from ice cores have also shown that climate can change over relatively

short periods such as a few years to decades. The objective of the book is to examine fundamental

concepts used to understand climate dynamics. Here, we will approach climate dynamics from a

fluid dynamics and complex systems point of view.

The script has several parts, an application follows after every theoretical section. The content

(part I-III) is designed for 12 lessons for a master course at the University of Bremen (Dynamics

II).

Part I deals with the general structure of fluid dynamical models. Like the ocean, the atmo-

sphere is considered as a Newtonian Fluid. The concepts of scaling and vorticity are introduced.

Ice dynamics is not explicitely considered here although it is an important part of the Earth system.

One application deals with the Rayleigh-Bénard convection.

In the script I provide a framework to analyze the stability of dynamical systems (Part II).

These systems provide the prototype of nonlinear dynamics, bifurcations, multiple equilibria. A

bifurcation occurs when a parameter change causes the stability of an equilibrium. In his classic

studies of chaotic systems, Lorenz has proposed a deterministic theory of climate change with his

concept of the ’almost-intransitivity’ of the highly non-linear climate systems. In the Lorenz equa-

tions exist the possibility of multiple stable solutions and internal variability, even in the absence

of any variations in external forcing [Lorenz, 1976]. More complex models, e.g. Bryan [1986];

Dijkstra et al. [2004] also demonstrated this possibility.

In Part III, I introduce the basic concepts of large-scale meteorology and oceanography. The

Coriolis effect is one of the dominating forces for the large-scale dynamics of the oceans and the

atmosphere. In meteorology and ocean science, it is convenient to use a rotating frame of reference

where the Earth is stationary. The resulting flow can be derived from scaling arguments. Several

approximations can be done since the scales of the components in the dynamical equations differ
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in the orders of magnitude. One fundamental aspect of ocean dynamics are waves. A short theory

is given and numerical examples are provided. Furthermore, the deep ocean circulation is studied

in a conceptual box model. Here, we introduce an interhemispheric box model of the deep ocean

circulation to study the feedbacks in the climate system.

Part IV is part of the course Climate II with advanced participants. Several tasks are included

for those who have some additional time (part V and several chapters with a star). The numerical

examples in the chapters may be helpful for the students who are already familiar with program-

ming (they can improve the code and follow the main ideas of the code etc.), for those who are

not familiar they can use it more as a black box and as a starting point for more research. Several

task do not require that the complete code is understood, but one can change initial conditions or

parameters in the problems. I mainly use R iwhich s an open source programme avaible through

R.

Acknowledgements

The script benefited from Master or PhD work of Matthias Prange, Nils Kaiser, Gregor Knorr

related to the climate box model, as well of Dragos Chirila and Sebastian Hinck for several com-

ments and the implementation of the Lattice Boltzmann Model. Thomas Laepple, Sebastian Hinck,

Christopher Danek, Christian Stepanek and Paul Gierz helped with some R, python and shell pro-

gramming, and Stefanie Klebe with editing.
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Chapter 1

Basics of Fluid Dynamics

Our starting point is a mathematical model for the system of interest. In physics a model typically

describes the state variables, plus fundamental laws and equations of state. These variables evolve

in space and time. For the ocean circulation, we proceed as follows:

• State variables: Velocity (in each of three directions), pressure, temperature, salinity, density

• Fundamental laws: Conservation of momentum, conservation of mass, conservation of tem-

perature and salinity

• Equations of state: Relationship of density to temperature, salinity and pressure, and perhaps

also a model for the formation of sea-ice

The state variables for the ocean model are expressed as a continuum in space and time, and the

fundamental laws as partial differential equations1. Even at this stage, though, simplifications may

be made. For example, it is common to treat seawater as incompressible. Furthermore, equations

of state are often specified by empirical relationships or laboratory experiments.

In the following, the general structure of ocean circulation, atmospheric energy balance as well

as ice sheet models are described. The dynamics of flow are based on the Navier-Stokes equations.

The derivation of the Navier-Stokes equations begins with an application of Newton’s second law:

conservation of momentum (often alongside mass and energy conservation) being written for an

1If the atmosphere is becoming too thin in the upper levels, a more molecular, statistical description is appropiate
(section 5)

10



1.1. MATERIAL LAWS 11

arbitrary control volume. In an inertial frame of reference, the general form of the equations of

fluid motion is:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · T + F, (1.1)

where u is the flow velocity (a vector), ρ is the fluid density, p is the pressure, T is the 3 × 3

(deviatoric) stress tensor, and F represents body forces (per unit volume) acting on the fluid and

∇ is the nabla operator. This is a statement of the conservation of momentum in a fluid and it is an

application of Newton’s second law to a continuum; in fact this equation is applicable to any non-

relativistic continuum and is known as the Cauchy momentum equation (e.g., Landau and Lifshitz

[1959]).

This equation is often written using the substantive derivative, making it more apparent that

this is a statement of Newton’s second law:

ρ
Du

Dt
= −∇p+∇ · T + F. (1.2)

The left side of the equation describes acceleration, and may be composed of time dependent or

advective effects (also the effects of non-inertial coordinates if present). The right side of the equa-

tion is in effect a summation of body forces (such as gravity) and divergence of stress (pressure and

stress). A very significant feature of the Navier-Stokes equations is the presence of advective ac-

celeration: the effect of time independent acceleration of a fluid with respect to space, represented

by the nonlinear quantity u · ∇u. A general framework can be generally formulated as a transport

phenomenon, see section 3.4.

1.1 Material laws

The effect of stress in the fluid is represented by the∇p and∇ · T terms, these are gradients of

surface forces, analogous to stresses in a solid. ∇p is called the pressure gradient and arises from
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the isotropic part of the stress tensor. This part is given by normal stresses that turn up in almost

all situations, dynamic or not. The anisotropic part of the stress tensor gives rise to∇ · T, which

conventionally describes viscous forces. For incompressible flow, this is only a shear effect. Thus,

T is the deviatoric stress tensor, and the stress tensor is equal to:

σ = −p I + T (1.3)

where I is the 3 × 3 identity matrix. Interestingly, only the gradient of pressure matters, not the

pressure itself. The effect of the pressure gradient is that fluid flows from high pressure to low

pressure.

The stress terms p and T are yet unknown, so the general form of the equations of motion is not

usable to solve problems. Besides the equations of motion -Newton’s second law- a force model

is needed relating the stresses to the fluid motion. For this reason, assumptions on the specific

behavior of a fluid are made (based on observations) and applied in order to specify the stresses in

terms of the other flow variables, such as velocity and density.

The Cauchy stress tensor can be also written in matrix form:

T =


T(e1)

T(e2)

T(e3)

 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ≡

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ≡

σx τxy τxz

τyx σy τyz

τzx τzy σz

 (1.4)

where σ are the normal stresses and τ are the shear stresses. From the Newton’s third law (actio

est reactio) the stress vectors T(ei) = dF
dA

with ei as normalvector acting on opposite sides of

the same surface are equal in amount and opposite in direction (−T(ei) = T(−ei)). According

to conservation of angular momentum, summation of moments is zero. Thus the stress tensor is

symmetrical: T = TT . In Fig. 1.1 the stress vectors T(ei) can be decomposed in one normal

stress and two shear stress components.



1.1. MATERIAL LAWS 13

x3
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Figure 1.1: Components of stress in three dimensions.
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1.2 Navier-Stokes equations

The so-called Navier-Stokes equations result from the following assumptions on the deviatoric

stress tensor T :

• the deviatoric stress vanishes for a fluid at rest, and by Galilean invariance also does not

depend directly on the flow velocity itself, but only on spatial derivatives of the flow velocity

• in the Navier-Stokes equations, the deviatoric stress is expressed as the product of the tensor

gradient∇v of the flow velocity with a viscosity tensor A, i.e. T = A (∇v)

• the fluid is assumed to be isotropic, as valid for gases and simple liquids, and consequently

A is an isotropic tensor; furthermore, since the deviatoric stress tensor is symmetric, it turns

out that it can be expressed in terms of two scalar dynamic viscosities µ and µ” : T =

2µE + µ′′(∇ · v)I, where E = 1
2

(∇v) + 1
2

(∇v)T is the rate-of-strain tensor and∇ · v

is the rate of expansion of the flow

• the deviatoric stress tensor has zero trace, so for a three-dimensional flow 2µ+ 3µ” = 0

As a result, in the Navier-Stokes equations the deviatoric stress tensor has the following form:

T = 2µ
(
E− 1

3
(∇ · u)I

)
, (1.5)

with the quantity between brackets the non-isotropic part of the rate-of-strain tensor E. The dynamic

viscosity µ does not need to be constant - in general it depends on conditions like temperature and

pressure, and in turbulence modelling the concept of eddy viscosity is used to approximate the

average deviatoric stress.

The Navier-Stokes equations are strictly a statement of the conservation of momentum. In order

to fully describe fluid flow, more information is needed (how much depends on the assumptions

made), this may include boundary data (no-slip, capillary surface, etc), the conservation of mass,

the conservation of energy, and/or an equation of state. Regardless of the flow assumptions, a
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statement of the conservation of mass is generally necessary. This is achieved through the mass

continuity equation, given in its most general form as:

∂ρ

∂t
+∇ · (ρu) = 0 (1.6)

or, using the substantive derivative:

Dρ

Dt
+ ρ(∇ · u) = 0. (1.7)

A simplification of the resulting flow equations is obtained when considering an incompressible

flow of a Newtonian fluid. The assumption of incompressibility rules out the possibility of sound

or shock waves to occur; so this simplification is invalid if these phenomena are important. The

incompressible flow assumption typically holds well even when dealing with a "compressible"

fluid -such as air at room temperature- at low Mach numbers (even when flowing up to about Mach

0.3).2 Taking this into account and assuming constant viscosity, the Navier-Stokes equations will

read, in vector form:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + F. (1.8)

The vector field F represents "other" (body force) forces. Typically this is only gravity, but may

include other fields (such as electromagnetic). In a non-inertial coordinate system, other "forces"

such as that associated with rotating coordinates may be inserted3. Often, these forces may be

represented as the gradient of some scalar quantity. Gravity in the z direction, for example, is the

gradient of−ρgz. Since pressure shows up only as a gradient, this implies that solving a problem

2The density and pressure fields can be expressed as a perturbation from a hydrostatically balanced state around
a reference density ρr(z) (e.g. a horizontal mean of density in the area of interest) and associated pressure pr(z)
which are linked through dpr/dz = −gρr and pr(z = 0) = 0. Sound waves are filtered by realizing that the
time rate of change of density due to diabatic effects and compressibility is much smaller than that due to change of
volume.

3We will see later that the Coriolis force will be one of the main contributions in the rotating Earth system (section
6.1)
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without any such body force can be mended to include the body force by modifying pressure. The

shear stress term∇T becomes the useful quantityµ∇2u when the fluid is assumed incompressible

and Newtonian, where µ is the dynamic viscosity.

It’s well worth observing the meaning of each term (compare to the Cauchy momentum equa-

tion):

Inertia (per volume)︷ ︸︸ ︷
ρ
( ∂u

∂t︸︷︷︸
Unsteady

acceleration

+ u · ∇u︸ ︷︷ ︸
Advective

acceleration

)
=

Divergence of stress︷ ︸︸ ︷
−∇p︸ ︷︷ ︸
Pressure
gradient

+µ∇2u︸ ︷︷ ︸
Viscosity

+ F︸︷︷︸
Other
body
forces

. (1.9)

Note that only the advection terms are nonlinear for incompressible Newtonian flow. This acceler-

ation is an acceleration caused by a (possibly steady) change in velocity over position, for example

the speeding up of fluid entering a converging nozzle. Though individual fluid particles are being

accelerated and thus are under unsteady motion, the flow field (a velocity distribution) will not

necessarily be time dependent.

Another important observation is that the viscosity is represented by the vector Laplacian of

the velocity field. This implies that Newtonian viscosity is diffusion of momentum, this works

in much the same way as the diffusion of heat seen in the heat equation (which also involves the

Laplacian).

If temperature effects are also neglected, the only "other" equation (apart from initial/boundary

conditions) needed is the mass continuity equation. Under the incompressible assumption, density

is a constant and it follows that the equation will simplify to:

∇ · u = 0 . (1.10)

This is more specifically a statement of the conservation of volume (see divergence). These equa-

tions are commonly used in 3 coordinates systems: Cartesian, cylindrical, and spherical. While

the Cartesian equations seem to follow directly from the vector equation above, the vector form
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of the Navier-Stokes equation involves some tensor calculus which means that writing it in other

coordinate systems is not as simple as doing so for scalar equations (such as the heat equation).

1.3 Some exercises for Chapter 1

Exercise 1 – Questions about advection

1. A ship is steaming northward at a rate of 10 km/h. The surface pressure increases toward the

northwest at a rate of 5 Pa/km. What is the pressure tendency recorded at a nearby island

station if the pressure aboard the ship decreases at a rate of 100Pa/3h?

2. The temperature at a point 50 km north of a station is 3◦C cooler than at the station. If the

wind is blowing from the northeast at 20m/s and the air is being heated by radiation at a rate

of 1◦C/h, what is the local temperature change at the station?

3. The following data were received from 50 km to the east, north, west and south of a station,

respectively: 90 degree, 10m/s; 120 degree,4m/s; 90degree,8m/s; 60 degree, 4m/s. Given

are the angle and absolute value of the wind speed. Calculate the approximate horizontal

divergence at the station.

4. Let the x = (x1, x2, x3) coordinates be inertial. What are the necessary and sufficient

conditions that the coordinates yi = Aijxj + vj(x, t)t be inertial for constant matrix

A = (Aij) ?

5. How can the movement of fluid particel be descibed in accordance with Newton’s first law?

Which forces can create accelerations or decelerations? Please use the definition of specific

forces, that is, the force per unit mass: f = F/m.

6. The potential temperature in the atmosphere is defined as

Θ = T (p0/p)R/cp (1.11)
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With p0 = const. Calculate the vertical temperature gradient

γ = −
dT

dz
(1.12)

What is the result when assuming the hydrostatic equillibrium

dp

dz
= −gρ

with g = 9.81m/s2 ? What is the condition for which the the potential temperature is

constant in the vertical?

Solution of 2. Temperature Advection

The total change of temperature is given by

dT

dt
=
∂T

∂t
+ u · ∇T = q̇

⇔
∂T

∂t
=− u · ∇T + q̇

Here we use the velocity

u =− 20
m

s

1
√

2


1

1

0

, ∇T =
3◦C

50km


0

−1

0

, q̇ = 1
◦C

h
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Horizontal Length Velocity Time
L V T

Microturbulence 1-10 cm 1-10 cm/s seconds
Thunderstorms 1-10 km 10 m/s hours

Weather patterns 100-1000 km 1-10 m/s days to weeks
Climatic variations global 1-10 m/s decades and beyond

Table 1.1: Table shows the typical scales in the environmental, atmosphere, ocean and climate
system. Using these orders of magnitude, one can derive estimates of the timescales.

Then we calculate

∂T

∂t
=− u · ∇T + q̇

=20
m

s

1
√

2


1

1

0

 ·


0

−1

0

 3◦C

50km
+ 1

◦C

h

≈−2.1
◦C

h

Exercise 2 – Typical scales

Table 2 lists typical velocity, length and time scales of some fluid processes and systems. Not

surprisingly, larger systems evolve on longer time scales. Depending on the size of the system

under consideration, the spatial scale can be regional, continental or even global. Using the length

and velocity scales (L and V), determine a typical time scale (T=L/V)! (Rough estimates are given

in the last column in Table 2.)

Exercise 3 – Weather chart

From the weather chart (Figure 1.2), identify the horizontal extent of a major atmospheric sea

level pressure and the associated wind speed. Determine a typical time scale T !
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Figure 1.2: Surface pressure field and surface wind on 10th February 2008 at 12GMT. The contour
interval is 4mbar. High and low pressure systems are marked as H and L. The dark segments
represent wind arrows, whose arrowhead is not drawn in meteorological plots, by convention. The
reader should imagine arrowhead at the end of segment that has no quivers. The quivers are drawn
at only one side, at the tail end. The wind blows in the direction of the quiver base to the arrowhead.
One full quiver represents a wind of 5m/s.
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1.4 Integral and differential formulation*

On a volume work two types of forces:

1. The force ~F on each volume element. For gravity holds: ~F = %~g.

2. Surface forces working only on the margins: ~t. For these holds: ~t = ~n σ, where σ is the

stress tensor.

σ can be split in a part p I representing the normal tensions and a part T representing the shear

stresses: σ = T + p I, where I is the unit tensor or identity matrix. When viscous aspects can be

ignored holds:

div σ = −∇p . (1.13)

When the flow velocity is ~v at position ~r holds on position ~r + d~r:

~v(~r + d~r ) = ~v(~r )︸ ︷︷ ︸
translation

+ d~r · (∇~v )︸ ︷︷ ︸
rotation, deformation, dilatation

The quantity L:= ∇~v can be split in a symmetric part D and an antisymmetric part W. L = D + W

with

Dij :=
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
, Wij :=

1

2

(
∂vi

∂xj
−
∂vj

∂xi

)
When the rotation or vorticity ~ω = rot~v is introduced holds: Wij = 1

2
εijkωk. ~ω represents the

local rotation velocity: ~dr · W = 1
2
ω × ~dr.

For a Newtonian liquid holds: T = 2ηD. Here, η is the dynamical viscosity. This is related to

the shear stress τ by:

τij = η
∂vi

∂xj

For compressible media can be stated: T = (η′div~v )I + 2ηD. From equating the thermody-

namical and mechanical pressure it follows: 3η′ + 2η = 0. If the viscosity is constant holds:
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div(2D) = ∇2~v + grad div~v.

The conservation laws for mass, momentum and energy for continuous media can be written

in both integral and differential form. They are:

Integral notation:

1. Conservation of mass:
∂

∂t

∫∫∫
%d3V +

∫∫
© %(~v · ~n )d2A = 0

2. Conservation of momentum:
∂

∂t

∫∫∫
%~vd3V +

∫∫
© %~v(~v · ~n )d2A =

∫∫∫
f0d

3V +∫∫
© ~n · Td2A

3. Conservation of energy:
∂

∂t

∫∫∫
(1
2
v2 + e)%d3V +

∫∫
© (1

2
v2 + e)%(~v · ~n )d2A =

−
∫∫
© (~q · ~n )d2A+

∫∫∫
(~v · ~f0)d3V +

∫∫
© (~v · ~n T)d2A

Differential notation:

1. Conservation of mass:
∂%

∂t
+ div · (%~v ) = 0

2. Conservation of momentum: %
∂~v

∂t
+ (%~v · ∇)~v = ~f0 + divT = ~f0 − gradp+ divT′

3. Conservation of energy: %T
ds

dt
= %

de

dt
−
p

%

d%

dt
= −div~q + T : D

Here, e is the internal energy per unit of mass E/m and s is the entropy per unit of mass

S/m. ~q = −κ~∇T is the heat flow. Further holds:

p = −
∂E

∂V
= −

∂e

∂1/%
, T =

∂E

∂S
=
∂e

∂s

so

CV =

(
∂e

∂T

)
V

and Cp =

(
∂h

∂T

)
p

with h = H/m the enthalpy per unit of mass.
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From this one can derive the Navier-Stokes equations for an incompressible, viscous and heat-

conducting medium:

div~v = 0

%
∂~v

∂t
+ %(~v · ∇)~v = %~g − gradp+ η∇2~v

%C
∂T

∂t
+ %C(~v · ∇)T = κ∇2T + 2ηD : D

withC the thermal heat capacity. The force ~F on an object within a flow, when viscous effects are

limited to the boundary layer, can be obtained using the momentum law. If a surface A surrounds

the object outside the boundary layer holds:

~F = −
∫∫
© [p~n+ %~v(~v · ~n )]d2A
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1.5 Elimination of the pressure term

Taking the curl of the Navier-Stokes equation results in the elimination of pressure. This is espe-

cially easy to see if 2D Cartesian flow is assumed (w = 0 and no dependence of anything on z),

where the equations reduce to:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(1.14)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (1.15)

Differentiating the first with respect to y, the second with respect to x and subtracting the resulting

equations will eliminate pressure and any potential force. Defining the stream function ψ through

u =
∂ψ

∂y
; v = −

∂ψ

∂x
(1.16)

results in mass continuity being unconditionally satisfied (given the stream function is continu-

ous), and then incompressible Newtonian 2D momentum and mass conservation degrade into one

equation:

∂

∂t

(
∇2ψ

)
+
∂ψ

∂y

∂

∂x

(
∇2ψ

)
−
∂ψ

∂x

∂

∂y

(
∇2ψ

)
= ν∇4ψ (1.17)

or using the total derivative

Dt

(
∇2ψ

)
= ν∇4ψ (1.18)

where ∇4 is the (2D) biharmonic operator and ν is the kinematic viscosity ν = µ
ρ
. This sin-

gle equation together with appropriate boundary conditions describes 2D fluid flow, taking only

kinematic viscosity as a parameter. Note that the equation for creeping flow results when the left
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side is assumed zero. In axisymmetric flow another stream function formulation, called the Stokes

stream function, can be used to describe the velocity components of an incompressible flow with

one scalar function. The concept of taking the curl of the flow will become very important in

ocean dynamics (section 6.5). The term ζ = ∇2ψ is called relative vorticity, its dynamics can be

described as

Dtζ = ν∇2ζ . (1.19)

1.6 Non-dimensional parameters: The Reynolds number

For the case of an incompressible flow in the Navier-Stokes equations, assuming the temperature

effects are negligible and external forces are neglected, they consist of conservation of mass

∇ · u = 0 (1.20)

and conservation of momentum (1.8).

∂tu + (u · ∇)u = −
1

ρ0

∇p+ ν∇2u (1.21)

where u is the velocity vector and p is the pressure, ν denotes the kinematic viscosity. The equa-

tions can be made dimensionless by a length-scale L, determined by the geometry of the flow, and

by a characteristic velocity U. For inter-comparison of analytical solutions, numerical results, and

of experimental measurements, it is useful to report the results in a dimensionless system. This is

justified by the important concept of dynamic similarity (Buckingham [1914]). The main goal for

using this system is to replace physical or numerical parameters with some dimensionless numbers,

which completely determine the dynamical behavior of the system4. The procedure for converting

4It is this fact that allows engineers to make solid predictions of how a large-scale system would perform based on
a miniature model. The dimensionless quantities can often be kept constant when the size of the system is changed
by using a fluid with a different viscosity during the tests. The miniature and the "real" flows are then equivalent.
The Buckingham π theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh’s method of
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to this system first implies, first of all, the selection of some representative values for the physical

quantities involved in the original equations (in the physical system). For our current problem,

we need to provide representative values for velocity (U), time (T ), distances (L). From these,

we can derive scaling parameters for the time-derivatives and spatial-gradients also. Using these

values, the values in the dimensionless-system (written with subscript d) can be defined:

u = U · ud (1.22)

t = T · td (1.23)

x = L · xd (1.24)

with U = L/T . From these scalings, we can also derive

∂t =
∂

∂t
=

1

T
·
∂

∂td
(1.25)

∂x =
∂

∂x
=

1

L
·
∂

∂xd
(1.26)

Note furthermore the units of [ρ0] = kg/m3, [p] = kg/(ms2), and [p]/[ρ0] = m2/s2.

Therefore the pressure gradient term in (1.8) has the scaling U2/L. Furthermore, devide the

equation (1.8) by U2/L and the scalings vanish completely in front of the terms except for the

∇2
dud-term! This procedure yields therefore for (1.20,1.21):

∇d · ud = 0 (1.27)

dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain
number n of physical variables, then the original equation can be rewritten in terms of a set of p = n−k dimensionless
parameters constructed from the original variables where k is the number of physical dimensions involved. For the
system (1.20,1.21), n = 4 for velocity, density, pressure, ν; k = 3 for mass, length and time; p = 4− 3 = 1 one
dimensionless parameter, the Reynolds number.
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and conservation of momentum

∂

∂td
ud + (ud · ∇d)ud = −∇dpd +

1

Re
∇2
dud (1.28)

The dimensionless parameter Re = UL/ν is the Reynolds number and the only parameter left!

For large Reynolds numbers, the flow is turbulent. In most practical flows Re is rather large

(104 − 108), large enough for the flow to be turbulent. A large Reynolds number allows the flow

to develop steep gradients locally. The typical length-scale corresponding to these steep gradients

can become so small that viscousity is not negligible. So the dissipation takes place at small

scales. In this way different lengthscales are present in a turbulent flow, which range from L to the

Kolmogorov length scale. This length scale is the typical length of the smallest eddy present in a

turbulent flow. In the climate system, this dissipation by turbulence is modeled via eddy terms.

In the literature, the term "equations have been made dimensionless", means that this procedure

is applied and the subscripts d are dropped.

Remark: For inter-comparison of analytical solutions, numerical results, and of experimental

measurements, it is useful to report the results in a dimensionless system. The main goal for using

this system is to replace physical or numerical parameters with some dimensionless numbers,

which completely determine the dynamical behavior of the system.

Exercise 4 – Repeat: Concept of dynamic similarity

1. Show: The equations (1.20,1.21) can be made dimensionless by a length-scale L, determined

by the geometry of the flow, and by a characteristic velocity U.

2. What is the charateristic number? Discuss that it is Convective Inertial Force
Shear Force . When the number is

large, it shows that the flow is dominated by convective inertial effects. When the number is

small, it shows that the flow is dominated by shear effects.

3. Please start from the potential vorticity dynamics (1.19) instead of (1.20,1.21). Derive the

non-dimensionalized potential vorticity dynamics.

Remark: Later we will include the Coriolis effect (exercise 40).
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1.7 Characterising flows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has

to make the dimensionless numbers which are important for the specific experiment equal for

both model and the real situation. One can also deduce functional equalities without solving the

differential equations. Some dimensionless numbers are given by:

Strouhal: Sr =
ωL

v
Froude: Fr =

v2

gL
Mach: Ma =

v

c

Fourier: Fo =
a

ωL2
Péclet: Pe =

vL

a
Reynolds: Re =

vL

ν

Prandtl: Pr =
ν

a
Nusselt: Nu =

Lα

κ
Eckert: Ec =

v2

c∆T

Here, ν = η/% is the kinematic viscosity, c is the speed of sound and L is a characteristic length

of the system. α follows from the equation for heat transport κ∂yT = α∆T and a = κ/%c is

the thermal diffusion coefficient.

These numbers can be interpreted as follows:

• Re: (stationary inertial forces)/(viscous forces)

• Sr: (non-stationary inertial forces)/(stationary inertial forces)

• Fr: (stationary inertial forces)/(gravity)

• Fo: (heat conductance)/(non-stationary change in enthalpy)

• Pe: (convective heat transport)/(heat conductance)

• Ec: (viscous dissipation)/(convective heat transport)

• Ma: (velocity)/(speed of sound): objects moving faster than approximately Ma = 0,8 produce

shockwaves which propagate with an angle θ with the velocity of the object. For this angle

holds Ma= 1/ arctan(θ).
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• Pr and Nu are related to specific materials.

Now, the dimensionless Navier-Stokes equation becomes, with xd = x/L, ~vd = ~v/V , ∇d =

L∇d,∇2
d = L2∇2 and td = tω:

Sr
∂~vd

∂td
+ (~vd · ∇d)~vd = −∇dpd +

~g

Fr
+
∇2
d~vd

Re
(1.29)

1.8 Dynamic similarity: Application in engineering*

Engineering models are used to study complex fluid dynamics problems where calculations and

computer simulations are not reliable. Models are usually smaller than the final design, but not

always. Scale models allow testing of a design prior to building, and in many cases are a critical

step in the development process. Construction of a scale model, however, must be accompanied

by an analysis to determine what conditions it is tested under. While the geometry may be simply

scaled, other parameters, such as pressure, temperature or the velocity and type of fluid may need

to be altered. Similitude is achieved when testing conditions are created such that the test results

are applicable to the real design. The following criteria are required:

1. Geometric similarity: The model is the same shape as the application, usually scaled.

2. Kinematic similarity: Fluid flow of both the model and real application must undergo similar

time rates of change motions. (fluid streamlines are similar)

3. Dynamic similarity: Ratios of all forces acting on corresponding fluid particles and boundary

surfaces in the two systems are constant.

Dimensional analysis is used to express the system with as few independent variables and as

many dimensionless parameters as possible. The values of the dimensionless parameters are held

to be the same for both the scale model and application. The design of marine vessels remains

more of an art than a science in large part because dynamic similitude is especially difficult to

attain for a vessel that is partially submerged: a ship is affected by wind forces in the air above it,

by hydrodynamic forces within the water under it, and especially by wave motions at the interface
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Variable Application Scaled model Units
L (diameter of submarine) 1 1/40 (m)

V (speed) 5 calculate (m/s)
ρ (density) 1028 988 (kg/m3)

µ (dynamic viscosity) 1.88 · 10−3 1.0 · 10−3 Pa · s(Ns/m2)
F (force) calculate to be measured N (kgm/s2)

Table 1.2: Table shows the typical scales for the submarine model.

between the water and the air. The scaling requirements for each of these phenomena differ, so

models cannot replicate what happens to a full sized vessel nearly so well as can be done for an

aircraft or submarin–each of which operates entirely within one medium.

As an example, consider a submarine modeled at 1/40th scale. The application operates in sea

water at 0.5◦C,moving at 5m/s. The model will be tested in fresh water at 20◦C. Find the power

required for the submarine to operate at the stated speed. A free body diagram is constructed and

the relevant relationships of force and velocity are formulated. The variables which describe the

system are listed in Table 1.2. This example has five independent variables and three fundamental

units. The fundamental units are: metre, kilogram, second. Invoking the Buckingham π theorem

shows that the system can be described with two dimensionless numbers and one independent

variable. Dimensional analysis is used to re-arrange the units to form the Reynolds number (Re)

and so-called pressure coefficient (pc). The pressure coefficient is a parameter for studying the

flow of incompressible fluids such as water, and also the low-speed flow of compressible fluids

such as air. The relationship between the dimensionless coefficient and the dimensional numbers

is

pc =
p− p∞
1
2
ρ∞V 2

∞
=

p− p∞
p0 − p∞

(1.30)

where:

p is the static pressure at the point at which pressure coefficient is being evaluated

p∞ is the static pressure in the freestream (i.e. remote from any disturbance)

p0 is the stagnation pressure in the freestream (i.e. remote from any disturbance)
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ρ∞ is the freestream fluid density

V∞ is the freestream velocity of the fluid, or the velocity of the body through the fluid.

Scaling laws:

Re =

(
ρV L

µ

)
−→Vmodel = Vapplication ×

(
ρa

ρm

)
×
(
La

Lm

)
×
(
µm

µa

)
(1.31)

pc =

(
2∆p

ρV 2

)
, F = ∆pL2 −→Fapplication = Fmodel ×

(
ρa

ρm

)
×
(
Va

Vm

)2

×
(
La

Lm

)2

.

(1.32)

The pressure (p) is not one of the five variables, but the force (F) is. The pressure difference has

thus been replaced with (F/L2) in the pressure coefficient. This gives a required test velocity of:

Vmodel = Vapplication × 21.9.

A model test is then conducted at that velocity and the force that is measured in the model (Fmodel)

is then scaled to find the force that can be expected for the real application (Fapplication) :

Fapplication = Fmodel × 3.44

The power P in Watt required by the submarine is then:

P [W] = Fapplication × Vapplication = Fmodel[N]× 17.2 m/s

Note that even though the model is scaled smaller, the water velocity needs to be increased for

testing. This remarkable result shows how similitude in nature is often counterintuitive.

Similitude has been well documented for a large number of engineering problems and is the

basis of many textbook formulas and dimensionless quantities. These formulas and quantities

are easy to use without having to repeat the laborious task of dimensional analysis and formula
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derivation. Similitude can be used to predict the performance of a new design based on data from

an existing, similar design. In this case, the model is the existing design. Another use of similitude

and models is in validation of computer simulations with the ultimate goal of eliminating the need

for physical models altogether. Another application of similitude is to replace the operating fluid

with a different test fluid. Wind tunnels, for example, have trouble with air liquefying in certain

conditions so helium is sometimes used. Other applications may operate in dangerous or expensive

fluids so the testing is carried out in a more convenient substitute.
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