
Chapter 8

Brownian motion, weather and climate

The daily observed maximum and minimum temperatures is often compared to the "normal" tem-

peratures based upon the 30-year average. Climate averages provide a context for something like

"this winter will be wetter (or drier, or colder, or warmer, etc.) than normal. It has been said

"Climate is what you expect. Weather is what you get."

What is the difference between weather and climate? This can be also answered by an ex-

ample/a methaphor in the football league. Predicting the outcome of the next game is difficult

(weather), but predicting who will end up as German champion is unfortunately relatively easy

(climate). In this section, I will give a general approach to the mean and fluctuations in the climate

system. Indeed, the Brownian motion approach is a helpful analogue for weather and climate.

Brownian motion

The Roman Lucretius’s scientific poem On the Nature of Things (ca. 60 BC) has a remarkable

description of Brownian motion of dust particles1. Jan Ingenhousz had described the irregular

1He uses this as a proof of the existence of atoms: "Observe what happens when sunbeams are admitted into a
building and shed light on its shadowy places. You will see a multitude of tiny particles mingling in a multitude of
ways... their dancing is an actual indication of underlying movements of matter that are hidden from our sight... It
originates with the atoms which move of themselves [i.e. spontaneously]. Then those small compound bodies that are
least removed from the impetus of the atoms are set in motion by the impact of their invisible blows and in turn cannon
against slightly larger bodies. So the movement mounts up from the atoms and gradually emerges to the level of our
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motion of coal dust particles on the surface of alcohol in 1785. Nevertheless Brownian motion

is traditionally regarded as discovered by the botanist Robert Brown in 1827. It is believed that

Brown was studying pollen particles floating in water under the microscope. He then observed

minute particles within the vacuoles of the pollen grains executing a jittery motion. By repeating

the experiment with particles of dust, he was able to rule out that the motion was due to pollen

particles being ’alive’, although the origin of the motion was yet to be explained.

See the film: https://en.wikipedia.org/wiki/Brownian_motion#/media/

File:Brownian_motion_large.gif.

Figure 8.1: Snapshot of a movement of a Brownian particle.

The first person to describe the mathematics behind Brownian motion was Thorvald N. Thiele

in 1880 in a paper on the method of least squares. This was followed independently by Louis

senses, so that those bodies are in motion that we see in sunbeams, moved by blows that remain invisible." Although
the mingling motion of dust particles is caused largely by air currents, the glittering, tumbling motion of small dust
particles is, indeed, caused chiefly by true Brownian dynamics.

https://en.wikipedia.org/wiki/Brownian_motion#/media/File:Brownian_motion_large.gif
https://en.wikipedia.org/wiki/Brownian_motion#/media/File:Brownian_motion_large.gif
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Bachelier in 1900 in his PhD thesis "The theory of speculation", in which he presented a stochastic

analysis of the stock and option markets. However, it was Albert Einstein’s (in his 1905 paper) and

Marian Smoluchowski’s (1906) independent research of the problem that brought the solution to

the attention of physicists, and presented it as a way to indirectly confirm the existence of atoms

and molecules. The confirmation of Einstein’s theory constituted empirical progress for the kinetic

theory of heat. In essence, Einstein showed that the motion can be predicted directly from the

kinetic model of thermal equilibrium. The importance of the theory lay in the fact that it confirmed

the kinetic theory’s account of the second law of thermodynamics as being an essentially statistical

law.

8.1 Brownian motion: Statistical description

Einstein’s argument was to determine how far a Brownian particle travels in a given time interval.

Classical mechanics is unable to determine this distance because of the enormous number of bom-

bardments a Brownian particle will undergo, roughly of the order of 1021 collisions per second.

Thus Einstein was led to consider the collective motion of Brownian particles.

He regarded the increment of particle positions in unrestricted one dimensional x� domain

as a random variable (� or x, under coordinate transformation so that the origin lies at the initial

position of the particle) with some probability density function �(�). Further, assuming conser-

vation of particle number, he expanded the density (number of particles per unit volume) change
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Figure 8.2: The characteristic bell-shaped curves of the diffusion of Brownian particles. The
distribution begins as a Dirac delta function, indicating that all the particles are located at the
origin at time t=0, and for increasing times they become flatter and flatter until the distribution
becomes uniform in the asymptotic time limit.
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The integral in the first term is equal to one by the definition of probability, and the second and
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other even terms (i.e. first and other odd moments) vanish because of space symmetry. What is left

gives rise to the following relation:
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Where the coefficient before the Laplacian, the second moment of probability of displacement �,

is interpreted as mass diffusivity D :

D =
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Then the density of Brownian particles ⇢ at point x at time t satisfies the diffusion equation:
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Assuming that N particles start from the origin at the initial time t = 0, the diffusion equation has

the solution

⇢(x, t) =
N

p
4⇡Dt

e� x2

4Dt .

This expression allowed Einstein to calculate the moments directly. The first moment is seen to

vanish, meaning that the Brownian particle is equally likely to move to the left as it is to move to

the right. The second moment is, however, non-vanishing, being given by

x2 = 2D t.

This expresses the mean squared displacement in terms of the time elapsed and the diffusivity.

From this expression Einstein argued that the displacement of a Brownian particle is not propor-

tional to the elapsed time, but rather to its square root. His argument is based on a conceptual

switch from the "ensemble" of Brownian particles to the "single" Brownian particle: we can speak

of the relative number of particles at a single instant just as well as of the time it takes a Brownian
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particle to reach a given point.

This can be formalized as follows. The Wiener process is a continuous-time stochastic process

with stationary independent increments. The Wiener process Wt is characterized by three facts:

• W0 = 0

• Wt is almost surely continuous

• Wt has independent increments with normal distribution Wt � Wt0 ⇠ N(0, t � t0).

N(µ,�2) denotes the normal distribution with expected value µ and variance �2. The

condition that it has independent increments means that if then and are independent random

variables.

The Wiener process can be constructed as the scaling limit of a random walk, or other discrete-time

stochastic processes with stationary independent increments. It can be denoted as

var(Wt) = dW 2
t
= 2�2t (8.5)

where dW 2
t

is the mean square displacement of a Brownian particle in time t (t0 is set to zero).2

The so-called diffusion constant D = �2 is related to the mean free path � and the average time

between collisions ⌧ :

2D =
�2

⌧
. (8.6)

The time evolution of the position of the Brownian particle itself is best described using Langevin

equation, an equation which involves a random force field representing the effect of the thermal

fluctuations of the solvent on the particle. The displacement of a particle undergoing Brownian

motion is obtained by solving the diffusion equation under appropriate boundary conditions and

finding the root mean square of the solution. This shows that the displacement varies as the square

2A heuristic helpful interpretation of the stochastic differential equation is that in a small time interval of length
dt, the stochastic process changes its value by an amount that is normally distributed with variance 2�2dt and is
independent of the past behavior of the process. This is so because the increments of a Wiener process are independent
and normally distributed.
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root of the time (not linearly).

Figure 8.3: Numerical solution of the brownian motion, multiple particles. See exercise 56 for
details.

Exercise 56 – Brownian motion on a computer

Imagine a so-called red-noise process

dx

dt
= ��x + ⇠ . (8.7)
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1. Calculate the model using the following R code:

#brownian motion, multiple particle

#forward modelling

Nparticle<-1000 #number of particles

T<- 1000 #integration time in time units

h<- 0.5 #step size in time units

beta<-0.00001 #friction term

lambda<-1 #noise term

N<-T/h
t<-(0:(N-1))*h

x<-matrix(0,Nparticle,N) # Initial condition, all = 0

for (i in 1:(N-1))
{
x[,i+1]<-x[,i]*(1-beta*h)+ rnorm(Nparticle)*sqrt(h)

}

plot(0,xlim=c(0,T),ylim=c(-100,100),type="n")
for (i in 1:N) lines (t,x[i,],col=i)

#analyse the densities

h<-matrix(0,N,40)

for (i in 1:(N-1)) h[i,]<-hist(x[,i],breaks=c((-20:20)*10),freq=FALSE,
ylim=c(0,0.04))$counts

filled.contour(t,(-19:20)*10-5,h,color.palette=rainbow,xlab="time",
ylab="space")

2. Show that the displacement varies as the square root of the time (not linearly).

8.2 Stochastic climate model

In a stochastic framework of climate theory one may use an appropriate stochastic differential

equation (Langevin equation)

d

dt
x(t) = f(x) + g(x)⇠, (8.8)
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where ⇠ = d

dt
W (t) is a stationary stochastic process and the functions f, g : Rn

! Rn describe

the climate dynamics. The properties of the random force are described through its distribution

and its correlation properties at different times. The process ⇠ is assumed to have a Gaussian

distribution of zero average,

< ⇠(t) >= 0 (8.9)

and to be �-correlated in time,

< ⇠(t)⇠(t + ⌧ ) >= �(⌧ ) (8.10)

where � is the delta function defined by

Z

R
f(x) �(x � x0) dx = f(x0) . (8.11)

The brackets indicate an average over realizations of the random force.3 For a Gaussian pro-

cess only the average and second moment need to be specified since all higher moments can be

expressed in terms of the first two. Note that the dependence of the correlation function on the

time difference ⌧ assumes that ⇠ is a stationary process. ⇠ is called a white-noise process (for the

colors of noise: https://en.wikipedia.org/wiki/Colors_of_noise). In general,

the stochastic processes can be also described by the probablity distributions (9.19) which will be

considered later.

Additionally, there might be an external forcing F (x, t) which is generally time-, variable-,

and space-dependent. In his theoretical approach, Hasselmann [1976] formulated a linear stochas-

3Formally: ⇠(t) is a random variable, i.e. ⇠(t)(↵) with different realizations due to random variable ↵. The
expectation < ⇠(t) > is thus the mean over all ↵ :< ⇠(t)(↵) >↵. Using the ergodic hypothesis, the ensemble
average hi can be expressed as the time average limT!1

1
T

R T/2
�T/2 dt of the function. Almost all points in any

subset of the phase space eventually revisit the set. (https://en.wikipedia.org/wiki/Ergodic_theory

https://en.wikipedia.org/wiki/Colors_of_noise
https://en.wikipedia.org/wiki/Ergodic_theory
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tic climate model

d

dt
x(t) = Ax + �⇠ + F (t) , (8.12)

with system matrix A 2 Rn⇥n, constant noise term �, and stochastic process ⇠. Many features of

the climate system can be well described by (8.12), which is analogous to the Ornstein-Uhlenbeck

process in statistical physics [Uhlenbeck and Ornstein, 1930]. Notice that �⇠ represents a station-

ary random process. The relationship derived above is identical to that describing the diffusion of

a fluid particle in a turbulent fluid. In a time-scale separated system, during one slow-time unit the

fast uninteresting variables y perform many ’uncorrelated’ events (provided that the fast dynamics

are sufficiently chaotic). The contribution of the uncorrelated events to the dynamics of the slow

interesting variables x is as a sum of independent random variables. By the weak central limit theo-

rem this can be expressed by a normally distributed variable. Note, in the absence of any feedback

effects Ax, the climate variations would continue to grow indefinitely as the Wiener process.

Numerical integration of the Langevin equation

One can numerically integrate such a nonlinear Langevin equation with flow f(x) using a simple

Euler-Maruyama method with a fixed time step �t :

x(t + �t) = x(t) + f(x)�t + g(x)
p

�t�Wn (8.13)

The variables �Wn are known as increments of the Wiener process; they are Gaussian numbers

generated in an uncorrelated fashion, for example by using a pseudo-random number generator in

combination with the Box-Müller algorithm.
% calculate sde in matlab\\

%

th = 1;
mu = 1.2;
sig = 0.3;
dt = 1e-2;
t= 0:dt:20;
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x = zeros(1,length(t)); % Allocate output vector, set initial condition

rng(1); % Set random seed

for i = 1:length(t)-1
x(i+1) = x(i)+th*(mu-x(i))*dt+sig*sqrt(dt)*randn;

end

figure;
plot(t,x);

and this is for the analytical solution:
th = 1;
mu = 1.2;
sig = 0.3;
dt = 1e-2;
t = 0:dt:20; % Time vector

x0 = 0; % Set initial condition

rng(1); % Set random seed

ex = exp(-th*t);
x = x0*ex+mu*(1-ex)+sig*ex.*cumsum([0 sqrt(diff(exp(2*th*t)-1)).

*randn(1,length(t)-1)])/sqrt(2*th);
figure;
plot(t,x);
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Figure 8.4: Schematic picture of mixed layer in the ocean.
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Exercise 57 – Stochastic Climate Model

Imagine that the temperature of the ocean mixed layer of depth h (Fig. 8.4) is governed by

dT

dt
= ��T +

Qnet

�O

, (8.14)

where coefficient �O is given by the heat capacity time density times mixed layer depth cp⇢h.

(h = 100m; cp = 4.2 · 103Jkg�1K�1; ⇢ = 1023kgm�3). � is the typical damping rate of

a temperature anomaly. Observations show that sea surface temperatures a typically damped at a

rate of 15Wm�2K�1.

1. Calculate the typical time scale 1/�.

2. Calculate the stochastic climate model using the R code
# Stochastic climate model/Ornstein-Uhlenbeck/Red Noise: Brown.R

T<- 5000 #integration time in time units

h<- 0.1 #step size in time units

X0<- 10 #inital value

beta<-0.05 #friction term

lambda<-1 #noise term

N<-T/h
t<-(0:(N-1))*h

x<-vector()
x[1]<-X0

for (i in 1:(N-1)) {
x[i+1]<-x[i]*(1-beta*h)+ rnorm(1)*sqrt(h)

}

plot(t,x,type="l")
hist(x,freq=FALSE, col="gray")

From the online malterial, please see the browngui directory: BrownianMotion.zip See Fig-

ure 8.6.
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3. Do the same, but for many Brownian particles in a potential (cf. Fig. 8.7).

# Brownian motion, multiple particle: Brown_mult.R

# forward modelling

#the function dy/dt<-f(y,a,b,c,d)

f<-function(y,a,b,c,d)
{ return(d*y^3+c*y^2+b*y-a) }

#constants

Ca<-10
a<-1
b<- 0.8
c<- 0
d<- -0.001

Nparticle<-1000 #number of particles

T<- 500 #integration time in time units

h<- 0.5 #step size in time units

N<-T/h
t<-(0:(N-1))*h

x<-matrix(10,Nparticle,N) # Initial condition, all = 0

# Initial condition,

for (i in 1:(N-1)) {
x[,i+1]<- x[,i]+h*f(x[,i],a,b,c,d) + Ca*rnorm(Nparticle)*sqrt(h)

}

ama2=max(x,2)
ami=min(x,-2)
ama=max(ama2,-ami)
plot(0,xlim=c(0,T),ylim=c(ami,ama),type="n")
for (i in 1:10) lines (t,x[i,],col=i)

#analyse the densities

h<-matrix(0,N,40)
for (i in 1:(N-1)) { h[i,]<-hist(x[,i],breaks=

c(-20:20)*ama/10,freq=FALSE,ylim=c(0,0.04))$counts }
hstat<-matrix(0,N)
for (i in N/2:(N-1)) hstat[]<-h[i,]+hstat[]
hstat[]<-hstat[] *2/Nparticle/N
#plot(t,hstat[],type="l")

plot(table(hstat[]), type = "h", col = "red")

# to show the time evolution, 1, 2, 4, 8, .... time step

op <- par(mfrow = c(3, 2))
plot(h[1,]/Nparticle,type="l")
plot(h[2,]/Nparticle,type="l")
plot(h[4,]/Nparticle,type="l")
plot(h[8,]/Nparticle,type="l")
plot(h[N/2,]/Nparticle,type="l")
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plot(h[N-1,]+h[N-2,]/Nparticle/2,type="l")

filled.contour(t,(-19:20)*ama/10-ama/20,h,
color.palette=rainbow,xlab="time",ylab="space")

4. Calculate the stationary density from the numerical example analytically using
R
f(y)dy.
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Figure 8.5: Mixed layer in the ocean distribution. Task: Describe the distribution of the seasonal
mixed layer depth variations!
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Figure 8.6: Stochastic Climate model, see (8.43).
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Figure 8.7: Histogram: Stochastic Climate model in potential
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An important example is the equation for geometric Brownian motion

dXt = µXt dt + �Xt dWt. (8.15)

which is the equation for the dynamics of the price of a stock in the Black Scholes options pricing

model of financial mathematics. For an arbitrary initial value X0 the above SDE has the analytic

solution (https://en.wikipedia.org/wiki/Geometric_Brownian_motion):

Xt = X0 exp

✓✓
µ �

�2

2

◆
t + �Wt

◆
. (8.16)

which is shown in Fig. 8.8.

Figure 8.8: Two sample paths of Geometric Brownian motion, with different parameters. The blue
line has larger drift, the green line has larger variance.

Exercise 58 – Stochastic Stock market Model

1. Solve equation (8.16) in a similar way as exercise 57!

2. Why is Xt always positive?

3. Calculate the stationary density from the numerical example analytically using
R
f(y)dy.

https://en.wikipedia.org/wiki/Geometric_Brownian_motion
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Exercise 59 – Spectrum of Stochastic Climate Model

Imagine that the temperature of the ocean mixed layer of depth h is governed by

dT

dt
= ��T +

Qnet

�O

, (8.17)

where coefficient �O is given by the heat capacity cp⇢h, and � is the typical damping rate of a

temperature anomaly. The air-sea fluxes due to weather systems are represented by a white-noise

process Qnet = Q̂!ei!t where Q̂! is the amplitude of the random forcing at frequency ! and

Q̂⇤ is the complex conjugate. Remember that Qnet can be described through its distribution and

its correlation properties: a Gaussian distribution of zero average < Qnet >= 0 and �-correlated

in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ) The brackets indicate an average over realizations of

the random force. The spectrum of a process x is defined as

S(!) := hx̂x̂⇤
i = \Covx(⌧ ) =

Z

R

exp(i!⌧ )Covx(⌧ )d⌧ (8.18)

1. Calculate SQ(!) and describe why Qnet is called a white noise process.

2. Solve Eq. 8.17 for the temperature response T = T̂!ei!t and hence show that:

T̂! =
Q̂!

�O (� + i!)
(8.19)

3. Show that it has a spectral density T̂!T̂ ⇤
!

is given by:

T̂ T̂ ⇤ =
Q̂Q̂⇤

�2
O
(�2 + !2)

(8.20)

and the spectrum

S(!) =< T̂ T̂ ⇤ >=
1

�2
O
(�2 + !2)

. (8.21)

The brackets < · · · > denote the ensemble mean. Make a sketch of the spectrum using a
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log-log plot and show that fluctuations with a frequency greater than � are damped.

4. Calculate the spectrum of a regular oszillation with noise. How does the spectrum changes

when you rectify the signal?

a<-sin(2*pi*(1:5000)/20)+0.5*rnorm(5000)/10
plot(a,type="l",xlim = c(0,2*pi*20),xlab=’time (kyrs)’,ylab=’forcing’)
b<-pmax(-0.1,a) # rectify the signal

plot(b,type="l",col="red",xlim=c(0,2*pi*20),
xlab=’time (kyrs)’,ylab=’climate’)

sa<-spectrum(a,spans=10,
main="Spectrum of forcing (spans=10)",col="blue")

sb<-spectrum(b,spans=10, col="red")
plot(sa,col="blue",main="Spectrum of the rectified signal (spans=10)")
plot(sb,add = TRUE, col = "red")

Figure 8.9: Powerspectrum of atmospheric temperature and sea surface temperature. Here 1/� =
300 days from equation (8.43).
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Exercise 60 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 59, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.22)

where the air-sea fluxes due to weather systems are represented by a white-noise process with zero

average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t+⌧ ) >= �(⌧ ). The function

f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c · u(t) with

u(t) as unit step or the so-called Heaviside step function and solve (8.22). What is the relationship

of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L
�1

{F (s)}(t) = L
�1

⇢
< T (0) >

s + �
+

c

s
·

1

s + �

�
(8.23)

= T (0) · exp(��t) +
c

�
(1 � exp(��t)) (8.24)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.25)

The fluctuation can be characterized by the spectrum (exercise 59)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.26)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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For some energy considerations, it is usefull to re-write equation (8.22) as

C
dT

dt
= ��CT + fC , (8.27)

with C = cp⇢dz as the heat capacity of the ocean. For a depth of 200 m of water distributed over

the globe, C = 4.2·103Wskg�1K�1
⇥1000 kgm�3

⇥200m = 8.4·108 Wsm�2 K�1 .

The temperature evolution is

T (t) = T (0) · exp(��c/C t) +
fC

�C

(1 � exp(��C/C t)) (8.28)

The left hand side of (8.27) represents the heat uptake by the ocean, which plays a central role in

the transient response of the system to a perturbation (8.28).

Typical changes in fC are 4Wm�2 for doubling of CO2, �C = 1 � 2Wm�2K�1. The

typical time scale for a mixed layer ocean is C/�C = 13�26 years . Please note that the climate

system is simplified by a slab ocean with homogenous temperature and heat capacity. This is an

approximation as the heat capacity should vary in time as the perturbation penetrates to deeper

oceanic levels.

The equilibrium temperature change �T is

�T =
�fC

�C

=
c

�
(8.29)

with values of �T = 2 � 4 K. The term CS = 1
�C

is called climate sensitivity to a radiative

forcing �fC :

�T = CS · �fC . (8.30)

In the literature, the concept of climate sensitivity is quite often used as the equilibrium temperature

increase for a forcing �fC related to doubling of CO2.
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Exercise 61 – Stochastic differential equation

Tasks:

1. Simulate the velocity evolution of one particle which is determined by the following stochas-

tic dv/dt = �b ⇤ v + k ⇤ dW (t)/dt

2. What happens if you change the timestep?

3. Simulate the ensemble of multiple particles, plot the time evolution of the v-Distribution

4. Test the ergodic theorem: time average = ensemble average

Solution
#brownian motion, one particle

T<- 5000 #integration time in time units

h<- 0.1 #step size in time units

X0<- 10 #inital value

beta<-0.05 #friction term

lambda<-1 #noise term

N<-T/h
t<-(0:(N-1))*h

x<-vector()
x[1]<-X0

for (i in 1:(N-1))
{
x[i+1]<-x[i]*(1-beta*h)+ rnorm(1)*sqrt(h)

}

plot(t,x,type="l")
# dev.print(postscript, file="random.ps")

#hist(x)

#hist(x,freq=FALSE, col="gray")

Solution brownian motion, multiple particle
#brownian motion, multiple particle

#forward modelling

#the function dy/dt<-f(y,a,b,c,d)

# double well potential
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f<-function(y,a,b,c,d)
{
return(d*y^3+c*y^2+b*y-a)

}

#constants

Ca<-10 # noise

a<-1
b<- 0.8
c<- 0
d<- -0.001

# to do: caculate the stationary density analytically: int 2/Ca f(y) dy

Nparticle<-1000 #number of particles

T<- 1000 #integration time in time units

h<- 0.5 #step size in time units

N<-T/h
t<-(0:(N-1))*h

x<-matrix(10,Nparticle,N) # Initial condition, all = 0

#x<-matrix(rnorm(Nparticle)*10,Nparticle,N) # Initial condition,

for (i in 1:(N-1))
{
x[,i+1]<- x[,i]+h*f(x[,i],a,b,c,d) + Ca*rnorm(Nparticle)*sqrt(h)

}

ama2=max(x,2)
ami=min(x,-2)
ama=max(ama2,-ami)

plot(0,xlim=c(0,T),ylim=c(ami,ama),type="n") # frame

#plot(0,xlim=c(0,T),ylim=c(-100,100),type="n") # with fixed ylim

# plot the realizations in different colors

for (i in 1:10) lines (t,x[i,],col=i)

#analyse the densities: time evolution

h<-matrix(0,N,40)
#for (i in 1:(N-1)) h[i,]<-hist(x[,i],breaks=c((-20:20)*10),

# plot=FALSE)$counts

for (i in 1:(N-1)) h[i,]<-hist(x[,i],breaks=c(-20:20)*ama/10,
freq=FALSE,ylim=c(0,0.04))$counts

#hstat<-matrix(0,N)
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#for (i in N/2:(N-1)) hstat[]<-h[i,]+hstat[]

#hstat[]<-hstat[] *2/Nparticle/N

#plot(t,hstat[],type="l")

plot(table(hstat[]), type = "h", col = "red")

op <- par(mfrow = c(3, 2))
plot(h[1,]/Nparticle,type="l")
plot(h[2,]/Nparticle,type="l")
plot(h[4,]/Nparticle,type="l")
plot(h[8,]/Nparticle,type="l")
plot(h[N/2,]/Nparticle,type="l")
plot(h[N-1,]+h[N-2,]/Nparticle/2,type="l")

#filled.contour(t,(-19:20)*10-5,h,color.palette=rainbow,xlab="time",

# ylab="space")

filled.contour(t,(-19:20)*ama/10-ama/20,h,color.palette=rainbow,
xlab="time",ylab="space")

#dev.print(postscript, file="/tmp/out.ps")

# system("lpr -Pps3 /tmp/out.ps")



8.3. SPRECTRAL METHODS 301

8.3 Sprectral methods

8.3.1 Fourier transform

The Fourier transform decomposes a function of time (e.g., a signal) into the frequencies that

make it up, similarly to how a musical chord can be expressed as the amplitude (or loudness)

of its constituent notes. The Fourier transform of a function of time itself is a complex-valued

function of frequency, whose absolute value represents the amount of that frequency present in the

original function, and whose complex argument is the phase offset of the basic sinusoid in that

frequency. The Fourier transform is called the frequency domain representation of the original

signal. The term Fourier transform refers to both the frequency domain representation and the

mathematical operation that associates the frequency domain representation to a function of time

(see also https://en.wikipedia.org/?title=Fourier_transform).

The Fourier transformation of x is defined as

x̂(!) =

Z

R
x(t)ei!t dt (8.31)

and is denoted as a hat in the following.4 And the inverse Fourier transformation of x is defined as

x(t) =
1

2⇡

Z

R
x̂(!)e�i!t d! (8.32)

or with ! = 2⇡⌫ :

x(t) =

Z

R
x̂e�i2⇡⌫t d⌫ . (8.33)

4Other common notations for the Fourier transform x̂(!): x̃(!), x̃(!), F (⇠), F (x) (!), (Fx) (!), F(x), F(!), F (!).
The sign of the exponential in the Fourier transform is something that we are concerned with for many years. Of
course, there are two conventions that have been used with almost equal frequency, but I try to stick to one of them to
avoid confusion. Here, we have used the convention of the positive sign in the exponential for the forward transform
which represents the Fraunhofer diffraction pattern for a real-space object. This is consistent with assuming that a
plane wave, going in positive direction in real space is written exp [i(!t � kx)] rather than a minus sign before the
i, so that the phase advances with time.

https://en.wikipedia.org/?title=Fourier_transform
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Exercise 62 – Fourier transformation

Tasks: Calculate the Fourier transformation of

1. x(t + a) (time shift).

2. x(t ⇤ a) (Scaling in the time domain).

3. d

dt
x(t) (time derivative).

4. x(t) = exp(�at2) (Gaussian).

5. x(t) = �(t) where the � distribution is definedthrough the operator on any function y:

y(t0) =
R
R y(t)�(t � t0) dt

6. Show that for x(t) = exp(�iat), the Fourier transformation x̂(!) = 2⇡�(!�a). Hint:

use the Fourier back transformation (8.31).

7. Calculate the Fourier transformation of a the periodic function x(t) = sin(!0t). Remem-

ber that sinx = 1
2i
(eix

� e�ix).

8. Prove the Uncertainty principle: the more concentrated x(t) is, the more spread out its

Fourier transform x̂(!) must be. In particular, the scaling property of the Fourier transform

may be seen as saying: if we "squeeze" a function in t, its Fourier transform "stretches out"

in !. It is not possible to arbitrarily concentrate both a function and its Fourier transform.

9. Consider the sine and cosine transforms and show the following. Fourier’s original formula-

tion of the transform did not use complex numbers, but rather sines and cosines. Statisticians

and others still use this form. An absolutely integrable function f for which Fourier inversion

holds good can be expanded in terms of genuine frequencies (avoiding negative frequencies,

which are sometimes considered hard to interpret physically) � by

f(t) =

Z 1

0

[a(�) cos 2⇡�t + b(�) sin 2⇡�t] d�. (8.34)

This is called an expansion as a trigonometric integral, or a Fourier integral expansion. The

coefficient functions a and b can be found by using variants of the Fourier cosine transform
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and the Fourier sine transform (the normalisations are, again, not standardised):

a(�) = 2

Z 1

�1
f(t) cos(2⇡�t)dt (8.35)

b(�) = 2

Z 1

�1
f(t) sin(2⇡�t)dt. (8.36)

Laplace transform

The Fourier transform is intimately related with the Laplace transform F (s), which is also used

for the solution of differential equations and the analysis of filters (https://en.wikipedia.

org/wiki/Laplace_transform). We introduce the complex variable s = �i!.

L{x(t)} = F (s) =

Z 1

0

e�stx(t)dt (8.37)

It follows (integration by parts for 8.38)

L

⇢
d

dt
x(t)

�
= sF (s) � x(0) (8.38)

L{exp(�at)} =
1

s + a
(8.39)

L{� exp(�at) + exp(�bt)} =
�1

s + a
+

1

s + b
=

a � b

(s + a)

1

(s + b)
(8.40)

The Laplace transform of a sum is the sum of Laplace transforms of each term.

L{f(t) + g(t)} = L{f(t)} + L{g(t)} (8.41)

The Laplace transform of a multiple of a function is that multiple times the Laplace transformation

https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Laplace_transform
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Function Time domain Laplace s-domain
f(t) = L

�1
{F (s)} F (s) = L{f(t)}

unit impulse �(t) 1
delayed impulse �(t � ⌧ ) e�⌧s

unit step u(t) 1
s

delayed unit step u(t � ⌧ ) 1
s
e�⌧s

exponential decay e�↵t
· u(t) 1

s+↵

sine sin(!t) · u(t) !

s2+!2

cosine cos(!t) · u(t) s

s2+!2

decaying sine wave e�↵t sin(!t) · u(t) !

(s+↵)2+!2

decaying cosine wave e�↵t cos(!t) · u(t) s+↵

(s+↵)2+!2

natural logarithm ln(t) · u(t) �
1
s
[ln(s) + �]

Convolution (f ⇤ g)(t) =
R

t

0 f(⌧ )g(t � ⌧ ) d⌧ F (s) · G(s)

Table 8.1: Laplace transformation (https://en.wikipedia.org/wiki/Laplace_
transform.

of that function.

L{af(t)} = aL{f(t)} (8.42)

Using this linearity, and various trigonometric, hyperbolic, and complex number (etc.) properties

and/or identities, some Laplace transforms can be obtained from others quicker than by using the

definition directly.

Exercise 63 – Laplace transformation of mixed layer model

Solve the Imagine that the temperature of the ocean mixed layer is governed by

dT

dt
= ��T + Q(t) , (8.43)

where � is the typical damping rate of a temperature anomaly and Q(t) a forcing.

https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Laplace_transform
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1. Use the Laplace transformation to show

F (s) =
Q(s) + T (0)

s + �
. (8.44)

where Q(s) = L{Q(t)}

2. Consider the special case Q(t) = exp(i!0t), then Q(s) = 1
s�i!0

. The forcing and

the temperature is of course a real number, by representing is as a complex number we can

simultaneously keep track of both phase components. Show

F (s) =
T (0) + Q(s)

s + �
=

T (0)

s + �
+

1

(s + �)

1

(s � i!0)
(8.45)

and via the Laplace back-transformation and (8.39, 8.40) that

T (t) = exp(��t)T (0) +
[exp(i!0t) � exp(��t)]

� + i!0

. (8.46)

3. Calculate the real and complex part of (8.46).

4. Show: At low frequencies, the output is equal to the input. At high frequencies it rolls off as

1/! (it is a low-pass filter) and is out of phase by 90�.

Let x(t) be the input to a general linear time-invariant system, and y(t) be the output, and

the Laplace transform of x(t) and y(t) be X(s) and Y (s). Then, the output is related to the

input by convolution with respect to the impulse response h(t) by

y(t) =

Z 1

0

h(t0)x(t � t0)dt (8.47)

Because of the convolution, the transfer function H(s) is equal to the to the ratio of the Laplace
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transforms of the input and output

H(s) =
Y (s)

X(s)
. (8.48)

The impulse response of a linear transformation is the image of Dirac’s delta function under the

transformation, analogous to the fundamental solution of a partial differential operator. The general

feature of the transfer function is that is the ratio of two polynomials. Since the polynomials

can be constructed from knowledge of the roots, the location of the poles and zeros completetly

characterizes the response of the system. The system is globally stable if all poles lie in the left

half-plane with Re(poles) < 0. For example L{exp(�at)} = 1
s+a

, i.e. the system is stable if

Re(a) < 0. Poles off the real axes are associated with oscillations. Summarizing, the convolution

that gives the output of the system can be transformed to a multiplication in the transform domain,

given signals for which the transforms exist

y(t) = (h ⇤ x)(t)
def
=

Z 1

�1
h(t � ⌧ )x(⌧ ) d ⌧

def
= L

�1
{H(s)X(s)}. (8.49)

Transfer functions are commonly used in the analysis of systems such as single-input single-

output filters, typically within the fields of signal processing, communication theory, and control

theory. The term is often used exclusively to refer to linear, time-invariant systems. The descrip-

tions below are given in terms of a complex variable, s = ��i!, which bears a brief explanation.

In many applications, it is sufficient to define � = 0, which reduces the Laplace transforms with

complex arguments to Fourier transforms with real argument !. The applications where this is

common are ones where there is interest only in the steady-state response.5 The stability of linear

systems will be discussed further in section ??.

5In discrete-time systems, the relation between an input signal x(t) and output y(t) is dealt with using the z-
transform, and then the transfer function is similarly written as H(z) = Y (z)

X(z)
and this is often referred to as the

pulse-transfer function.
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Exercise 64 – Method of partial fraction expansion

Consider a linear time-invariant system with transfer function

H(s) =
1

(s + ↵)(s + �)
. (8.50)

The impulse response is simply the inverse Laplace transform of this transfer function:

h(t) = L
�1

{H(s)}. (8.51)

To evaluate this inverse transform, we begin by expanding H(s) using the method of partial frac-

tion expansion:

1

(s + ↵)(s + �)
=

P

s + ↵
+

R

s + �
. (8.52)

The unknown constants P and R are the residues located at the corresponding poles of the transfer

function. Each residue represents the relative contribution of that singularity to the transfer func-

tion’s overall shape. By the residue theorem, the inverse Laplace transform depends only upon the

poles and their residues. To find the residue P, we multiply both sides of the equation by s + ↵ to

get

1

s + �
= P +

R(s + ↵)

s + �
. (8.53)

Then by letting s = �↵, the contribution from R vanishes and all that is left is

P =
1

s + �

����
s=�↵

=
1

� � ↵
. (8.54)

Similarly, the residue R is given by

R =
1

s + ↵

����
s=��

=
1

↵ � �
. (8.55)
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Note that

R =
�1

� � ↵
= �P (8.56)

and so the substitution of R and P into the expanded expression for H(s) gives

H(s) =

✓
1

� � ↵

◆
·

✓
1

s + ↵
�

1

s + �

◆
. (8.57)

Finally, using the linearity property and the known transform for exponential decay (see in the

Table 8.1 of Laplace transforms, above), we can take the inverse Laplace transform of H(s) to

obtain:

h(t) = L
�1

{H(s)} =
1

� � ↵

�
e�↵t

� e��t
�
, (8.58)

which is the impulse response of the system. (This example will be used in section ?? with more

details of the Laplace transformation.)

Exercise 65 – Convolution

The same result can be achieved using the convolution property as if the system is a series of

filters with transfer functions of 1/(s + a) and 1/(s + b). That is, the inverse of

H(s) =
1

(s + a)(s + b)
=

1

s + a
·

1

s + b
(8.59)

is

L
�1

⇢
1

s + a

�
⇤ L

�1

⇢
1

s + b

�
(8.60)

= e�at
⇤ e�bt =

Z
t

0

e�axe�b(t�x) dx (8.61)

=
e�at

� e�bt

b � a
. (8.62)



8.3. SPRECTRAL METHODS 309

An integral formula for the inverse Laplace transform, is given by the line integral:

x(t) = L
�1

{F (s)}(t) =
1

2⇡i
lim
T!1

Z
�+iT

��iT

estF (s) ds, (8.63)

where the integration is done along the vertical line Re(s) = � in the complex plane such that

� is greater than the real part of all singularities of F(s). This ensures that the contour path is

in the region of convergence. If all singularities are in the left half-plane, or F(s) is a smooth

function on �1 < Re(s) < 1 (i.e., no singularities), then � can be set to zero and the above

inverse integral formula above becomes identical to the inverse Fourier transform.(https://

en.wikipedia.org/wiki/Residue_theorem). The function f(t)=INVLAP(F(s)) offers

a simple, effective and reasonably accurate way to achieve the result.6 The transform F(s) may

be any reasonable function of complex variable s↵, where ↵ is an integer or non-integer real

exponent. Thus, the function INVLAP can solve even fractional problems and invert functions

F(s) containing rational, irrational or transcendental expressions. The function does not require to

compute poles nor zeroes of F(s). It is based on values of F(s) for selected complex values of the

independent variable s. The resultant computational error can be held arbitrarily low at the cost of

CPU time (see Examples).

Here is the matlab code for the Numerical Inversion of Laplace Transforms with some examples

0, 1, 2

8.3.2 Covariance and spectrum

A stationary process exhibits an autocovariance function of the form

Cov(⌧ ) = h(x(t + ⌧ ) � hxi)(x(t) � hxi)i (8.64)

6It is based on the paper: J. Valsa and L. Brancik: Approximate Formulae for Numerical Inversion of Laplace
Transforms, Int. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 11, (1998), pp.
153-166.

https://en.wikipedia.org/wiki/Residue_theorem
https://en.wikipedia.org/wiki/Residue_theorem
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/INVLAP.m
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/invlap0.m
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/invlap1.m
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/invlap2.m
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where h. . . i denotes the statistical ensemble mean.7 Normalized to the variance (i.e. the autoco-

variance function at ⌧ = 0) one gets the autocorrelation function C(⌧ ) :

C(⌧ ) = Cov(⌧ )/Cov(0) . (8.65)

Many stochastic processes in nature exhibit short-range correlations, which decay exponentially:

C(⌧ ) ⇠ exp(�⌧/⌧0), for ⌧ ! 1 (8.66)

These processes exhibit a typical time scale ⌧0. For a white noise process ⇠ (as defined in 8.10),

the autocorrelation function C(⌧ ) is given by

C(⌧ ) = �(⌧ ) . (8.67)

Spectrum of the stochastic process

The Fourier transformation of the random variable x is

x̂(!) =

Z

R
x(t)ei!t dt = lim

T!1

Z
T/2

�T/2

x(t)ei!t dt (8.68)

and is also a ramdom variable, but its power spectral density S(!) is not:

S(!) :=
⌦
x̂x̂+

↵
=

⌦
|x̂(!)|2

↵
. (8.69)

Using the ergodic hypothesis, the ensemble average S(!) = h x̂x̂+
i can be expressed as the

time average

lim
T!1

1

T

Z
T/2

�T/2

dt x̂x̂+ (8.70)

7For the covariance, one can have two processes Cov(⌧ ) = h(x(t + ⌧ ) � hxi)(y(t) � hyi)i.
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and therefore the spectrum can be expressed as

S(!) = lim
T!1

1

T

Z
T/2

�T/2

ei!tx(t)dt

Z
T/2

�T/2

e�i!t
0
x(t0)dt0 . (8.71)

The "total" integrated spectral density equals the variance of the series. Thus the spectral density

within a particular interval of frequencies can be viewed as the amount of the variance explained

by those frequencies. Mathematically, the spectral density is defined for both negative and positive

frequencies. However, due to symmetry of the function S(!) is quite often displayed for positive

values only.

Let us calculate the inverse Fourier transformation of S(!) and calculate the relation to the

autocovariance function Cov(⌧ ) of the stationary process x(t):

1

2⇡

Z

R
S(!) e�i!⌧d!

= lim
T!1

1

T

Z

R
d!

e�i!⌧

2⇡

Z
T/2

�T/2

ei!tx(t)dt

Z
T/2

�T/2

e�i!t
0
x(t0)dt0

= lim
T!1

1

T

Z
T/2

�T/2

Z
T/2

�T/2

✓
1

2⇡

Z

R
ei!(t�t

0�⌧)d!

◆
x(t)x(t0)dtdt0

= lim
T!1

1

T

Z
T/2

�T/2

Z
T/2

�T/2

�(t � t0 � ⌧ )x(t)x(t0)dtdt0 (8.72)

= lim
T!1

1

T

Z
T/2

�T/2

x(t)x(t � ⌧ )dt (8.73)

= hx(t)x(t � ⌧ )i = Cov(⌧ ) (8.74)
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The transformation (8.72) comes from the Fourier transform of the ��function:

Z

R
e�i!t�(t)dt = 1 �! �(t) =

1

2⇡

Z

R
ei!td! (8.75)

As the frequency domain counterpart of the autocovariance function of a stationary process, one

can calculate the spectrum as

S(!) = \Cov(⌧ ) , (8.76)

where the hat denotes again the Fourier transformation. This is the Wiener-Chinchin theorem,

relating the sprectrum of a random process to its autocorrelation function (Fig. ??).

The white noise process

The white noise process is therefore a function with constant S(!), since the autocovariance

is a delta dunction (8.67). The color of a noise signal (a signal produced by a stochastic pro-

cess) is generally understood to be some broad characteristic of its power spectrum. This sense

of ’color’ for noise signals is similar to the concept of timbre in music (which is also called

"tone color"); however the latter is almost always used for sound, and may consider very de-

tailed features of the spectrum. The practice of naming kinds of noise after colors started with

white noise, a signal whose spectrum has equal power within any equal interval of frequen-

cies. That name was given by analogy with white light, which was (incorrectly) assumed to

have such a flat power spectrum over the visible range. Other color names, like pink, red, and

blue were then given to noise with other spectral profiles, often (but not always) in reference

to the color of light with similar spectra. Some of those names have standard definitions in

certain disciplines, while others are very informal and poorly defined. Noise is somehow op-

posite to music where we hear distinct frequencies (see for the frequencies of music: https:

//en.wikipedia.org/wiki/Piano_key_frequencies).

In equal temperament, one starts from a reference such as the note A, which is usually taken to

https://en.wikipedia.org/wiki/Piano_key_frequencies
https://en.wikipedia.org/wiki/Piano_key_frequencies
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have frequency 440 Hz. All other notes have frequencies of the form 440 Hz ⇤an where n is the

number of semitones between the note in question and the reference note A. The ratio of an equal-

tempered semitone is a = 12
p
2 = 1.05946 (a12 = 2). In equal temperament, enharmonic notes

such as C# and Db are acoustically identical, they share the same frequency. Equal temperament

was well-suited for the kind of music that was written from the eighteenth century onward, with

its much greater range of modulations and chromatic harmonic vocabulary.

In Pythagorean tuning, intervals are derived by successions of perfect fifths, so the correspond-

ing frequency ratios are powers of 3/2. In conventional Western music, twelve perfect fifths in

succession,

C � G � D � A � E � B � F#
� C#

� G#
� D#

� A#
� E#

� B#,

are supposed to equal seven octaves (C = B#). However, since (3/2)12 does not equal 27, twelve

Pythagorean perfect fifths give an interval slightly larger than seven octaves. The difference is a

small interval known as the Pythagorean comma, which corresponds to a ratio of (3/2)12 to 27
⇡

1.013643. The system of equal temperament gradually became adopted because it removed the

limitations on keys for modulation. The discrepancies between just and equaltempered intervals

are small and easily accepted by most listeners.



314 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Figure 8.10: White noise spectrum. Flat power spectrum. (logarithmic frequency axis). For
example, with a white noise audio signal, the range of frequencies between 40 Hz and 60 Hz
contains the same amount of sound power as the range between 400 Hz and 420 Hz, since both
intervals are 20 Hz wide. Note that spectra are often plotted with a logarithmic frequency axis
rather than a linear one, in which case equal physical widths on the printed or displayed plot
do not all have the same bandwidth, with the same physical width covering more Hz at higher
frequencies than at lower frequencies. In this case a white noise spectrum that is equally sampled
in the logarithm of frequency (i.e., equally sampled on the X axis) will slope upwards at higher
frequencies rather than being flat.
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8.4 Projection methods: coarse graining*

In order to get a first idea of coarse graining, one one may think of the transition from Rayleigh-

Bénard convection to the Lorenz system (section 2.2). In our formula, the Galerkin approximation

(2.40,2.40) provided a suitable projector to simply truncate the series at some specified wave num-

ber cut-off into a low-order system (such as in equations (2.41, 2.42).

The Mori-Zwanzig formalism [Mori, 1965; Zwanzig, 1960] provides a conceptual frame-

work for the study of dimension reduction and the parametrisation of uninteresting variables by

a stochastic process. It includes a generalized Langevin [1908] theory. Langevin [1908] studied

Brownian motion from a different perspective to Einstein’s seminal 1905 paper [Einstein, 1905],

describing the motion of a single Brownian particle as a dynamic process via a stochastic differen-

tial equation, as an Ornstein-Uhlenbeck process [Uhlenbeck and Ornstein, 1930].

Ehrenfest introduced a special operation, the coarse-graining. This operation transforms a

probability density in phase space into a "coarse-grained" density, that is a piecewise constant

function, a result of density averaging in cells. The size of cells is assumed to be small, but fi-

nite, and does not tend to zero. The coarse-graining models uncontrollable impact of surrounding

(of a thermostat, for example) onto ensemble of mechanical systems. To understand reasons for

introduction of this new notion, let us take a phase drop, that is, an ensemble of mechanical sys-

tems with constant probability density localized in a small domain of phase space. Let us watch

evolution of this drop in time according to the Liouville equation. After a long time, the shape of

the drop may be very complicated, but the density value remains the same, and this drop remains

"oil in water." The ensemble can tend to the equilibrium in the weak sense only: average value of

any continuous function tends to its equilibrium value, but the entropy of the distribution remains

constant. Nevertheless, if we divide the phase space into cells and supplement the mechanical mo-

tion by the periodical averaging in cells (this is the Ehrenfests’ idea of coarse-graining), then the

entropy increases, and the distribution density tends uniformly to the equilibrium. This periodical

coarse-graining is illustrated by Fig. 8.11 in a two-dimensional phase space.
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Figure 8.11: The Ehrenfests coarse-graining: two motion - coarse-graining cycles in 2D (values of
probability density are presented by hatching density).

Applications of the Ehrenfests’ coarse-graining8 outside statistical physics include simple, but

effective filtering. The Gaussian filtering of hydrodynamic equations that leads to the Smagorinsky

equations9 is, in its essence, again a version of the Ehrenfests’ coarse-graining. The central idea of

the Ehrenfests’ coarse-graining remains the same in most generalizations: we combine the genuine

motion with the periodic partial equlibration. The result is the Ehrenfests’ chain. After that, we

can find the macroscopic equation that does not depend on an initial distribution and describes the

Ehrenfests’ chains as results of continuous autonomous motion. Alternatively, we can just create

a computational procedure without explicit equations. In the sense of entropy production, the re-

sulting macroscopic motion is "more dissipative" than initial (microscopic) one. It is the theorem

about entropy overproduction. In practice, kinetic models in the form of lattice Boltzmann models

are in use (section9.2). The coarse-graining provides theoretical basis for kinetic models. First of

all, it is possible to replace projecting (partial equilibration) by involution (i.e. reflection with re-

spect to the partial equilibrium). This entropic involution was developed for the lattice Boltzmann

methods. In the original Ehrenfests’ chains, "motion-partial equilibration-motion-...," dissipation

is coupled with time step, but the chains "motion-involution-motion-..." are conservative. The

8P. Ehrenfest, T. Ehrenfest-Afanasyeva, The Conceptual Foundations of the Statistical Approach in Mechanics,
In: Mechanics Enziklopädie der Mathematischen Wissenschaften, Vol. 4., Leipzig, 1911. Reprinted: P. Ehrenfest, T.
Ehrenfest-Afanasyeva, The Conceptual Foundations of the Statistical Approach in Mechanics, Dover Phoneix, 2002.

9J. Smagorinsky, General Circulation Experiments with the Primitive Equations: I. The Basic Equations, Mon.
Weather Rev. 91 (1963), 99–164.
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family of chains between conservative (with entropic involution) and maximally dissipative (with

projection) ones give us a possibility to model hydrodynamic systems with various dissipation

(viscosity) coefficients that are decoupled with time steps.

Of particular interest is the work of Mori [Mori, 1965] and Zwanzig [Zwanzig, 1960] which re-

lates the evolution of macroscopic variables to microscopic dynamics. The standard Mori-Zwanzig

theory has been given a nonlinear generalization by Zwanzig [Zwanzig, 1980], and is furthermore

not limited to Hamiltonian dynamics [Chorin et al., 1999; Gottwald, 2010]. This approach of

modelling fast small-scale processes by a stochastic process is intuitive: provided the fast pro-

cesses decorrelate rapidly enough, the slow variables experience the sum of uncorrelated events

of the fast dynamics, which according to the (weak) central limit theorem corresponds to approxi-

mate Gaussian noise. A method whereby many fast degrees of freedom are replaced by a stochastic

process is called stochastic model reduction.

Consider the very simple coupled linear system10

ẋ = L11x + L12y the "climate" equation (8.77)

ẏ = L21x + L22y the "whether" equation. (8.78)

Suppose we are only interested in the dynamics of x, and have only some climatic knowledge of

the initial conditions of the variables y, that is the mean and variance. The whether differential

equation (8.78) can be solved by the ansatz

y(t) = eL22ty(0) · C(t) (8.79)

Inserting this, we can then solve the inhomogenous problem to obtain

y(t) = eL22ty(0) +

Z
t

0

eL22(t�s)L21x(s)ds,

10We follow the notation of [Hasselmann, 1976; Chorin et al., 1999; Gottwald, 2010].
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which we may use to express the dynamics of the climate variable as

ẋ = L11x + L12

Z
t

0

eL22(t�s)L21x(s)ds + L12e
L22ty(0). (8.80)

This is of the form of a generalised Langevin equation, where the first term is Markovian (no

dependence on the history of the process), the second is a memory term, and the last can be

interpreted as a noise term, provided that the initial conditions y(0) are randomly distributed. A

similar reduction of the dynamics can be described by fast and slow variables applying the center

manifold theory [Arnold, 1995] or slaving principle [Haken, 1996].

For the more general non-linear case, the instantaneous state of the Earth System, compris-

ing the components ‘atmosphere-ocean-cryosphere-land’, can be expressed by a set of variables

z = (z1, z2, ...), representing the density, velocity, temperature, etc. of the various media. The

evolution of this system will be given by a series of prognostic equations of the form

ż = f(z), (8.81)

with initial condition z(0) = z0 and z 2 Rd, suppose we are not interested in the full solu-

tion z(t), but rather only in a few n  d observables �(z) = (�1(z),�2(z), ...,�n(z)).

This includes the case �(z) = (z1, ..., zn), when the state space is decomposed as z =

(x, y) into ’interesting’ variables, x = (z1, ..., zn) 2 Rn, and ’uninteresting’ variables, y =

(zn+1, ..., zd) 2 Rd�n. In the Earth System, a separation may be into a fast ‘weather subsystem’

(y) and a slow ‘climate subsystem’ (x) with different order of magnitude in the correlation times

(or, the response/relaxation times) for the slow variable is much larger than that of the fast variable,

i.e.

⌧y ⌧ ⌧x. (8.82)

Now let us ask the following question: what are the effective dynamics of the interesting observ-

ables for an ensemble of initial conditions z(0), where �(z(0)) is known and the uninteresting

subspace is equipped with a known distribution?
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Rather than investigating the dynamical system (8.81) directly, one may choose to look at

how observables V (z(t)) evolve in time. Applying the chain rule, one can naturally define the

generator

L = f(z) · r,

and write
d

dt
V (z(t)) = LV (z(t)).

Note that L is the adjoint operator of the Liouville operator L⇤ with L
⇤⇢ = �r · (f(z)⇢)

controlling the evolution of densities of ensembles propagated according to (8.81). We seek for the

solution v(z, t) of
@v

@t
= Lv with v(z, 0) = �(z), (8.83)

where z is an independent variable and denotes initial conditions. The solution of (8.83) can be

formally written as

v(z, t) = eLt�(z), (8.84)

To filter out the dynamics of the interesting variables we require a projection operator P that

maps functions of z to functions of �(z). If the manifold consists for example of a product of

submanifolds of relevant and irrelevant variables, one can take a conditional expectation

(Pv)(x) =

R
Rd�n v(z)⇢(x, y)dy
R
Rd�n ⇢(x, y)dy

(8.85)

where ⇢(x, y) denotes the joint probability function of the initial conditions for the full system

(8.81). It is easy to show that this a projection (P2 = P). In the context of PDEs one may

use Galerkin approximations, a perfectly valid projector would be to simply truncate the Galerkin

series at some specified high wave number cut-off. We also define the orthogonal projector Q

that projects onto y, with Q = 1 � P. Now, the derivation of the Mori-Zwanzig equation is

a two-linear: given the Cauchy problem (8.83) and its formal solution (8.84) we write, using
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P + Q = 1,
@v

@t
(z, t) = LeLt�(z) = eLtPL�(z) + eLtQL�(z)

which, upon using the Duhamel-Dyson formula [Evans and Morriss, 2008] for operators A and B,

yields

et(A+B) = etA +

Z
t

0

e(t�s)(A+B)BesAds.

By differentiation, this becomes the celebrated Mori-Zwanzig equation [Mori et al., 1974; Zwanzig,

1960]

@v

@t
(z, t) = eLtPL�(z) +

Z
t

0

e(t�s)LPLesQLQL�(z)ds + etQLQL�(z). (8.86)

Note that the Mori-Zwanzig equation (8.86) is not an approximation but is exact and constitutes an

equivalent formulation of the full problem (8.81). The Mori-Zwanzig equation (8.86) is in the form

of a generalised Langevin equation. The first term on the right-hand side is Markovian, the second

term is a memory term, and the last term lives in the uninteresting orthogonal subspace and can be

called noise. Ideally one would like to approximate the noise term by white noise. Heuristically

this should be possible in the case of time-scale separation or of weak coupling. The advantage of

looking at this limit is however that the noise autocorrelation function and memory kernel can now

be written as simple correlation and response functions of the unresolved dynamics. The reader is

referred to [Chorin and Hald, 2006; Chorin et al., 2000; Zwanzig, 2001; Evans and Morriss, 2008;

Givon et al., 2004; Lucarini et al., 2014] for more details.

The projection method includes the procedure to parameterize the turbulent energy dissipation

in turbulent flows, where the larger eddies extract energy from the mean flow and ultimately trans-

fer some of it to the smaller eddies which, in turn, pass the energy to even smaller eddies, and so

on up to the smallest scales, where the eddies convert the kinetic energy into internal energy of

the fluid. At this scales (also known as Kolmogorov scale), the viscous friction dominates the flow

[Frisch, 1996].

The theory of scientific reduction is important for different theories: the microscopic informa-
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tion in the brain with enormous amount of possible solutions is reduced to macroscopic actions

and human behaviour. This implies that the actions are not deterministic, but stochastic in the

sense of the standard Mori-Zwanzig theory or Brownian motion. Without being a specialist, this

seems to be important for neuroscience and for the philosophy of science in general. The activity

of neurons in the brain can be modelled statistically (e.g., https://en.wikipedia.org/

wiki/Ising_model).

https://en.wikipedia.org/wiki/Ising_model
https://en.wikipedia.org/wiki/Ising_model


Chapter 9

Statistical Mechanics and Fluid Dynamics

The structure of fluid dynamical models is valid for systems with many degrees of freedom, many

collisions, and for substances which can be described as a continuum. The transition from the

highly complex dynamical equations to a reduced system is an important step since it gives more

credibility to the approach and its results. The transition is also necessary since the active en-

tangled processes are running on spatial scales from millimetres to thousands of kilometres, and

temporal scales from seconds to millennia. Therefore, the unresolve processes on subgrid scales

have to be described. This is the typical problem in statistical physics: How can we obtain the

macroscopic dynamics from the underlying theory? Two different solutions are known, one is the

so-called Mori-Zwanzig approach [Mori, 1965; Zwanzig, 1960, 1980] which relates the evolution

of macroscopic variables to microscopic dynamics. The basic idea is the evolution of a system

through a projection on a subset (macroscopic relevant part), where a randomness reflects the ef-

fects of the unresolved degrees of freedom. A particular example is the Brownian motion [Einstein,

1905; Langevin, 1908]. The other solution for the transition form the micro to macro-scales goes

back to Boltzmann [1896]. The Boltzmann equation, also often known as the Boltzmann transport

equation [Boltzmann, 1896; Bhatnagar et al., 1954; Cercignani, 1990] describes the statistical dis-

tribution of one particle in a fluid. It is one of the most important equations of non-equilibrium

statistical mechanics, the area of statistical mechanics that deals with systems far from thermody-

322
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namic equilibrium. It is applied, for instance, when there is an applied temperature gradient or

electric field. Both, the Mori-Zwanzig and Boltzmann approaches play also a fundamental role in

physics. The microscopic equations show no preferred time direction, whereas the macroscopic

phenomena in the thermodynamics have a time direction through the enthropy. The underlying

procedure is that part of the microscopic information is lost through coarse graining in space and

time. Chapter 9 describes the approach from statistical mechanics towards the macroscopic theory.

The Boltzmann equation and the Brownian motion are the approaches to understand the transition

from micro to macro scales. For climate, this transition between the climate and weather scales

has been formulated [Hasselmann, 1976; Leith, 1975], and later re-formulated in a mathematical

context [Arnold, 2001; Chorin et al., 1999; Gottwald, 2010]. The effect of the weather on climate

is seen by red-noise spectra in the climate system, showing one of the most fundamental aspects of

climate, and serving also as a null hypothesis for climate variability studies. Chapter 9.4 deals with

a fluid dynamical application, a 2D implementation of the Lattice Boltzmann Method (LBM) with

the Bhatnagar-Gross-Krook (BGK) collision operator. The main structural parts of the program

and several hints for the potential users are provided. While we do include a brief outline of the

theory of LBM, detailed explanations are out of the scope of this book. Fore more details, please

consult the references herein. The present code is intended to serve mainly as a showcase/practical

introduction to Lattice Boltzmann Methods, hence advanced features and state-of-the-art algorithm

improvements have been intentionally ommitted in favor of simplicity. One practical example, the

Rayleigh-Benard convection [Rayleigh, 1916], is presented.

There are two ways of changing the descrition of the dynamics: from the micro to the macro

scales. This is a common problem since we are not able to describe the systems on all temporal

and spatial scales. One straitforward approach is coarse graining where the underlying dynamics

is projected onto the macroscopic dynamics (section 8.4), the other is the statistical physics theory

of non-equilibrium statistical mechanics (section 9.2).

A general question within the micro-macro dynamic is that of integration between the two

different levels. Two distinctly different levels emerge with different rules governing each, but
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they then need to be reconciled in some way to create an overall functioning system. Physical,

chemical, biological, economic, social and cultural systems all exhibit this micro-macro dynamic

and how the system comes to reconcile it forms a primary determinate in its identity and overall

structure. This multi-dimensional nature to a system that results in the micro-macro dynamic is a

product of synthesis and emergence. In many instances when we put elements together they do

not simply remain discrete separate entities but they interact, co-evolve and they differentiate their

states and function with respect to each other to become an interdependent whole, which comes

to have properties and features that none of its parts possess. A whole new level of organization

emerges that is different from the parts. This is made manifest in ecosystems; as they have co-

evolved over millennia the parts are intricately interdependent forming a whole system that has

features and dynamics independent from any of its parts and thus a two-tier system and a resulting

emergent micro-macro dynamic. The whole ecosystem goes through processes of change - such

as ecological succession - that are not associated with any of the parts but condition what creatures

can viably exist within that macro regime.

We start from the point of view of kinetic theory of fluids where a gas is composed of a set of

interacting particles Boltzmann [1896]. We are then interested in the probability of finding a fluid

particle at a certain point in space and with a certain velocity. The moments of this probablility are

related to our macroscopic fluid-dynamical quantities like density or velocity.

9.1 Mesoscopic dynamics*

Liouville equation

In the deterministic framework, the dynamics is characterized by

d

dt
x(t) = f(x(t)) , (9.1)
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and in the special case of classical mechanics can be descibed by a set of differential equations

known as the Hamilton equations for that system. Hamiltonians can be used to describe such

simple systems as a bouncing ball, a pendulum or an oscillating spring in which energy changes

from kinetic to potential and back again over time. Hamiltonians can also be employed to model

the energy of other more complex dynamic systems such as planetary orbits in celestial mechanics

and also in quantum mechanics. The Hamilton equations are generally written as follows:

ṗ = �
@H

@q
(9.2)

q̇ =
@H

@p
(9.3)

In the above equations, the dot denotes the ordinary derivative with respect to time of the functions

p = p(t) (called generalized momenta) and q = q(t) (called generalized coordinates), taking

values in some vector space, and H = H(p, q, t) is the so-called Hamiltonian, or (scalar valued)

Hamiltonian function. The associated probability distribution for the generalized dynamics (9.1)

is given in the phase space

p(x, t) = �(x � x(t)) (9.4)

yielding the Liouville equation

@tp = �
d

dx(t)
[�(x � x(t))]

d

dt
x(t) = �

@p

@x
f(x) . (9.5)

The Liouville equation is often used in the framework of the Hamiltonian dynamics (9.3). Since

the phase space velocity (ṗi, q̇i) has zero divergence, and probability is conserved. Its substantial

derivative can be shown to be zero and so

@

@t
⇢ = �{ ⇢,H}. (9.6)
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using the Poisson bracket

{f, g} =
NX

i=1


@f

@qi

@g

@pi

�
@f

@pi

@g

@qi

�
. (9.7)

Master equation

The master equation is a phenomenological set of first-order differential equations describing the

time evolution of the probability of a system to occupy each one of a discrete set of states:

dPk

dt
=

X

`

Tk`P`, (9.8)

where Pk is the probability for the system to be in the state k, while the matrix T`k is filled with a

grid of transition-rate constants. In probability theory, this identifies the evolution as a continuous-

time Markov process, with the integrated master equation obeying a Chapman-Kolmogorov equa-

tion. Note that

X

`

T`k = 0 (9.9)

(i.e. probability is conserved), so the equation may also be written as

dPk

dt
=

X

`

(Tk`P` � T`kPk). (9.10)

allowing us to omit the term ` = k from the summation. Thus, in the latter form of the master

equation there is no need to define the diagonal elements of T.

The master equation exhibits detailed balance if each of the terms of the summation disappears

separately at equilibrium, i.e. if, for all states k and l having equilibrium probabilities pik and ⇡`

Tk`⇡` = T`k⇡k (9.11)
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Many physical problems in classical, quantum mechanics and problems in other sciences, can be

reduced to the form of a master equation, thereby performing a great simplification of the problem.

In the continous case, the Chapman-Kolmogorov equation has similarities with the Master equa-

tion. The Chapman-Kolmogorov equation is an identity relating the joint probability distributions

of different sets of coordinates on a stochastic process. Suppose that {xi} is an indexed collection

of random variables, that is, a stochastic process. Let

pi1,...,in(x1, . . . , xn) (9.12)

be the joint probability density function of the values of the random variables x1 to xn. Then, the

Chapman-Kolmogorov equation is

pi1,...,in�1(x1, . . . , xn�1) =

Z 1

�1
pi1,...,in(x1, . . . , xn) dxn (9.13)

i.e. a straightforward marginalization over the nuisance variable.

When the stochastic process under consideration is Markovian, the Chapman-Kolmogorov

equation is equivalent to an identity on transition densities. In the Markov chain setting, one

assumes that i1 < . . . < in. Then, because of the Markov property,

pi1,...,in(x1, . . . , xn) = pi1(x1)pi2;i1(x2 | x1) · · · pin;in�1(xn | xn�1), (9.14)

where the conditional probability pi;j(xi | xj) is the transition probability between the times

i > j. So, the Chapman-Kolmogorov equation takes the form

pi3;i1(x3 | x1) =

Z 1

�1
pi3;i2(x3 | x2)pi2;i1(x2 | f1) dx2. (9.15)

When the probability distribution on the state space of a Markov chain is discrete and the Markov

chain is homogeneous, the Chapman-Kolmogorov equations can be expressed in terms of (possibly
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infinite-dimensional) matrix multiplication, thus:

P (t + s) = P (t)P (s) (9.16)

where P(t) is the transition matrix, i.e., if Xt is the state of the process at time t, then for any two

points i and j in the state space, we have

Pij(t) = P (Xt = j | X0 = i). (9.17)

Example for the Chapman-Kolmogorov and Master equations in climate dynamics are related

to transitions between different states.

Fokker-Planck dynamics

In the stochastic context, we make a Taylor expansion up to order two in dx = x(t+dt)�x(t)

from the Master equation:

dp = p(x, t + dt) � p(x, t)

= < �(x � x(t + dt)) > � < �(x � x(t)) >

= � <
d

dx(t)
[�(x � x(t))] dx > +

1

2
<

d2

dx2
[�(x � x(t))] dx2 >

= �
@p

@x
< dx > +

1

2

@2

@x2
p < dx2 >

= �
@p

@x
f(x)dt +

1

2

@2

@x2
p g2dt (9.18)

The probability density p(x, t) for the variable x(t) in (8.8) obeys therefore the Fokker-Planck

equation

@tp = �
@

@x
[f(x)p] +

@

@x


g(x)

@

@x
{g(x)p}

�
. (9.19)
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Its stationary probability density of (8.8) is given by

pst(x) = @ exp

✓
�2

Z
x

x0

f(y) � g(y)g0(y)

g(y)2
dy

◆
. (9.20)

where @ is a normalization constant. g0(y) stands for the derivative of g with respect to its argu-

ment. The extrema xm of the steady state density obey the equation

f(xm) � g(xm)g0(xm) = 0 (9.21)

for g(xm)ne0. Here is the crux of the noise-induced transition phenomenon: one notes that this

equation is not the same as the equation f(xm) = 0 that determines the steady states of the system

in the absence of multiplicative noise. As a result, the most probable states of the noisy system

need not to coincide with the deterministic stationary states. More importantly, new solutions

may appear or existing solutions may be destabilized by the noise. These are the changes in the

asymptotic behavior of the system caused by the presence of the noise, e.g. ?.

9.2 The Boltzmann Equation*

One of the most significant theoretical breakthroughs in statistical physics was due to Ludwig

Boltzmann (Boltzmann [1896], Boltzmann [1995] for a recent reprint of his famous lectures on

kinetic theory), who pioneered non-equilibrium statistical mechanics. Boltzmann postulated that a

gas was composed of a set of interacting particles, whose dynamics could be (at least in principle)

modelled by classical dynamics. Due to the very large number of particles in such a system, a

statistical approach was adopted, based on simplified physics composed of particle streaming in

space and billiard-like inter-particle collisions (which are assumed elastic). Instrumental to the

theory is the single-particle distribution function (hereafter SPDF), f(~x,~e, t) which represents

the probability density of having a particle at the point (~x,~e) in the phase space. Hence, the
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quantity

f(~x,~e, t)d~xd~e (9.22)

represents the probability of finding a particle inside an infinitesimal space cubelet centered around

~x, and inside an infinitesimal momentum-space cubelet around ~e at any given time t. In the

presence of a body-force ~F , the SPDF will evolve according to

f(~x + d~x,~e + d~e, t + dt)d~xd~e = f(~x,~e, t)d~xd~e , (9.23)

where d~x = ~edt and d~e = ~Fdt/m. If we also include the effect of the collisions, and denote

by �+d~xd~edt the probability for a particle to start from outside the d~x⇥d~e domain and to enter

this phase-space region during the infinitesimal time dt and by ��d~xd~edt the probability for a

particle to start from the d~x⇥d~e domain and leave this phase-space region during the infinitesimal

time dt, the evolution of the SPDF becomes

f(~x + d~x,~e + d~e, t + dt)d~xd~e = f(~x,~e, t)d~xd~e + (�+ � ��) d~xd~edt (9.24)

Expanding the LHS into a Taylor series around the phase-space point (~x, ~u, t), we obtain:

f(~x+d~x,~e+d~e, t+dt)d~xd~e = f(~x,~e, t)d~xd~e+

✓
@f

@t

◆
dt+(r~xf)·d~x+(r~ef)·d~e+. . .

(9.25)

Inserting Eq. (9.25) into Eq. (9.24) and cancelling terms, we easily obtain Boltzmann’s Equation:

@f

@t
+ ~e · r~xf + ~F/m · r~ef = �+ � �� (9.26)

where r~x is the gradient operator in physical space and r~e the same in momentum space.1

For the sake of clarity, we have not written the collision operator explicitly yet. The important

1The collisionless Boltzmann equation is often mistakenly called the Liouville equation (the Liouville Equation
is an N-particle equation being N the number of microscopic particles). The Boltzmann equation is a mesoscopic
dynamics with degrees of freedom << N .
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point is that the separation of the dynamics into collisions and streaming is already apparent from

Eq. (9.26). The collision operator, which is in itself a complex integro-differential expression,

reads

�+ � �� ⌘

Z
d~e1

Z
d⌦ �(⌦) |~e � ~e1|

⇥
f(~e0)f(~e0

1) � f(~e)f(~e1)
⇤

(9.27)

where � is the differential cross-section in the case of the 2-particle collisions (which is a func-

tion of the solid angle ⌦ only), unprimed velocities are incoming (before collision) and primed

velocities are outgoing (after collision).2 In another notation

�+(~x,~e, t) =

Z
d~e1

Z
d~e0

Z
d~e0

1 P(e0,e01)!(e,e1) f(~e0)f(~e0
1) (9.28)

��(~x,~e, t) =

Z
d~e1

Z
d~e0

Z
d~e0

1 P(e,e1)!(e0,e01) f(~e)f(~e1) (9.29)

where P(e0,e01)!(e,e1) is the probability density to go from initial state (e0, e0
1) to final state (e, e1)

in time dt. It follows from symmetry considerations that P(e0,e01)!(e,e1) = P(e,e1)!(e0,e01) and

d~e0d~e0
1P(e0,e01)!(e,e1) = d⌦ �(⌦) |~e � ~e1| (9.30)

A fundamental property of the collision operator [Cercignani, 1987] is that it conserves mass,

momentum and kinetic energy (hence also a linear combination thereof). Also, it can be shown

that the local Maxwell-Boltzmann distribution pertains to a certain class of positive SPDFs for

which the collision integral vanishes (variational principle, Lagrange parameters). It can be shown

2Of course, finding or modeling the collision term is the biggest challenge in the kinetic theory. In the simplest
model one only takes into account binary collisions and assumes that the colliding particles are uncorrelated (i.e.
molecular chaos assumption). The collisions are proportianal to the velocity difference between the particles |~u�~u1| .
Consider an elastic collision of two spherically symmetric (spin-less) molecules with mass m and velocities ~e and
~e1.After collision their respective velocities are ~e0 and ~e01. Then the following conservation laws apply:
Momentum conservation: m(~e + ~e1) = m(~e0 + ~e01).
Energy conservation: m/2 ~e · ~e + m1/2 ~e1 · ~e1 = m/2 ~e0 · ~e0 + m1/2 ~e01 · ~e01 .
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that this equilibrium distribution is given by

f0(~x,~e) = ⇢(~x)


m

2⇡kT (~x)

�3/2
exp{�m [~e � ~u(~x)]2 /2kT (~x)} (9.31)

where ⇢(~x), ~u(~x) and T (~x) are the local density, macroscopic velocity, and temperature, re-

spectively.3 If there are no external forces such as gravity or electrostatic interactions we have

⇢(~x) = ⇢0 = N/V . In case the temperature is also independent of position, and if the gas as a

whole is not moving (~u = 0), then f(~x,~e) = ⇢0f0(~e), with

f0(~e) =


m

2⇡kT

�3/2
e�m~e

2
/2kT ,

This implies that, if this distribution is attained, we also have a state where incoming SPDFs ex-

actly balance the outgoing ones, maintaining a local dynamic equilibrium. This observation is of

paramount importance for our method, which uses the (discretized) Maxwell-Boltzmann distribu-

tion as the equilibrium distribution functions.

9.3 H-Theorem and approximation of the Boltzmann equation*

The other important feature of this equation is that the integral

H =

Z Z
d~xd~e f(~x,~e, t) ln f(~x,~e, t) (9.34)

3This experssion of the SPDF can be approximated through a Taylor series of the exponential: exp(y) = 1 + y.
Task: Show that

feq
a (~x,~e) = ⇢(~x)


1 + 3

~u · ~e

c2s
+

9

2

(~u · ~e)2

c4s
�

3

2

~e2

c2s

�
, (9.32)

with the speed of sound cs and

1

c2s
=

1

�

m

kT
(9.33)

and � the adiabatic factor.
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can only decrease. This can be seen by using the following:

dH

dt
=

Z
d~e1

Z
d⌦ �(⌦) |~e � ~e1|

⇥
f(~e0)f(~e0

1) � f(~e)f(~e1)
⇤
[1 + ln f(~e1)] (9.35)

and the same term for

dH

dt
=

Z
d~e1

Z
d⌦ �(⌦) |~e � ~e1|

⇥
f(~e0)f(~e0

1) � f(~e)f(~e1)
⇤ ⇥

1 + ln f(~e0
1)
⇤

(9.36)

The term is also invariant with respect to the notation (’), i.e.

dH

dt
=

Z
d~e1

Z
d⌦ �(⌦) |~e � ~e1|

⇥
f(~e)f(~e1) � f(~e0)f(~e0

1)
⇤ ⇥

1 + ln f(~e0
1)
⇤

(9.37)

and

dH

dt
=

Z
d~e1

Z
d⌦ �(⌦) |~e � ~e1|

⇥
f(~e)f(~e1) � f(~e0)f(~e0

1)
⇤ ⇥

1 + ln f(~e0
2)
⇤

(9.38)

Use furthermore

⌘0 = f(~e0)f(~e0
1) and ⌘ = f(~e)f(~e1) (9.39)

E = (⌘0
� ⌘) [ln ⌘ � ln ⌘0] (9.40)

and recognize that E is negative. d

dt
H is equal zero for

f(~e0)f(~e0
1) = f(~e)f(~e1) . (9.41)

For a system of N statistically independent particles, H is related to the thermodynamic entropy S

through:

S
def
= �NkH (9.42)
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Therefore, according to the H-theorem, S can only increase.4 The same function H is also used as

”information function”:

I = �

X

i

fi ln fi =< � ln f > . (9.43)

where the fi can be interpreted as probablity and not only as a measure of the breadth of the spread

of states available to a single particle in a gas of like particles, where fi represented the relative

frequency distribution of each possible state. When all the probabilities fi are equal, I is maximal,

and we have minimal information about the system. When our information is maximal (i.e., one fi

is equal to one and the rest to zero, such that we know what state the system is in), the function is

minimal. This information function is also called ”reduced entropic function” in thermodynamics

[Shannon, 1948]. Gibbs proposed a general formula for statistical-mechanical entropy, no longer

requiring identical and non-interacting particles, but instead based on the probability distribution

pi for the complete microstate i of the total system:

S = �k
X

i

pi ln pi (9.44)

dS

dt
= �k

X

i

✓
dpi

dt
ln pi +

dpi

dt

◆
= �k

X

i

dpi

dt
ln pi (9.45)

4Please see the link to the Lyapunov function for the Lorenz system in Chapter 2.2.
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because
P

i

dpi

dt
= d

dt

P
i
pi = d

dt
(1) = 0. Now, formulate a master equation [van Kampen,

1981] for the average rate of jumps5 from state ↵ to �, and from state � to ↵:

dp↵

dt
=

X

�

⌫↵�(p� � p↵) (9.46)

dp�

dt
=

X

↵

⌫↵�(p↵ � p�) (9.47)

where the reversibility of the dynamics ensures that the same transition constant ⌫↵� appears in

both expressions. So

dS

dt
=

1

2
k
X

↵,�

⌫↵�(ln p� � ln p↵)(p� � p↵). (9.48)

But the two brackets will have the same sign (the same argument as in equation 9.40), so each

contribution to dS/dt cannot be negative and therefore, dS

dt
� 0 for an isolated system. Due to

the complex expression for the collision operator, it became clear that approximations were desir-

able. It was also proven (see Cercignani [1990]) that such approximations were also reasonable,

since the details of the two-body interaction are not likely to influence significantly experimentally-

measured quantities. Hence, approximate collision operators were proposed, all of which had to

1 conserve local mass, momentum and energy and 2 develop a collisional contribution in Boltz-

mann’s equation (9.26) which tends to a local Maxwellian distribution. It was soon realized that a

model developed at the middle of last century Bhatnagar et al. [1954] (also known as Bhatnagar-

Gross-Krook; hereafter BGK) satisfied both of these conditions. Chapman and Enskog developed a

general procedure for the approximate solution of Boltzmann’s equation. For certain simple model

systems such as hard spheres their method produces predictions for (or its moments) which may

5The master equation is quite often written as: d~P
dt

= A ~P , where ~P is a column vector (where element i represents
state i), and A is the matrix of connections. The way connections among states are made determines the dimension
of the problem. When the connections are time-independent rate constants, the master equation represents a kinetic
scheme and the process is Markovian (any jumping time probability density function for state i is an exponential, with
a rate equal to the value of the connection). When the connections depend on the actual time (i.e. matrix A depends
on the time, A ! A(t)), and the process is not stationary. For an application in meteorogy, e.g. Egger [2001].
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be tested in computer simulations. Another more modern approach to the numerical solution of the

transport equation is the “Lattice Boltzmann” method in which the continuous variables and are

restricted to a set of discrete values; the time change of these values is then described by a modified

transport equation which lends itself to fast computation. The moments of the distribution function

represent macroscopic variables density and velocity fields:

⇢(~x, t) = m

Z
d~ef(~x,~e, t) (9.49)

⇢(~x, t)~u(~x, t) = m

Z
d~e~ef(~x,~e, t) (9.50)

Note that the molecular velocities ~e is different from the macroscopic veleocity field ~u(~x, t). The

basic idea was that each collision changes the SPDF by an amount which is proportional to the

departure from the local Maxwellian distribution:

�+ � �� = �
f(~x,~e, t) � f0(~x,~e)

⌧
(9.51)

with relaxation constant ⌧ . In dimensionless units, ⌧ is replaced by the dimensionless Knudsen

number Kn = l/L with l is the mean-free-path. It is the small parameter in the kinetics - fluid

dynamics transition. If the Kn >> 1 then the continuum assumption of fluid mechanics is no

longer a good approximation and kinetic equations must be used.



9.4. APPLICATION: LATTICE BOLTZMANN DYNAMICS 337

9.4 Application: Lattice Boltzmann Dynamics

9.4.1 Lattice Boltzmann Methods*

LBMs recently proved to be viable alternatives to traditional computational fluid dynamics (CFD).

The latter adopts a strategy consisting of: writing the macroscopic flow equations; discretizing

the macroscopic equations using finite differences, finite volumes or finite elements; solving the

discretized equations on a computer. In contrast, LBM takes a different route towards the same

results. The LBM approach is composed of formulating a mesoscopic model for the evolution of

the PDF such that the desired macroscopic flow equations are obtained. The end result of both

approaches are similar. However, the algorithms differ due to the different perspective on the

physics of the flow. There are in principle an infinite set of possible mesoscopic models. However,

we focus on the most common ones, which consist of a streaming and a collision process. These

LBMs use a simplified collision operator Bhatnagar et al. [1954], hence they are also referred to as

LBM-BGK models.

There are several possible choices for the underlying lattice. These are usually classified in

the literature using the D↵Q�-notation, where ↵ is an integer number denoting the space di-

mensionality and � is another integer indicating the number of discrete velocities (including the

particle at rest) within the momentum discretization. Some restrictions have to be fulfilled (espe-

cially Galilean and rotational invariance)6 to ensure that a particular discretization can simulate the

Navier-Stokes equations. Among the lattices in common use there are the D2Q9 and D3Q19-

models (see for example discussion in He and Luo [1997]). Our focus here is the 2D case, hence

we have chosen the D2Q9 momentum discretization. The discrete velocity directions for the

D2Q9 lattice are shown in Fig 9.1. The macroscopic variables are defined as functions of the

6A lattice with reduced symmetry can be (and has been) used, see d’Humieres et al. [2001], where a D3Q13-
lattice is used. However, this approach also departs from the classical BGK-LBM dynamics.
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0

D2Q9

lattice
unit (lu)

84

1

526

3

7

Figure 9.1: Discrete lattice velocities for the D2Q9 model.

particle distribution functions (hereafter DFs) according to:

⇢ =
��1X

a=0

fa (macroscopic fluid density) (9.52)

and ~u =
1

⇢

��1X

a=0

fa~ea (macroscopic velocity). (9.53)

The DFs at each lattice point are updated using the equation:

fa(~x + ~ea�t, t + �t) = fa(~x, t)| {z }
Streaming

�
[fa(~x, t) � feq

a
(~x, t)]

⌧| {z }
Collision

, (9.54)

where a 2 [0,��1] is an index spanning the (discretized) momentum space and ⌧ is a relaxation

parameter, which is related to the fluid viscosity. The streaming step, where the DFs are translated
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to the neighbouring sites according to the respective discrete velocity direction, is illustrated in Fig.

9.2, in the D2Q9 model. The collision step (illustrated in Fig. 9.3) consists of a re-distribution

of the DFs towards the local discretized Maxwellian equilibrium DFs, in such a way that local

mass and momentum are invariant. The equilibrium DFs can be obtained from the local Maxwell-

streaming

Figure 9.2: Illustration of the streaming process on a D2Q9 lattice. Note that the magnitude of
the DFs remain unchanged, but they move to a neighbouring node according to their direction.

⇢,~v

collision

⇢,~v

Figure 9.3: Illustration of the collision process on a D2Q9 lattice. Note that the local density ⇢
and velocity ~v are conserved, but the DFs change according to the relaxation-to-local-Maxwellian
rule.
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Boltzmann SPDF (see for example He and Luo [1997]); they are

feq

a
(~x) = wa⇢(~x)


1 + 3

~ea · ~u

c2
+

9

2

(~ea · ~u)2

c4
�

3

2

~u2

c2

�
, (9.55)

where for the D2Q9 model the weights are wa=0 = 4/9, wa={1..4} = 1/9, wa={5..8} =

1/36 and c is the propagation speed on the lattice, c = �x/�t. Under the afore-mentioned

assumption of a low Mach number, and further taking {Kn7, �t, �x} ! 0, this model recovers

the incompressible Navier-Stokes equations:

r · ~u = 0 , (9.56)

⇢@t~u + ⇢~u · r~u = �rP + ⇢⌫r2~u (9.57)

with an isothermal equation of state:

P = c2
s
⇢ , (9.58)

where P is the pressure. The viscosity of the fluid is related to the relaxation parameter ⌧ by the

equation

⌫ = c2
s
(⌧ � 1/2)

�2
x

�t
) ⌧ =

⌫

c2
s

�t

�2
x

+
1

2
���������!
c
2
s |D2Q9=1/3

⌧D2Q9 = 3⌫
�t

�2
x

+
1

2
(9.59)

The proof of these results follows from the Chapman-Enskog analysis. Eq. (9.59) provides a

straightforward method for adjusting the fluid viscosity in the model. It is obvious that ⌧ � 0.5 is

required in order to ensure a positive viscosity. The limit ⌧ ! 0.5 corresponds to the inviscid flow,

while the ⌧ ! 1 limit represents the Stokes (creeping) flow. The model described so far is only

applicable to athermal liquids. While there are many flow situations which can be attributed to this

class, thermal effects are often essential to many natural phenomena. A suitable approach consists

of solving the passive scalar equation for temperature on a separate lattice. The temperature field is

7The assumption of Kn ⌘
�
L

! 0 is a requirement for continuum models to apply, hence it is not specific to
LBM.
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influenced by the fluid advection, and influences the fluid through a buoyancy term. This approach

is only valid in the Boussinesq approximation, which is a reasonable assumption for many flows

(for example, in ocean flows). The LB evolution algorithm is the same on the temperature lattice,

but with different equilibrium DFs. Also, because the macroscopic quantity is a scalar (in contrast

to the LBM for the velocity field, which is a vector), a lattice with fewer velocity directions is

sufficient (D2Q5). The evolution equation on the temperature lattice is described by the same type

of LB equation:

ga(~x + ~ea�t, t + �t) = ga(~x, t)| {z }
Streaming

�
[ga(~x, t) � geq

a
(~x, t)]

⌧T| {z }
Collision

, (9.60)

The macroscopic temperature is recovered by summation:

T =
4X

i=0

gi (9.61)

The main difference however lies in modified equilibrium distributions:

geq

i
= TwT,i [1 + 3 ~eT,i · ~u] (9.62)

where the weights on the thermal lattice read wi=0 = 1/3, wi={1..4} = 1/6, and the thermal

diffusivity is related to the thermal relaxation time ⌧T through:

⌧T = 3
�t

�2
x

+ 1/2 (9.63)

The back-coupling to the velocity field is accomplished through an additional force term in the

RHS Eq. (9.54):

dFi = �3wi⇢�g(T � T0)(~ei · ĵ) (9.64)
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9.4.2 Simulation set-up of the Rayleigh-Bénard convection

An important part of any numerical simulation is relating the simulation input parameters and

output results to the exact flow we intend to model. The key concept during these procedures is

dynamic similarity, which tells us that two flows with different physical parameters are effectively

equivalent as long as several dimensionless numbers are the same. This idea is of special impor-

tance in experimental and numerical fluid dynamics (e.g., sections 1.4, 7.5). Similarily, in CFD,

the fluid solver usually works in a different lengthscale than the original, physical system that is

to be simulated. We can distinguish 3 different frames of reference in a simulation, described be-

low. The dimensionless system may seem like an unnecessary complication in the beginning, but

it reflects the fact that flows are often given in the literature in this form.

1. Physical system: is the actual system that we intend to simulate. Here, we measure things

in the usual meters, seconds and kilograms. A problem with this system is that it is very

dependent on the units, which are not important to the mathematics behind the PDEs gov-

erning the flow. However, any practical application of fluid mechanics has to start from this

system and return to it when results are to be reported.

2. Dimensionless system: by choosing typical length- and time-scales for our flows, we can

non-dimensionalize the equations, which then become more amenable to numerical simula-

tion. Note that, sometimes, it is necessary to choose also a typical mass and/or temperature,

depending on the form we take for the macroscopic equations.

3. Discrete system: is the coordinate system in which our numerical simulation lives. The

input parameters for our simulation propagate from the physical system, through the non-

dimensional system until here. Due to reasons of numerical stability, several restrictions are

in place at this level, as will be discussed during the practical examples below.

The application we are looking at is the two-dimensional convection driven by a temperature

gradient (Rayleigh-Bénard convection). The geometry consists of a rectangular channel, with

periodic BCs at the sides and no-slip and constant temperature BCs on the top and bottom walls

(section 2.2). Now we can non-dimensionalize the equations by choosing some typical values



9.4. APPLICATION: LATTICE BOLTZMANN DYNAMICS 343

for lengthscale L and timescale T of the system. As a reference length L, we take the distance

between the two walls. We also need a value for scaling our temperature. Since we are imposing a

specific temperature difference throughout our fluid domain, the temperature values will be within

this range everywhere, and it makes sense to scale temperature by this value (�T ). The presence

of the gravitational constant in the equations provides us a natural timeframe. The first guess would

be to take g = L/T 2, but we can make a better choice which also allows us to cancel-out the

thermal expansion coefficient in the dimensionless system, namely:

g =
L

↵(�T )T 2
) T =

s
L

g↵(�T )
(9.65)

The physical quantities can then be written in terms of the dimensionless ones as p = ⇢0
L

2

T 2pd

and for temperature T = Td(�T ) + T0. Plugging-in these expressions into the eqs. in section

2.2 we eventually obtain:

rd · ~ud = 0 (9.66)

@td ~ud + ( ~ud · rd) ~ud = �rdpd +

r
Pr

Ra
r

2
d
~ud + Tdĵ (9.67)

@tdTd + rd · ( ~udTd) =

r
1

RaPr
r

2
d
Td (9.68)

Where Ra and Pr are the characteristic Rayleigh and Prandtl numbers of the system, defined as

Pr ⌘
⌫


(9.69)

Ra ⌘
g↵(�T )L3

⌫
= Pr ·

g↵(�T )L3

⌫2
(9.70)

eq.9.65
����! ⌫ =

T

L2
⌫ =

r
Pr

Ra
;  =

r
1

RaPr
(9.71)
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The temperature BCs become in the dimensionless system:

Td,hot = 1

Td,cold = 0

Discretization of the dimensionless system Let us denote by N the number of gridpoints we

use to discretize and by Niter the number of time iterations which will resolve our unit timescale

Td. We then have the following discrete space- and time-step in the dimensionless system:

�x =
1

N � 2
; �t =

1

Niter � 1
(9.72)

Note that for computing the space-step we need to subtract 1 because p points always delimitate p � 1

segments, and (2 ⇥ 0.5) = 1 due to the interpretation of the horizontal walls half-way between 1st and

2nd (respectively half-way between N � 1th and N th) lattice rows. For time-steps, we obviously do not

have the second issue, thus we only subtract 1.

In a sense, we repeat the procedure we applied to non-dimensionalize the original equations,

except that we use �x and �t instead of the previous L and T . There is no need to rewrite the

equations, since we are interested at this stage only on the parameters that we need to provide

to our simulation to get the desired flow. We can easily write expressions for the most relevant

quantities in the discrete (LB) system:

~ulb =
�t

�x
~ud; glb =

�2
t

�x
gd;

⌫lb =
�t

�2
x

⌫d =
�t

�2
x

r
Pr

Ra
; lb =

�t

�2
x

d =
�t

�2
x

r
1

RaPr
; (9.73)

In order to ensure that the compressibility effects do not become significant, a general rule is to

keep �t ⇠ �2
x

. Let us denote by � the proportionality factor (i.e. �t = ��2
x

). The choice of

� is not very obvious. If it is chosen too big, the timesteps get too large and the accuracy of the

simulation decreases. However, if � is too small, the simulation takes a long time. This means
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a compromise for � has to be found (Here, we choose � = 11.18 for �x = 0.02). Once the

number of gridpoints is given, this relation gives number of timesteps to resolve t0p.

We also need to choose a representative value for the temperature, but we can simply pick a one-

to-one mapping from the dimensionless system.

Tlb = Td (9.74)

We could write the formulae for converting the results back to the dimensionless and/or physical

system.

9.4.3 System preparations and running a simulation

There are only a few parameters that define the behavior of the system: The number of gridpoints

(lx, ly) defines the size of the lattice and thereby directly affects the accuracy of the results. On

the one hand we get better results with a finer grid but on the other hand the computational cost

increases dramatically. The parameter N_t0 descibes the maximal simulation time in units of t0d.

For a given physical system t0d can be calculated using eq. 9.65. N_t0 should be high enough to

overcome the inital conditions.

Remember that the Rayleigh (Ra) and Prandtl (Pr) numbers are dimensionless numbers that

define the character of the flow. Pr is the ratio of the viscosity ⌫ and the thermal conductivity k. Ra

describes the heat transfer of a buoyancy driven flow. Some results for different sets of parameters

can be seen in figure 9.4. As seen in section 9.4.2 beta is the factor that couples the spatial and

temporal step sizes of the lattice. As for the grid resolution, a compromise between accuracy of

the results and computing time has to be found!

Run simulation After installation run R and change the working directory of R to the path where

the *.r-files of the model are located:

setwd(’Path/of/Rayleigh_Benard_model’)

If all parameters are set properly, the model is loaded and executed by the command
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(a) Ra = 2 · 104, Pr = 0.1 (b) Ra = 2 · 104, Pr = 10

(c) Ra = 5 · 105, Pr = 10 (d) Ra = 1 · 107, Pr = 10

Figure 9.4: Four examples of the flow for different sets of Ra and Pr. The contours show lines
of constant vorticity; the colors in the background display the temperatures (purple - warm, blue -
cold).
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source(’rayleigh-benard.R’)

After the simulation has completed the results can be found in the folder defined by the parameter

out_dir. For a new run, the old directory has to be removed or renamed. All necessary files and

parameters are shortly described here. Your application should come with the following files:

• rayleigh-benard.R | The R source code

• rb_functions.R | Some extra R functions needed by the model

• rb_plot_functions.R | Some R functions for plotting the results

There are two different types of parameters that can be edited: the ’model parameters’ (which

define the ’physical’ values needed for the simulation), and the ’output parameters’ (which define

the frequency and kind of output).

Here is some R-code of the code calculating the macroscopic moments rho, ux, uy, T:
#Compute macroscopic values

rho = colSums(flIn, dims=1);
T = colSums(TIn, dims=1);
ux = colSums( cx_fl*flIn, dims=1 ) / rho;
uy = colSums( cy_fl*flIn, dims=1 ) / rho;

which is related to (9.52, 9.53) and (9.61), respectively. cx_fl and cy_fl denote the 9-dimensional

momentum component (~ea in 9.53) and are related to the microscopic velocities ~e in the distri-

bution function f(~x,~e, t) of the Boltzmann dynamics (9.26). The main part of the code is the

collision step for momentum and temperature:
#Collision Step

#Fluid momentum

for (i in idxRangeFluid){
cu_fl = 3* (cx_fl[i] * ux + cy_fl[i] * uy);
flEq= rho * w_fl[i] *

(1 + cu_fl + 0.5 * cu_fl^2 - 1.5 * (ux^2 + uy^2));
force = 3* w_fl[i]* rho * (T-T0)*

(cx_fl[i] * g[1] + cy_fl[i] * g[2])/(T_bot - T_top);
flOut[i,,] = (1.-omega_fl)*flIn[i,,] + omega_fl*flEq + force;

}

#Temperature

for (i in idxRangeTemp){
cu_T = 3* (cx_T[i] * ux + cy_T[i] * uy);
TEq = T * w_T[i] * (1 + cu_T);
TOut[i,,] = (1.-omega_T)*TIn[i,,] + omega_T*TEq;

}
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where fl_Eq and T_Eq denote the local Maxwell-Boltzmann single-particle distribution function.

Exercise 66 – Investigations with the LB-model

1. Vary the Rayleigh and the Prandtl number by Ra = 20000, 40000, 60000 and Pr =

0.5, 1, 1.5, 5, 10 and describe the dynamics (words, figures) ! For high values of Ra the

spatial resolution might be chosen higher (to the double). Here are the standart values:
lx = 100; #Number of horizontal cells

ly = 52; #Number of vertical cells

2. Vary the initial perturbation and obtain the reversed circulation! Look at the line
#Set small trigger to break symmetry

T[lx/2+1, 1] = 1.1 * T_bot;

Here, some remarks related to the boundary conditions are in order. When using a Dirichlet

boundary condition, one prescribes the value of a variable at the boundary, e.g. temperature or

density in our case. When using a Neumann boundary condition, one prescribes the gradient

normal to the boundary of a variable at the boundary, e.g. the heat flux or density flux. When

using a mixed boundary condition, different types of boundary conditions can be used for different

variables (e.g. for temperature and salinity).

In viscous flows, no-slip condition enforced at walls:

-Tangential fluid velocity equal to wall velocity.

-Normal velocity component is set to be zero.

This is realized through a bounce back condition: a particle travelling in the e1�direction is

bounced back into the opposite e5�direction. A modified version of the previous problem is

an ocean box with solid walls and free slip at the surface (no friction). This is implemented by

mirroring (relative to horizontal-axis) the distribution functions in the fluid-lattice:
#"Bounce Back" Boundary Conditions for Fluid

for (i in idxRangeFluid){
flOut[i,,1] = flIn[opp_fl[i],,1];
flOut[i,,ly] = flIn[opp_fl[i],,ly];

}

Used when physical geometry of interest and expected flow pattern and the thermal solution are
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of a periodically repeating nature (as in the Rayleigh-Bénard problem). This reduces computational

effort in problem.

Exercise 67 – Ocean-like circulation

1. Evaluate the effect of different external temperatures (hemispheric, double hemispheric).

The R code is

ocean_rb.R

Here are two options:
# Pre-compute imposed temperature-profile on top (linear)

tempTop = array(0, c(lx));
for (x in 2:lx-1) {
tempTop[x] = THot - (THot-TCold)*(x-2)/(lx-3);

}

for a single hemisphere, and for a double hemisphere version:
# Pre-compute imposed temperature-profile on top (linear+sinus)

tempTop = array(0, c(lx));
bett= 0.2 # right boundary

alph= (0.1-bett)/lx ;
gamma =1.-alph * lx/2 -bett;
for (x in 2:lx-1) {
tempTop[x] = alph *x + bett + gamma * sin( 3.1416* x/lx);

}

Describe the dynamics with respect to the temperature at the top layer tempTop !

2. In lattice Boltzmann models, it is relatively easy to insert obstacles. The R code is

ocean_rb_ridge.R

Discuss the influnce of the ridge on the ocean circulation!

3. Manage to change the Rayleigh-Bénard convection from a no-slip to free slip bounday con-

ditions at the top. The upper plate is just removed and we have an air-water interface. What

are the differences? Make a plot!

4. Provide a model for the atmospheric cells (the atmosphere is mainly heated from below).

5. Calculate the ocean heat transport in the model and compare it with the estimate in exercise

46! Use dimensionless parameters!
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(a) Two hemisphere temperature (b) Ridge and a two hemisphere temperature

(c) Linear temperature gradient (d) Flow including a ridge

Figure 9.5: Four examples of the ocean flow for different boundary conditions, and fixed Prandtl
number=1 and Rayleigh number=45000. The contours show lines of constant vorticity; the colors
in the background display the temperatures (purple - warm, blue - cold). For the right scenarios,
an obstacle representing an oceanic sill is implemented.
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