
Chapter 4

Atmospheric Models

4.1 Angular momentum and Hadley Cell

Exercise 30 – Angular momentum and Hadley Cell

Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmo-

sphere. In the inviscid upper troposphere one expects such a flow to conserve absolute angular

momentum, i.e., DA

Dt
= 0,

where A is the absolute angular momentum per unit mass (parallel to the Earth’s rotation axis)

A = r (u + ⌦r) = ⌦a2 cos2 '+ ua cos' .

⌦ is the Earth rotation rate, u the eastward wind component, r = a cos' is the distance from

the rotation axis, a the Earth’s radius, and ' latitude.

1. Show, for inviscid zonally symmetric flow, that the relation DA

Dt
= 0 is consistent with

the zonal component of the equation of motion (using our standard notation, with Fx the
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Figure 4.1: Cross section of the subtropical and polar jet streams by latitude.

x-component of the friction force per unit mass)

Du

Dt
� fv = �

1

⇢

@p

@x
+ Fx

in (x, y, z) coordinates, where y = a'.

2. Use angular momentum conservation to describe how the existence of the Hadley circulation

explains the existence of both the subtropical jet in the upper troposphere.

Hint: In the upper troposphere, the flow leaves the rising branch of the Hadley cell at the

equator (cf. Fig. 4.2) with angular momentum density A0 = ⌦a2
, if we assume that

the flow rises from the ground there with no relative motion. The zonal flow can then be

described as u = ⌦a sin2
'/ cos' . Show that the zonal flow will be greatest at the edge

of the cell, where ' is greatest, thus producing the subtropical jet.

Note that ⌦a2 = 2⇡
86400 s

· (6.371 · 106
m)2 = 3 · 109

m
2
s
�1

.

3. Describe the near-surface trade winds by recognizing that this low-level flow is under the

influence of surface friction and A will therefore be progressively reduced. Show that

ulow < ⌦a
sin2

'

cos'
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Figure 4.2: Schematic picture of the Hadley Cell and the jet streams. Subtropical jet forms at
the poleward limit of the tropical Hadley cell and to first order this circulation is symmetric with
respect to longitude. Tropical air rises to the tropopause, and moves poleward before sinking; this
is the Hadley cell circulation. As it does so it tends to conserve angular momentum, since friction
with the ground is slight. Air masses that begin moving poleward are deflected eastward by the
Coriolis force (true for either hemisphere), which for poleward moving air implies an increased
westward component of the winds (note that leftward deflection in the southern hemisphere).
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and some ' that ulow becomes negative (eastward winds).

4. If the Hadley circulation is symmetric about the equator, and its edge is at 20� latitude, de-

termine the strength of the subtropical jet.

(The observed zonal winds are weaker than the value. In reality, non-axisymmetric atmo-

spheric eddies act to reduce angular momentum in the outflow, and hence reduce the strength

of the jets.)

5. Consider the tropical Hadley circulation in northern winter. The circulation rises at 10�
S,

moves northward across the equator in the upper troposphere, and sinks at 20�
N . Assuming

that the circulation, outside the near-surface boundary layer, is zonally symmetric (indepen-

dent of x) and inviscid (and thus conserves absolute angular momentum about the Earth’s

rotation axis), and that it leaves the boundary layer at 10�
S with zonal velocity u = 0, calcu-

late the zonal wind in the upper troposphere and provide the numbers for the equator, 10�
N ,

and 20�
N .

Solution of Exercise 30

1. For inviscid axisymmetric flow, conservation of angular momentum implies

Dt(⌦a
2 cos2 '+ ua cos') = 0

Remember that y = a', dx = a cos' d�. Here, we reformulate the planetary term:

Dt(⌦a
2 cos2 ') = v@y(⌦a

2 cos2 ') (4.1)

= ⌦av@'(cos
2
') (4.2)

= �2⌦av sin' cos' (4.3)

= �fv · a cos' (4.4)

Similar
Dt(ua cos') = a cos'Dtu + u · v @' cos' (4.5)



136 CHAPTER 4. ATMOSPHERIC MODELS

where in the coordinate system

Dtu = (@t + u@x + v@y)u +
uv

a
tan' (4.6)

(the last term is a metric term). Therefore and under the assumption @xp = 0:

Dtu � fv = 0 (4.7)

2. Use angular momentum conservation to describe how the existence of the Hadley circulation

explains the existence of both the subtropical jet in the upper troposphere. In the upper

troposphere, the flow leaves the rising branch of the Hadley cell at the equator (cf. Fig. 4.2)

with angular momentum density A0 = ⌦a2
, if we assume that the flow rises from the

ground there with no relative motion. We have

A = ⌦a2 cos2 '+ ua cos' = A0 = ⌦a2

and therefore the zonal flow can then be described as

u = ⌦a sin2
'/ cos' .

The zonal flow will be greatest at the edge of the cell, where ' is greatest, thus producing

the subtropical jet.

3. If the return flow, in the lower troposphere, were inviscid and thus also conserved angular

momentum with Alow = A0, then at a given latitude the low level flow would be the same

as that aloft, since in u is a function of ' only. However, in reality this low-level flow is

under the influence of surface friction and A will therefore be progressively reduced. Thus,

Alow = ⌦a2 cos2 '+ ulowa cos' < A0 = ⌦a2
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Thus ulow < ⌦a
sin2

'

cos'

and some '0 north of the equator that ulow becomes negative (eastward winds), and so the

low level flow will be equatorward and eastward there. (Note that⌦a2 = 2⇡
86400 s

· (6.371 ·
106

m)2 = 3 · 109
m

2
s
�1

.)

4. Assume the Hadley circulation is symmetric about the equator, and its edge is at 20� latitude,

determine the strength of the subtropical jet by

u(20�) = ⌦a sin2(20�)/ cos(20�) = 57.6ms
�1

The observed zonal winds are weaker than the value. In reality, non-axisymmetric atmo-

spheric eddies act to reduce angular momentum in the outflow, and hence reduce the strength

of the jets.

5. Consider the angular momentum A = ⌦a2 cos2 ' + ua cos' = A0 = ⌦a2 with

A0 = ⌦a2 cos2(10�
S) = 2.952 · 109

m
2
s
�1

.

Therefore u =
A0 � ⌦a2 cos2 '

a cos'

At ' = 0�
, u = �13.9ms

�1, at ' = 10�
, u = 0ms

�1, at ' = 20�
, u =

42.8ms
�1

.

4.2 Engery balance model

Energy balance models (EBM) are highly simplified systems of the climate system. A zero-

dimensional model of the radiative equilibrium of the Earth is

(1 � ↵)S⇡R2 = 4⇡R2
✏�T

4 (4.8)
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where the left hand side represents the incoming energy from the Sun (the disk) the right hand side

represents the outgoing energy from the Earth (the globe), calculated from the Stefan-Boltzmann

law assuming a constant radiative temperature, T, that is to be found, and S is the solar constant -

the incoming solar radiation per unit area– about 1367Wm
�2, ↵ is the Earth’s average albedo,

measured to be 0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8
JK

�4
m

�2
s
�1, and ✏ is the effective emissivity of earth (about 0.612).

The geometrical constant ⇡R2 can be factored out, giving

(1 � ↵)S = 4✏�T 4 (4.9)

Solving for the temperature,

T =
4

s
(1 � ↵)S

4✏�
(4.10)

This yields an average earth temperature of 288 K. This is because the above equation represents

the effective radiative temperature of the Earth (including the clouds and atmosphere). The use of

effective emissivity and albedo account for the greenhouse effect.

Note that S itself stems from effective temperature of the sun is the temperature of a black

body with the same luminosity per surface area (FBol) as the star and is defined according to

the Stefan-Boltzmann law �T
4
eff

. Notice that the total (bolometric) luminosity of a star is then

L = 4⇡R2�T 4
eff

, where R is the stellar radius. The effective temperature of our Sun is around

5780 K.

Stars have a decreasing temperature gradient, going from their central core up to the atmo-

sphere. The "core temperature" of the Sun-the temperature at the centre of the Sun where nuclear

reactions take place-is estimated to be 15,000,000 K The effective (blackbody) temperature of a

planet can be calculated by equating the power received by the planet with the power emitted by a

blackbody of temperature T.

Take the case of a planet at a distance D from the star, of luminosity L.
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Assuming the star radiates isotropically and that the planet is a long way from the star, the

power absorbed by the planet is given by treating the planet as a disc of radius r, which intercepts

some of the power which is spread over the surface of a sphere of radius D (the distance of the

planet from the star).

The average emissivity of the earth is estimated from available data. The emissivities of ter-

restrial surfaces are all in the range of 0.96 to 0.99 (except for some small desert areas which may

be as low as 0.7). Clouds, however, which cover about half of the earth’s surface, have an average

emissivity of about 0.5 (which must be reduced by the fourth power of the ratio of cloud absolute

temperature to average earth absolute temperature) and an average cloud temperature of about 258

K. Taking all this properly into account results in an effective earth emissivity of about 0.64 (earth

average temperature 285 K). This simple model determines the effect of changes in solar output or

change of earth albedo or effective earth emissivity on average earth temperature. It says nothing,

however about what might cause these things to change. Zero-dimensional models do not address

the temperature distribution on the earth or the factors that move energy about the earth.

Exercise 31 – Energy balance

The EMB (4.8) determines the effect on average earth temperature of changes in solar constant

or change of albedo or effective earth emissivity. Show: The percent change of the average amount

of each parameter, considered independently, to cause a one degree Kelvin change in steady-state

average earth temperature is Solar constant 1.4%, Albedo 3.3%, Effective emissivity 1.4% using

(4.10).
## here is the simple calculation:
alpha=0.3
S=1367
sigma=5.67e-8
epsilon=0.612
T= sqrt(sqrt( (1-alpha ) * S/(4 *epsilon* sigma) ))
T
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Let us have a closer look onto (4.8). The local radiative equilibrium of the Earth is

✏�T
4 = (1 � ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4.11)

Integration over the Earth surface is

Z
⇡/2

�⇡/2

Rd'

Z 2⇡

0

R cos'd⇥ ✏�T 4 =

Z
⇡/2

�⇡/2

R cos2 'd'

Z
⇡/2

�⇡/2

R cos⇥d⇥ (1 � ↵)S

✏�R
2

Z
⇡/2

�⇡/2

d'

Z 2⇡

0

cos'd⇥ T
4 = (1 � ↵)SR2

Z
⇡/2

�⇡/2

d' cos2 '

| {z }
⇡
2

Z
⇡/2

�⇡/2

cos⇥d⇥

| {z }
2

✏�4⇡T 4 = (1 � ↵)S ⇡ (4.12)

giving a similar formula as (4.10) with the definition for the average

T 4 =
1

4⇡

Z
⇡/2

�⇡/2

d'

Z 2⇡

0

cos'd⇥ T
4

.

What we really want is the mean of the temperature T . Therefore, we take the fourth root of (4.11):

T =
4

s
(1 � ↵)S cos' cos⇥

✏�
⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4.13)

and integrate this over the sphere:

T =
4

s
(1 � ↵)S

✏�

1

4⇡

Z
⇡/2

�⇡/2

d'

Z
⇡/2

�⇡/2

cos'd⇥ 4
p
cos' cos⇥

T =
4

s
(1 � ↵)S

4✏�

p
2

4⇡

Z
⇡/2

�⇡/2

(cos')5/4d'

| {z }
1.86

Z
⇡/2

�⇡/2

(cos⇥)1/4d⇥

| {z }
2.70

(4.14)

= 0.4
p
2

4

s
(1 � ↵)S

4✏�
= 0.57

4

s
(1 � ↵)S

4✏�
(4.15)
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Therefore, T ⇡ 163K is a factor 0.57 lower than 288 K as stated at (4.8). This zero-dimensional

models do not address the heat capacity and the proper temperature distribution on the earth.
## here is the simple calculation:
integrand1 <- function(x) {(cos(x))^(5/4)}
integrand2 <- function(x) {(cos(x))^(1/4)}
a1=integrate(integrand1, lower = -pi/2, upper = pi/2)
a2=integrate(integrand2, lower = -pi/2, upper = pi/2)
a=a1$value*a2$value/(4 * pi) *sqrt(2)

Which effective ✏ we would expect then? Basically an ✏ = 0.065 is a factor 10 lower than above

which is unrealistic (see below).

If we calculate the zonal mean of (4.13) by integration at the latitudinal cycles

1

2⇡

Z 2⇡

0

d⇥

we have

T (') = 0.61 · 4

s
(1 � ↵)S

4✏�
(cos')1/4 (4.16)

as a function on latitude. Here is the calculation:
## here is the simple calculation:
alpha=0.3
S=1367
sigma=5.67e-8
epsilon0=0.612
lat=pi/2/90
phi=c(-89:89)

integrand2 <- function(x) {(cos(x))^(1/4)}
a2=integrate(integrand2, lower = -pi/2, upper = pi/2)
b=a2$value/(2 * pi) *sqrt(2)
T= b*sqrt(sqrt( (1-alpha ) * S/(4*epsilon0* sigma) * (cos(lat*phi))^(1/4) ))
Tc=T -273
plot(phi,Tc,type="l",col="red")

dev.copy(png,’ebm_model.png’)
dev.off()

What happens here is that the heat capacity of the Earth is neglected. During night, the tem-

perature is zero and there is a a strong non-linearity of the outgoing radiation. Furthermore, the
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Figure 4.3: Latitudinal temperatures of the EBM with zero heat capacity (4.16).

Earth is a rapidly rotating object. (4.13) can be better used for an object like the moon without

an atmosphere, without a significnt heat capacity, and a slowly rotating body. The correct energy

balance shall be

Cp @tT = (1 � ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) � ✏�T
4

. (4.17)
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with Cp representing the heat capacity multiplied with the depth of the atmosphere-ocean layer.

If we consider the zonal mean and averaged over the diurnal cycle, wecan assume that the heat

capacity is mainly given by the ocean. Observational evidence is that the diurnal variation of

the ocean surface is in the order of 1-2 K only. The energy balance (4.17) is integrated over the

longitude and over the day

T̃ (t̃) =
1

2⇡

Z 2⇡

0

T (t) d⇥ with T̃
4 ⇡

1

2⇡

Z 2⇡

0

T
4
d⇥

and therefore

Cp @t̃
T̃ = (1 � ↵)S cos' ·

1

2⇡

Z
⇡/2

�⇡/2

cos⇥ d⇥

| {z }
2

� ✏�T̃
4 (4.18)

= (1 � ↵)
S

⇡
cos' � ✏�T̃

4
. (4.19)

In the following we will drop the tilde sign.

The linearized EBM

Since we know the approximate temperature on Earth, we may linearize (4.13) around 0�C. It

reduces to

(1 � ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) = A + BTC (4.20)
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where A = ✏�2734
K

4 = 193W/m
2, B = ✏�3T 32733

K
3 = 2.1W/m

2
/K comes from

the Taylor expansion, and TC is the temperature in �C. Then,

A + BTC = (1 � ↵)S cos' ·
1

2⇡

Z
⇡/2

�⇡/2

cos⇥ d⇥

| {z }
2

(4.21)

= (1 � ↵)
S

⇡
cos' (4.22)

TC = (1 � ↵)
S

⇡B
cos'�

A

B
(4.23)

The global mean is therefore

TC = (1 � ↵)
S

⇡B

1

2

Z
⇡/2

�⇡/2

d' cos2 '

| {z }
⇡
2

�
A

B
(4.24)

= (1 � ↵)
S

4B
�

A

B
(4.25)

seen as the green line in Fig. 4.5 with 12.4�C.
## here is the simple calculation for the linear model:
alpha=0.3
S=1367
sigma=5.67e-8
epsilon0=0.612
lat=pi/2/90
phi=c(-89:89)
A=epsilon0 * sigma *273^4
A=213

B=epsilon0 *sigma* 3 * 273^3
rhs= 2/(2*pi)* (1-alpha ) * S* cos(lat*phi)
Tc=(rhs- A)/B
plot(phi,Tc,type="l",col="black")

Tm= ((1-alpha ) * S/(4*B) -A/B) * rep(1, 179)
lines(phi,Tm,col="green")

dev.copy(png,’ebm_linear_model.png’)
dev.off()

In section 4.3 we will explore in detail the influence of meridional transports on temperatures,
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Figure 4.4: Temperatures of the linear EBM: (4.23) in red and (4.33) in green showing the mean.
The model has been tuned by the parameter A = 213W/m

2.

where the transport is parameterized as diffusion and the radiative fluxes are as in (4.23). Here, we

start with a simplfied approach first.

Exercise 32 – Analytical EBM

Solve the vertically integrated energy equation where we include the atmosphere and ocean in
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one temperature T and describe the heat transport (sensible, latent and ocean) as diffusion:

Cp @tT = k @
2
y
T + (1 � ↵)Qtop

S
� (A + B T ) (4.26)

The albedo ↵ = 0.3 is chosen as a fixed parameter, y = R', and

Q
top

S
=

S

⇡
· cos' . (4.27)

Furthermore, there is no transport across the poles. The gradient at the North and South Pole

vanishes:
@yT (' = ±⇡/2) = 0 . (4.28)

Solution

One can separate the dynamics into a gloal mean and a function depending on latitude.

T =
1

2

Z
⇡/2

�⇡/2

Td' cos' (4.29)

T1 = T � T (4.30)

Therefore,
Cp

d

dt
T = (1 � ↵)

S

2⇡

Z
⇡/2

�⇡/2

d' cos2 '� (A + B T ) (4.31)

= (1 � ↵)
S

4
� (A + B T ) (4.32)

for the global mean with the solution

T (t) = (1 � ↵)S
1

4B
�

A

B
+ T (t = 0) · exp

✓
�

B

Cp

t

◆
(4.33)

Typical values for Cp are 2 · 108
J/m

2
/K.
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For T1 we have

Cp@tT1 =
k

R2
@

2
'
T1 + (1 � ↵)S

✓
cos'

⇡
�

1

4

◆
� BT1 (4.34)

=


k

R2
@

2
'
� B

�
T1 + (1 � ↵)S

✓
cos'

⇡
�

1

4

◆
(4.35)

Because of the boundary condition (4.28), the solution for T1 must have the form al cos(l')

T1 =
1X

l=1

al cos(l') + C (4.36)

For the homogenous part of (4.35), we have

d

dt
al = �

"
kl

2

R2 + B

Cp

#
al (4.37)

al = exp

 
�
"

kl
2

R2 + B

Cp

#
t

!
(4.38)

For the inhomogenous part, we are seeking for a particular solution for (4.35):

T
p

1 = a1 cos'+ C (4.39)

and therefore

0 =


k

R2
@

2
'
� B

�
(a1 cos'+ C) + (1 � ↵)

S

⇡
· cos'� (1 � ↵)

S

4
(4.40)

giving two conditions 0 =


�

k

R2
� B

�
a1 + (1 � ↵)

S

⇡
(4.41)

0 = �BC � (1 � ↵)
S

4
(4.42)

and can calulate the constants
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a1 = (1 � ↵)
S

⇡


k

R2
+ B

��1

(4.43)

C = �(1 � ↵)
S

4B
(4.44)

to get finally

T1 = (1 � ↵)
S

⇡


k

R2
+ B

��1

cos'� (1 � ↵)
S

4B
+

1X

l=2

al cos(l') (4.45)

The equilibrium solution is therefore

Teq = lim
t!1

T = �
A

B
+ (1 � ↵)

S

⇡


k

R2
+ B

��1

cos' (4.46)

## here is the calculation for the 1 dim energy balance model:
alpha=0.3
S=1367
sigma=5.67e-8
epsilon0=0.612
lat=pi/2/90
phi=c(-89:89)

A=epsilon0 * sigma *273^4
A=213
r=40.0e6/(2*pi)
k=1*r^2
B=epsilon0 *sigma* 3 * 273^3
km= k/r^2 +B
Amod=A - (1-alpha ) * S/4 *(k/r^2)/km

rhs2= 1/(pi)* (1-alpha ) * S* cos(lat*phi) /B
Tc2= - A/B + rhs2
plot(phi,Tc2,type="l",col="red")

rhs= 1/(pi)* (1-alpha ) * S* cos(lat*phi) *(k/r^2 +B)^(-1)
Tc= - Amod/B + rhs
lines(phi,Tc,type="l",col="blue")
Tm= ((1-alpha ) * S/(4*B) -A/B) * rep(1, 179)
lines(phi,Tm,col="green")

dev.copy(png,’ebm_linear_1d_model.png’)
dev.off()
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Figure 4.5: Temperatures of the linear EBM: (4.23) in red and (4.33) in green showing the mean
with no diffusion. The new one-dimensional model (4.46) is in blue. The model has been tuned
by the parameter A to give the same mean temperature (see code). Maximum and minimum
temperatures for red are at 43�C and -98�C, whereas for blue are for 33�C and -63�C, respectively.

As a logical next step, we now integrate the non-linear energy balance numerically.

Cp @tT = k @
2
y
T + (1 � ↵)

S

⇡
cos' � ✏�T

4
. (4.47)
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Exercise 33 – Numerical solution of 1D EBM

• Calculate the one-dimensional EBM using differnt time steps

• Identify / extract the finite difference scheme which is used approximate the 2nd derivative

• Run the program and play with the parameters (heat capacity, diffusion coefficient).

# EBM_EulerForward.R
# 1D diffusion EBM equation, explicit scheme

alpha=0.3
S=1367
sigma=5.67e-8
epsilon0=0.612
lat=pi/2/90
phi=c(-90:90)
cp=4.2e6 *1 # cp_water = 4.6e3; rho_water=1e3; h=1m
r=40.0e6/(2*pi)
tabs=272
ddx=40.0e6/360
coslat=cos(phi *lat)
k=(1.5e6 + 2.5e6 * coslat) # in m^2/s
knorm=1.5e6* rep(1, 181)

plot(phi,k,type="l",col="red", main = "Diffusion",xlim = c(-90, 90), ylim = c(0, 4.1e6))
lines(phi,k/2,type="l",col="blue")
lines(phi,knorm,type="l",col="green")
dev.copy(png,’Diffusion_ebm_1d.png’)
dev.off()

#Constants
L.X<-179 #width of lattice
L.T<-5000000 #length of time
dx <- ddx #space step in m
dt <- 1000 #time step in s
D<- k #Diffusion coefficent
globini=270 # initial condition
N.x<-L.X + 2 #number of space boxes + 2 boundary boxes
N.t<-L.T/dt #number of time boxes

dtc=dt/cp
dtcdx=dtc/(dx^2)
dtdx=dt/(dx^2)
cfl=dtdx*max(D) # CFL criterium, this number shall be smaller than 0.5

T<-matrix(globini,N.t,N.x) #grid
Transport <-matrix(0,N.t,N.x)

#temporary vector which stores the state of of one timestep:
T.temp<-rep(globini,N.x)
Transport.temp<-rep(0,N.x)
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#Set the starting and boundary condition, here one value in the middle:
T[1,N.x/2]<- globini

for (n in 1:(N.t-1))
{
for (j in 2:(N.x-1))
{

sw=(1-alpha)*S/pi *coslat[j]
lw=epsilon0*sigma * T.temp[j]^4
T.temp[j]<-T[n,j]+D[j]*dtdx*(T[n,j+1]-2*T[n,j]+T[n,j-1])+dtc*(sw -lw)
Transport.temp[j]=cp*D[j]*(T[n,j+1]-T[n,j])/ddx * 40.e6*coslat[j]

}
T.temp[1] <- T.temp[2]
T.temp[N.x] <- T.temp[N.x-1]
Transport.temp[1]=0
Transport.temp[N.x]=0
T[n+1,]<-T.temp
Transport[n+1,]=Transport.temp

}

filled.contour((1:N.t)*dt/1e6,phi,T-tabs,
color.palette=rainbow,xlab="time",ylab="latitude")

dev.copy(png,’ebm_nonlinear_1d_num.png’)
dev.off()

filled.contour((1:N.t)*dt/1e6,phi,Transport*1e-15,
color.palette=rainbow,xlab="time",ylab="latitude")

dev.copy(png,’Transport_ebm_nonlinear_1d_num.png’)
dev.off()
#---
# plot equilibrium
A=epsilon0 * sigma *273^4
A=213
r=40.0e6/(2*pi)
k=1*r^2
B=epsilon0 *sigma* 3 * 273^3
km= k/r^2 +B
Amod=A - (1-alpha ) * S/4 *(k/r^2)/km
rhs2= 1/(pi)* (1-alpha ) * S* cos(lat*phi) /B
Tc2= - A/B + rhs2
plot(phi,Tc2,type="l",col="black")

lines(phi,T[N.t,]-tabs,type="l",col="red")
max(T[N.t,]-tabs)

dev.copy(png,’End_ebm_nonlinear_1d_num.png’)
dev.off()



152 CHAPTER 4. ATMOSPHERIC MODELS

Figure 4.6: Temperature evolution of the one dimensional EBM: Units are �C.

Figure 4.7: Time evolution of the northward meridional heat transport in PW = 1015 W.
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Figure 4.8: Diffusion coefficients for different versions of the model (m2
/s). Exercise 33.
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Figure 4.9: Equilibrium temperature in �C. The solutions are related to the diffusion coefficients
as displayed in Fig. 4.8. Black: Analytical solution for the linearized model (4.46).
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Exercise 34 – Analytical EBM: Ice-albedo feedback

Based in exercise 32, one can introduce a climate-dependent formulation of the planetary

albedo ↵ on the global temperature:

↵(T ) = ↵0 � ↵1 · T (4.48)

a) Solve the Energy balance model (4.26) for the case ↵(T ) as in (4.48).

b) Show that the stability of the solution depends on certain parameters (like ↵1).

c) Explain the ice-albedo effect through this solution!

Exercise 35 – Analytical EBM: Budyko

In exercise 32, the transport is parameterized as diffusion. Here, we simplfy the approach:

Cp @tT = �k (T � T ) + (1 � ↵)Qtop

S
� (A + B T ) (4.49)

Task: Solve the Energy balance model.

Solution

One can separate the dynamics into a gloal mean T (t) and a function T1 depending on latitude.

T (t) = (1 � ↵)S
1

4B
�

A

B
+ T (t = 0) · exp

✓
�

B

Cp

t

◆
(4.50)

For T1 we have

T1 = (1 � ↵)
S

⇡

1

k + B
cos'� (1 � ↵)

S

4B
+

1X

l=2

al cos(l') (4.51)

The equilibrium solution is therefore

Teq = lim
t!1

T = �
A

B
+ (1 � ↵)

S

⇡

1

k + B
cos' (4.52)
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Ice-albedo feedback

For QS , one needs a climate-dependent formulation of the planetary albedo ↵, which can be

parameterized in terms of the temperature:

↵(T ) = 0.42 � 0.20 · tanh [0.052 (T � 276.15K)] . (4.53)

This parameterization incorporates high albedos of snow and ice in terms of the surface tempera-

ture (T in Kelvin).

# EBM_EulerForward.R
# 1D diffusion EBM equation, explicit scheme
S=1367
sigma=5.67e-8
epsilon0=0.612
lat=pi/2/90
phi=c(-90:90)
cp=4.2e6 *1 # cp_water = 4.6e3; rho_water=1e3; h=1m
r=40.0e6/(2*pi)
tabs=272
ddx=40.0e6/360
coslat=cos(phi *lat)
k=(1.5e6 + 2.5e6 * coslat) # in m^2/s

#Constants
L.X<-179 #width of lattice
L.T<-50000000 #length of time
dx <- ddx #space step in m
dt <- 1000 #time step in s
D<- k #Diffusion coefficent

globini=270
N.x<-L.X + 2 #number of space boxes + 2 boundary boxes
N.t<-L.T/dt #number of time boxes

dtc=dt/cp
dtcdx=dtc/(dx^2)
dtdx=dt/(dx^2)
cfl=dtdx*max(D) # CFL criterium, this number shall be smaller than 0.5

T<-matrix(globini,N.t,N.x) #grid
Transport <-matrix(0,N.t,N.x)

#temporary vector which stores the state of of one timestep:
T.temp<-rep(globini,N.x)
Transport.temp<-rep(0,N.x)
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#Set the starting and boundary condition, here one value in the middle:
T[1,N.x/2]<- globini

for (n in 1:(N.t-1))
{
for (j in 2:(N.x-1))
{

alpha=0.42 - 0.20 * tanh(0.052* ( T[n,j] - 276.15 ))
sw=(1-alpha)*S/pi *coslat[j]
lw=epsilon0*sigma * T.temp[j]^4
T.temp[j]<-T[n,j]+D[j]*dtdx*(T[n,j+1]-2*T[n,j]+T[n,j-1])+dtc*(sw -lw)
Transport.temp[j]=cp*D[j]*(T[n,j+1]-T[n,j])/ddx * 40.e6*coslat[j]

}
T.temp[1] <- T.temp[2]
T.temp[N.x] <- T.temp[N.x-1]
Transport.temp[1]=0
Transport.temp[N.x]=0
T[n+1,]<-T.temp
Transport[n+1,]=Transport.temp

}

filled.contour((1:N.t)*dt/1e6,phi,T-tabs,
color.palette=rainbow,xlab="time",ylab="latitude")

dev.copy(png,’ebm_nonlinear_1d_alb.png’)
dev.off()

filled.contour((1:N.t)*dt/1e6,phi,Transport*1e-15,
color.palette=rainbow,xlab="time",ylab="latitude")

#dev.copy(png,’Transport_ebm_nonlinear_1d_alb.png’)
#dev.off()
#---
# plot equilibrium
A=epsilon0 * sigma *273^4
alpha=0.3
A=213
r=40.0e6/(2*pi)
k=1*r^2
B=epsilon0 *sigma* 3 * 273^3
km= k/r^2 +B
Amod=A - (1-alpha ) * S/4 *(k/r^2)/km
rhs2= 1/(pi)* (1-alpha ) * S* cos(lat*phi) /B
Tc2= - A/B + rhs2
plot(phi,Tc2,type="l",col="black")

lines(phi,T[N.t,]-tabs,type="l",col="red")
max(T[N.t,]-tabs)

dev.copy(png,’End_ebm_nonlinear_1d_alb.png’)
dev.off()
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Figure 4.10: As Fig. 4.6, but including the ice-albedo feedback and a low initial condition.

Figure 4.11: As Fig. 4.9, but including the ice-albedo feedback and a low initial condition.
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4.3 Moist atmospheric energy balance model*

The model considers a zonally and annually averaged circulation of the atmosphere and calculates

surface fresh water fluxes and surface heat fluxes along with sea surface temperatures. The EBM

treats the transport processes as diffusion. The balances of energy will be used to derive equations

for the atmospheric temperature and fresh water flux. The thermodynamic equation (internal plus

potential energy) in the atmosphere in isobaric coordinates reads

Cp [@tTa + r · (v Ta) + @p(!Ta)] = @pQR + QL + @pQS +
RTa

p
! (4.54)

where v and r are the horizontal vector of wind and the gradient operator, Ta atmospheric

temperature, p pressure, ! = d

dt
p vertical wind, and Cp specific heat at constant pressure

(1004 J kg
�1

K
�1). QR and QS are the radiative and sensible heat fluxes, respectively. QL

denotes the latent heat release due to phase transitions in the air. This term includes condensation

of water vapour (c > 0), evaporation of cloud water (c < 0), and evaporation in unsaturated air

(e > 0) :

QL = Lv (c � e) (4.55)

where Lv is the latent heat of condensation (Lv = 2.5 · 106
J kg

�1).

The last term on the right hand side of equation (4.54) is related to the fact that because pressure

decreases with height and air is a compressible fluid, air that rises expands (and air that sinks

contracts). Air that expands does work against its surroundings and because of the first law of

thermodynamics (conservation of energy) this work needs to be paid for (reduction in temperature).

So internal energy is consumed in expanding the parcel of air outwards against the atmosphere

(expanding air cools).1

1Furthermore, we can assume an adiabatic process is one where no heat is exchanged with the surroundings. This
is a reasonable approximation for typical rising air because other processes like conduction or radiative heat transfer
are quite slow. In this context, the potential temperature is introduced. The potential temperature of a parcel of fluid
at pressure P is the temperature that the parcel would acquire if adiabatically brought to a standard reference pressure
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Additionally to (4.54), the budget equations for the mass mixing ratio of water vapour qv and

cloud water qw are used:

@tqv + r · ( v qv) + @p(! qv) = e � c + E (4.57)

@tqw + r · ( v qw) + @p(! qw) = c � } (4.58)

where } denotes the formation of precipitation and E denotes the evaporation from the ground

(ocean and land).

The budget equations (4.54, 4.57) and (4.58) are now vertically integrated and zonally aver-

aged. It is assumed that in the vertically integrated left hand side of (4.58) the first two terms

vanish (stationarity, small horizontal transports). Furthermore, the vertically integrated last term

on the right hand side of (4.54) is neglected. With ! = 0 at the top and bottom, (4.58) reduces to

Z
dp

g
c =

Z
dp

g
} , (4.59)

where g is the gravitational acceleration (9.81ms
�2). The net precipitation P on the ground

P0, usually 1000 millibars. The potential temperature is denoted ✓ and, for air, is often given by

✓ = T

✓
P0

P

◆R/cp

, (4.56)

where T is the current absolute temperature (in K) of the parcel, R is the gas constant of air, and cp is the specific heat
capacity at a constant pressure. R/cp = 0.286 for air (meteorology). Potential temperature is a more dynamically
important quantity than the actual temperature. This is because it is not affected by the physical lifting or sinking as-
sociated with flow over obstacles or large-scale atmospheric turbulence. A parcel of air moving over a small mountain
will expand and cool as it ascends the slope, then compress and warm as it descends on the other side- but the potential
temperature will not change in the absence of heating, cooling, evaporation, or condensation (processes that exclude
these effects are referred to as dry adiabatic). Since parcels with the same potential temperature can be exchanged
without work or heating being required, lines of constant potential temperature are natural flow pathways. The equa-
tion comes from the enthalpy form of the first law of thermodynamics can be written as: dh = T ds + v dp, where
dh denotes the enthalpy change, T the temperature, ds the change in entropy, v the specific volume, and p the pressure.
For adiabatic processes, the change in entropy is zero: dh = v dp. For approximately ideal gases, such as the dry
air in the Earth’s atmosphere, the equation of state, pv = RT can be substituted by dpv = R/vdT

dp
p

= cp

R
dT
T
,

where the dh = cpdT was used and both terms were divided by the product pv. Integrating yields 4.56.
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(p = p0 = 105
Nm

�2 = 1000mb) is defined as

P =

Z
dp

g
(} � e) . (4.60)

This yields the vertically integrated balances for the mixing ratio of water vapour and atmospheric

temperature:

Z
dp

g
@t(CpTa) +

Z
dp

g
r · (CpvTa) = Q

top

R
� Q

bottom

R
+ Lv P + Q

bottom

S

Z
dp

g
@t(Lvqv) +

Z
dp

g
r · (Lvvqv) = Lv (E � P ) . (4.61)

The one dimensional atmosphere EBM prognoses the vertically integrated mixing ratio of wa-

ter vapour and atmospheric temperature along with (4.61).2 This yields one vertically integrated

energy equation:

C @tTA +

Z
dp

g
r · (CpvTa) +

Z
dp

g
r · (Lvvq) = Q

top

R
� Foa (4.62)

where Foa = Q
bottom

R
� LvE � Q

bottom

S
denotes the ocean-atmosphere heat flux calculated

by bulk formulas. The net radiation on top of the atmosphere Q
top

R
is the difference between

net solar radiation and net outgoing longwave radiation Q
top

LW
. In a further approximation, the

longwave radiation Q
top

LW
canbe described by a linear law A + BT (4.20). A climate-dependent

formulation of the planetary albedo ↵, in terms of the surface air temperature was given in (4.53).

With equation (4.62) the surface temperature TA is calculated prognostically, while the fresh water

flux for the ocean surface is given by the right hand side of equation (4.61) by evaluating the left

hand side of the water vapour budget.

Meridional Transports

The transport parameterizations are based on diffusion. The mechanism of heat and moisture trans-

2To evaluate the effective change of the vertically integrated humidity and temperature in equations (4.61), the
height distribution of humidity and temperature must be taken into account using an empirical relation between the
lapse rate and surface temperature �1,�2: C @tTA = (Cp�1 + Lv�2) @tTA



162 CHAPTER 4. ATMOSPHERIC MODELS

port in middle and high latitudes by baroclinic instability is the most important mechanism in the

atmospheric energy balance model. Consider an atmospheric condition with isotherms coincident

with latitude circles. A cold anomaly, which could be thought of as a cold air outbreak from the

North American continent, results in a changed surface heat flux from the ocean. In the region of

strong temperature gradient, cyclones (low pressure) and anticyclones (high pressure on the north-

ern hemisphere) are formed. These traveling weather systems move north-eastward defining the

major storm track. The scale over which this process is important is about 1000 km.

This process is the main source of meridional heat transport in middle and high latitudes. The

balances of heat and moisture (4.61) are averaged over a length scale of synoptic scale disturbances

of O(1000) km and a time scale longer than the life time of such disturbances (e.g. two weeks).

The variables can be splitted into a large-scale, long-term quantities (Ta, qv, v) and the deviations

(T 0
a
, q

0
v
, v

0). The moments v0T 0
a

and v0q0
v

are connected mainly with transient processes in the

atmosphere. The transients act as diffusion in a statistical sense bringing warm and moist air

poleward due to individual high and low pressure contributions.

The eddy fluxes, in a statistically steady state of the atmosphere, scale as:

v0T 0
a
⇠
 
@Ta

@y

!
(4.63)

where T 0
, v

0 are the perturbation of potential temperature and meridional velocity. The vertical in-

tegrated sensible eddy heat transport can be calculated in terms of the surface temperature gradient

TA

Z
dp

g
v0T 0

a
= � Ks

✓
@ TA

@y

◆
. (4.64)

where Ks is tuned to reproduce the current climate.

The latent eddy heat transport is parameterized as

v0q0
v

= rh(p)
@ qs

@Ta

(Ta, p) v0T 0
a

, (4.65)
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where rh is the relative humidity and qs the saturation water vapour. The relative humidity is

prescribed. For the latent heat transport (4.65), the relative humidity and @ qs

@T
strongly decrease

with height. Therefore, the surface values for the latent heat transport is a good choice in the

vertical integrated model:

Z
dp

g
v0q0

v
= �Kl rh(p0)

@ qs

@TA

(TA, p0)

✓
@ TA

@y

◆
. (4.66)

As for the sensible heat transport, the coefficient Kl can be tuned that (4.66) reproduces the latent

eddy heat transports of current climate. The eddy activity is greatly enhanced over the ocean

surfaces as opposed to over land surfaces. In the Northern Hemisphere, two major storm tracks

exists extending northeast across the Atlantic and Pacific oceans from the east coast of the major

continents. It is along these tracks that the majority of eddy heat and vorticity transport takes place.

In the Southern Hemisphere the transport is relatively homogeneous in the zonal direction.3 In the

boxmodel in section 6, we assume that the atmospheric heat transport across the box boundaries

are completely by transient eddies.

3The heat transport by stationary baroclinic waves is larger in winter on the northern hemisphere when the land-sea
contrast is most pronounced. Green ? argued that stationary eddies are more transient phenomena which repeat-
edly occur at the same location. This happens due to fixed topographic effects providing perturbations upon which
baroclinic waves can grow. These phenomena relating to stationary eddies are ultimately driven by the large scale
baroclinicity of the atmosphere. Therefore, standing eddies could be parameterized as transient eddies.



Chapter 5

Ocean Circulation

5.1 Wind-driven ocean circulation

What drives the ocean currents? At first, we might answer, the winds drive the circulation. But if

we think more carefully about the question, we might not be so sure. We might notice, for example,

that strong currents, such as the North Equatorial Countercurrents in the Atlantic and Pacific Ocean

go upwind. Spanish navigators in the 16th century noticed strong northward currents along the

Florida coast that seemed to be unrelated to the wind. How can this happen? And, why are strong

currents found offshore of east coasts but not offshore of west coasts?1

Friction is essential for the transfer of momentum in a fluid. Friction transfers momentum from

the atmosphere to the ocean through the thin, frictional, Ekman layer at the sea surface. Friction

transfers momentum from the ocean to the solid earth through the Ekman layer at the sea floor.

Friction along the sides of subsea mountains leads to pressure differences on either side of the

mountain which causes another kind of drag called form drag. This is the same drag that causes

1Answers to the questions can be found in a series of three remarkable papers published from 1947 to 1951. In the
first, Harald Sverdrup (1947) showed that the circulation in the upper kilometer or so of the ocean is directly related to
the curl of the wind stress. Henry Stommel (1948) showed that the circulation in oceanic gyres is asymmetric because
the Coriolis force varies with latitude. Finally, Walter Munk (1950) added eddy viscosity and calculated the circulation
of the upper layers of the Pacific. Together the three oceanographers laid the foundations for a modern theory of ocean
circulation.

164
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wind force on cars moving at high speed. In the vast interior of the ocean, however, the flow is

frictionless, and vorticity is conserved. Such a flow is said to be conservative. Here, we apply the

vorticity dynamics for the ocean and include the wind stress term in (3.39, 3.40):

Dtu � fv = �
1

⇢

@p

@x
+

1

⇢
@z⌧xz (5.1)

Dtv + fu = �
1

⇢

@p

@y
+

1

⇢
@z⌧yz (5.2)

in order to get the modified vorticity balance (3.61):

D

Dt
(⇣ + f) �

(⇣ + f)

h

D

Dt
h =

1

⇢
curlz @z⌧ =

1

⇢

✓
@

@x
@z⌧yz �

@

@y
@z⌧xz

◆
.(5.3)

The formulation ’wind stress curl’ stands for the z-component of

r ⇥

0

BBB@

⌧x

⌧y

0

1

CCCA
= curl

0

BBB@

⌧x

⌧y

0

1

CCCA
.

Exercise 36 – Non-dimensional vorticity dynamics including wind stress

a) Derive the the non-dimensional version of the vorticity equation (5.3) assuming that h is not

varying and include friction! We can vertically integrate (5.3) over depth
R 0

�D
dz :

D

Dt
(⇣ + f) = AH r2

⇣ +
1

⇢D

✓
@

@x
⌧y �

@

@y
⌧x

◆
. (5.4)

Include the Reynolds number Re = UL/AH , Rossby number Ro = U/(f0L), and the wind

stress strength number ↵ = ⌧0L/(⇢0DU
2). Compare to exercises 4, 26.

b) Estimate the order of magnitude of the characteristic numbers for the ocean ! You can use Table

5.1.
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Quantity Ocean
horizontal velocity U 1.6 · 10�2

ms
�1

horizontal length L 106
m

vertical length D 103
m

wind stress ⌧0 1.5 · 10�1
Pa

Coriolis parameter at 45�N f0 = 2⌦ sin'0 10�4
s
�1

density ⇢0 103
kgm

�3

viscosity (turbulent) AH 102 � 104
m

2
s
�1

Reynolds number Re 1.6 � 160
wind stress strength number ↵ 1 · 103

Table 5.1: Table shows the typical scales in the ocean system for exercise 36.

Solution of Non-dimensional vorticity dynamics including wind stress

Starting from (5.4),

1

T

D

Dtd

✓
1

T
⇣d + f0fd

◆
= AH

1

L2T
r2

d
⇣d +

⌧0

⇢0DL

✓
@

@xd

⌧y,d �
@

@yd

⌧x,d

◆
(5.5)

D

Dtd

✓
1

T
⇣d + f0fd

◆
= AH

1

L2
r2

d
⇣d +

⌧0T

⇢0DL

✓
@

@xd

⌧y,d �
@

@yd

⌧x,d

◆
.(5.6)

Multiplying with T and using T = L/U , we obtain

D

Dtd

✓
⇣d +

f0L

U
fd

◆
=

AH

UL
r2

d
⇣d +

⌧0L

⇢0DU2

✓
@

@xd

⌧y,d �
@

@yd

⌧x,d

◆
(5.7)

and finally

D

Dtd

✓
⇣d +

1

Ro
fd

◆
=

1

Re
r2

d
⇣d + ↵

✓
@

@xd

⌧y,d �
@

@yd

⌧x,d

◆
(5.8)

5.1.1 Sverdrup relation

Suppose for simplicity that h is constant, so the only ’topography’ is that of the spherical shape

of the ocean. This produces a simple version of the vorticity balance in the ocean circulation, the



5.1. WIND-DRIVEN OCEAN CIRCULATION 167

Sverdrup relation. For most regions, the right hand side in (5.3) or the left hand side in (5.8) is

dominated by the term v@yf = v�.

v� =
1

⇢

✓
@

@x
@z⌧yz �

@

@y
@z⌧xz

◆
. (5.9)

Integrating over z, we receive

�

Z 0

h

dz v = �V =
1

⇢
curlz ⌧ (z = 0) =

1

⇢

✓
@⌧yz

@x
�
@⌧xz

@y

◆
. (5.10)

Mass transport and Stream Lines of Sverdrup’s Theory*

While Sverdrup was analyzing observations of equatorial currents, he derived the relation by the

the wind stress to mass transport within the upper ocean. It is assumed that the flow is stationary,

that lateral friction and molecular viscosity are small, that non-linear terms such as u@u/@x are

small. With these assumptions, the horizontal components of the momentum equation are:

@p

@x
= f ⇢ v +

@⌧xz

@z
(5.11)

@p

@y
= �f ⇢ u +

@⌧yz

@z
(5.12)

Sverdrup integrated these equations from the surface to a depth �D equal to or greater than the

depth at which the horizontal pressure gradient becomes zero. We can define

@P

@x
=

Z 0

�D

@p

@x
dz,

@P

@y
=

Z 0

�D

@p

@y
dz, (5.13)

Mx, My are the mass transports in the wind-driven layer extending down to an assumed depth of

no motion:

Mx ⌘
Z 0

�D

⇢ u (z) dz, My ⌘
Z 0

�D

⇢ v (z) dz . (5.14)
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The horizontal boundary condition at the sea surface is the wind stress, and the boundary at depth

�D is zero stress because the currents go to zero:

⌧xz (0) = ⌧x ⌧xz (�D) = 0 (5.15)

⌧yz (0) = ⌧y ⌧yz (�D) = 0 . (5.16)

Using these definitions and boundary conditions, (5.11, 5.12) becomes:

@P

@x
= f My + ⌧x (5.17)

@P

@y
= �f Mx + ⌧y . (5.18)

In a similar way, Sverdrup integrated the continuity equation over the same vertical depth, assum-

ing the vertical velocity at the surface and at depth �D are zero, to obtain:

@Mx

@x
+
@My

@y
= 0 (5.19)

Differentiating (5.17) with respect to y and (5.18) with respect to x, subtracting, and using (5.19)

gives:
� My =

@⌧y

@x
�
@⌧x

@y
= curlz (⌧ ) (5.20)

where � ⌘
@f

@y
=

2⌦ cos'

R
(5.21)

with R as earth’s radius and ' as latitude. Over much of the open ocean, the wind is zonal and

@⌧y/@x is sufficiently small that
My ⇡ �

1

�

@⌧x

@y
(5.22)

Substituting (5.22) into (5.19), and (5.21) we obtain

@Mx

@x
= �

1

2 ⌦ cos'

✓
@⌧x

@y
tan'+

@
2
⌧x

@y2
R

◆
(5.23)
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Figure 5.1: Depth-integrated Sverdrup transport applied globally using the wind stress from Heller-
man and Rosenstein (1983). Contour interval is 10 Sverdrups (Tomczak and Godfrey, 1994).

Sverdrup integrated this equation from a north-south eastern boundary at x = 0, assuming no flow

into the boundary. This requires Mx = 0 at x = 0. Then

Mx = �
1

2 ⌦ cos'

✓Z
x

0

@⌧x

@y
dx

0
�
tan'+

Z
x

0
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◆
(5.24)
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If ⌧x can be approximated by its zonal mean, then

Mx = �
�x

2 ⌦ cos'


tan'

@ h⌧xi
@y

+ R
@

2 h⌧xi
@y2

�
(5.26)

where�x is the distance from the eastern boundary of the ocean basin, and brackets indicate zonal

averages of the wind stress.
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5.1.2 Ekman Pumping

Ekman Pumping in a thin Ekman layer

Let us come now to the wind-driven forcing at the surface, the Ekman Pumping. The pressure

terms are small because the Ekamn layer is thin. The Ekman layer near the surface of the ocean

extends only about 10-20 meters deep2. The Ekman transports VE, UE describe the dynamics in

the upper mixed layer:

fVE = �⌧x/⇢ (5.27)

fUE = ⌧y/⇢ (5.28)

where UE =
R 0

�E
udz and VE =

R 0

�E
vdz are the depth-integrated velocities in the thin friction-

dominated Ekman layer at the sea surface. The vertical velocity at the surface is zero and denote

wE as the Ekman vertical velocity the bottom of the Ekman layer.

�
Z 0

�E

@w

@z
dz = wE =

@

@x
UE +

@

@y
VE (5.29)

The curl of the wind stress ⌧ produces a divergence of the Ekman transports leading to a vertical

velocity wE at the bottom of the Ekman layer.

wE = curl
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⇢ f

◆
=
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⇢ f

◆
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◆
. (5.30)

The order of magnitude of the Ekman vertical velocity wE can be estimated as from a typical wind

stress variation of 0.2Nm
�2 per 2000 km in y-direction:

wE ' �
�⌧x

⇢ f0�y
'

1

103kgm�3

0.2Nm
�2

10�4s�1 2 · 106m
' 32

m

yr
(5.31)

2The instrumentation sensitive enough to observe a velocity profile in such a shallow depth has only been available
since around 1980. Also, wind waves modify the flow near the surface, and make observations close to the surface
rather difficult.
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See for a scetch see Fig. 5.2. The center of a subtropical gyre is a high pressure zone. Circulation

around the high pressure is clockwise in the northern hemisphere and counterclockwise in the

southern hemisphere, due to the Coriolis effect. The high pressure in the center is due to the

westerly winds on the northern side of the gyre and easterly trade winds on the southern side.

These cause frictional surface currents towards the latitude at the center of the gyre. This build-up

of water in the center creates flow towards the equator in the upper 2 km of the ocean. This flow is

returned towards the pole in an intensified western boundary current. The boundary current of the

North Atlantic Gyre is the Gulf Stream, of the North Pacific Gyre the Kuroshio Current, etc..

Ekman vertical velocity and vertical geostrophic velocity

The Ekman vertical velocity must be balanced by a vertical geostrophic velocity wg (z = �E).

wE = wg (5.32)

Ekman pumping drives a vertical geostrophic current in the ocean’s interior. Figure 5.2 is a sketch

of the cross section of the region between 10�N and 60�N, and it shows the pool of warm water

in the upper kilometer centered on 30�N. Conversely, divergent transports lead to low sea level.

The mean north-south pressure gradients associated with the highs and lows are balanced by the

Coriolis force of east-west geostrophic currents in the upper ocean. Westerlies in the north drive

a southward transport, the trades in the south drive a northward transport. The converging Ekman

transports must be balanced by downward geostrophic velocity (5.32).

Figure 5.3 shows the mean zonal winds in the Pacific, together with the north-south Ekman

transports driven by the zonal winds. Notice that convergence of transport leads to downwelling,

which produces a thick layer of warm water in the upper kilometer of the water column, and high

sea level.
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Figure 5.2: Ekman pumping that produces a downward velocity at the base of the Ekman layer
forces the fluid in the interior of the ocean to move southward. Winds at the sea surface drive
Ekman transports to the right of the wind in this northern hemisphere example. The converging
Ekman transports driven by the trades and westerlies drive a downward geostrophic flow just below
the Ekman layer.
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Figure 5.3: Ekman transports due to winds in the north Pacific (left) lead to Ekman pumping
(center), which sets up north-south pressure gradients in the upper ocean. The pressure gradients
are balanced by the Coriolis force due to east-west geostrophic currents (right). Horizontal lines
indicate regions where the curl of the zonal wind stress changes sign. AK: Alaskan Current, NEC:
North Equatorial Current, NECC: North Equatorial Counter Current.
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Exercise 37 – Ekman transports and pumping

The Ekman transports VE, UE describe the dynamics in the upper mixed layer:

fVE = �⌧x/⇢0 (5.33)

fUE = ⌧y/⇢0 (5.34)

Derive the Ekman pumping wE velocity at the bottom of the mixed layer

wE = curl
✓
⌧

f⇢0

◆
=

@

@x

✓
⌧y

⇢0f

◆
�

@

@y

✓
⌧x

⇢0f

◆
. (5.35)

Exercise 38 – Sverdrup relation, Ekman transports and pumping

The windstress vector ⌧ is taken zonal. Assume ⌧x = �⌧0 cos⇡y/B for an ocean basin

0 < x < L, 0 < y < B. The wind driven meridional ocean velocity is given by the Sverdrup

relation

�V = curl(⌧/⇢0) = �
@

@y
⌧x/⇢0 . (5.36)

1. at what latitudes y are |V | and |VE| maximum? Calculate their magnitudes. Take con-

stant f = 10�4 s�1 and � = 1.8 · 10�11 m�1s�1 and B = 5000 km, ⌧0/⇢0 =

10�4 m2s�2.

2. Calculate the maximum of wE for constant f (value see above). Is this measurable?
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Figure 5.4: The Ekman spiral and the mechanism by which it operates. a) The Ekman spiral
model. b) A body of water can be thought as a set of layers. The top layer is driven forward by the
wind, and each layer below is moved by friction. Each succeeding layer moves at a slower speed,
and at an angle to the layer immediately above it (to the right in the Northern Hemisphere, to the
left in the Southern Hemisphere) until friction becomes negligible. (c) Though the direction of
movement is different for each layer in the stack, the theoretical average direction of flow of water
in the Northern Hemisphere is 90� to the right of the prevailing surface wind (Garrison, 1993).

5.1.3 Ekman spiral*

The Ekman spiral is a consequence of the Coriolis effect. When surface water molecules move

by the force of the wind, they, in turn, drag deeper layers of water molecules below them. Each

layer of water molecules is moved by friction from the shallower layer, and each deeper layer

moves more slowly than the layer above it, until the movement ceases at a depth of about 100

meters. Like the surface water, however, the deeper water is deflected by the Coriolis effect-to the

right in the Northern Hemisphere and to the left in the Southern Hemisphere. As a result, each

successively deeper layer of water moves more slowly to the right or left, creating a spiral effect

(Fig. 5.4). Because the deeper layers of water move more slowly than the shallower layers, they

tend to "twist around" and flow not in the direction of the surface current.
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Ekman developed the theory of the Ekman layer after Fridtjof Nansen observed that ice drifts

at an angle of 20� 40� to the right of the prevailing wind direction while on an Arctic expedition

aboard the Fram. Nansen asked his colleague, Vilhelm Bjerknes to set one of his students upon

study of the problem. Bjerknes tapped Ekman, who presented his results in 1902 as his doctoral

thesis.

The mathematical formulation of the Ekman layer can be found by assuming a neutrally strat-

ified fluid, with horizontal momentum in balance between the forces of pressure gradient, Coriolis

and turbulent drag.

�fv = �
1

⇢o

@

@x
p + ⌫

@
2
u

@z2
, (5.37)

fu = �
1

⇢o

@

@y
p + ⌫

@
2
v

@z2
, (5.38)

where ⌫ is the diffusive eddy viscosity, which can be derived using mixing length theory. There

are many regions where an Ekman layer is theoretically plausible; they include the bottom of the

atmosphere, near the surface of the earth and ocean, the bottom of the ocean, near the sea floor and

at the top of the ocean, near the air-water interface. Different boundary conditions are appropriate

for each of these different situations. We will consider boundary conditions of the Ekman layer in

the upper ocean:

at z = 0 : ⌫
@u

@z
= ⌧

x and ⌫
@v

@z
= ⌧

y
, (5.39)

where ⌧x and ⌧ y are the components of the surface stress, ⌧, of the wind field or ice layer at the

top of the ocean and ug and vg are the geostrophic flows as z ! 1 : u ! ug, v ! vg. In

the other situations, other boundary conditions, such as the no-slip condition, may be appropriate

instead.
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The dynamics (5.37, 5.38) can be reformulated as

�fv = �fvg + ⌫
@

2
u

@z2
, (5.40)

fu = fug + ⌫
@

2
v

@z2
, (5.41)

Now multiply (5.40) with i and subtract it from (5.41):

ifv � ifvg + i⌫
@

2
u

@z2
+ fu � fug � ⌫

@
2
v

@z2
= 0 (5.42)

Denoting ⇠ = u + iv, we get

f⇠ � f⇠g + i⌫
@

2
⇠

@z2
= 0 (5.43)

We rewite this as
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@z2
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◆
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⌫

◆
⇠g (5.44)

We solve the inhomogenous equation (5.44) in two steps:

1. find a particular solution of the inhomogenous equation:

assume that ⇠ is independent on z

�
✓
if

⌫

◆
⇠ = �

✓
if

⌫

◆
⇠g (5.45)

with the solution ⇠ = ⇠g

2. find a complementary function, a general solution of the homogenous part of (5.44):

@
2
⇠h

@z2
�
✓
if

⌫

◆
⇠h = 0 (5.46)

⇠h = C exp(�z) with �
2 =

if

⌫
(5.47)
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Thus �± = ±
1 + i
p
2

r
f

⌫
= ±(1 + i)

r
f

2⌫
= ±(1 + i) � (5.48)

Therefore

⇠h = C1 exp(�+z) + C2 exp(��z) = C1 exp(�z) exp(i�z) + C2 exp(��z) exp(�i�z)

As boundary condition ⇠h has to go to zero for z ! 1, therefore C1 = 0.

3. The complete solution is

⇠ = ⇠g + C2 exp(��z) exp(�i�z) (5.49)

As boundary condition ⇠(z = 0) = 0 = ⇠g + C2 (5.50)

Therefore ⇠ = ⇠g · (1 � exp(��z) exp(�i�z)) (5.51)

For simplicity, we can assume that the geostrophic flow is zonal, so that vg = 0. Then,

u = ug · (1 � exp(��z) cos(�z)) (5.52)

v = ug · (exp(��z) sin(�z)) (5.53)

This variation of horizontal velocity with depth (-z) is referred to as the Ekman spiral, diagrammed

above (Fig. 5.4). If we make a Taylor expansion for small z, we see that

u = ug · �z (5.54)

v = ug · �z (5.55)

Thus the low is 45� to the left of the limiting zonal gestrophic flow.
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By applying the continuity equation we can have the vertical velocity as following

w =
1

f⇢o

✓
@⌧

y

@x
�
@⌧

x

@y

◆ �
1 � e

��z cos (�z)
�
�
✓
@⌧

x

@x
+
@⌧

y

@y

◆
e
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Note that when vertically integrated the volume transport associated with the Ekman spiral is to

the right of the wind direction in the Northern Hemisphere.

There is much difficulty associated with observing the Ekman layer for two main reasons: the

theory is too simplistic as it assumes a constant eddy viscosity, which Ekman himself anticipated,

recognizing that is obvious that ⌫ cannot generally be regarded as a constant when the density of

water is not uniform within the region considered and because it is difficult to design instruments

with great enough sensitivity to observe the velocity profile in the ocean.

Because the real ocean does not match the idealized conditions of the Ekman spiral, wind-

induced water movements often differ appreciably from theoretical predictions. In shallow water,

for example, the water depth is insufficient for the full spiral to develop so that the angle between

the horizontal wind direction and surface-water movements can be as little as 15 degrees. As waters

deepen, the angle increases and approaches 45 degrees. The stable pycnocline inhibits the transfer

of kinetic energy to deeper waters, helping to contain wind-driven currents to the mixed layer; that

is, the pycnocline acts as a permeable boundary for Ekman transport and surface currents.
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Exercise 39 – Ekman layer in the atmosphere

Consider a geostrophic flow (ug, vg)

�fvg = �
1

⇢0

@p

@x
(5.56)

fug = �
1

⇢0

@p

@y
. (5.57)

The boundary-layer equations are then

�f(v � vg) = ⌫
@

2
u

@z2
(5.58)

f(u � ug) = ⌫
@

2
v

@z2
. (5.59)

The boundary conditions are specified to be at the surface

⇢0⌫
@u

@z
= ⌧

x (5.60)

⇢0⌫
@v

@z
= ⌧

y (5.61)

and for z ! �1 : u = ug, v = vg .

1. Calculate the flow (u,v) as the departure from the interior flow (ug, vg)!

2. Calculate the net wind-driven horizontal transport through integration

V =

Z 0

�1
dz(v � vg) and U =

Z 0

�1
dz(u � ug) . (5.62)

What is the direction of U and V in terms of the surface wind stress ⌧ ?

3. For the case f = f0 of constant Coriolis parameter, determine the divergence of the flow

Z 0

�1
dz

✓
@u

@x
+
@v

@y

◆
(5.63)

which is identical to the vertical velocity across the Ekman layer (since w(0)=0).
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Exercise 40 – Ekamn spiral in the ocean

Consider the solution (5.52,5.53) for the wind-driven Ekman layer at the surface of the ocean in

the Northern Hemisphere. The geostrophic velocity is zero in this example. Show that (5.52,5.53)

is a solution of (5.37, 5.38) !

5.1.4 Tea leaf paradox*

The tea leaf paradox describes a phenomenon where tea leaves in a cup of tea migrate to the center

and bottom of the cup after being stirred rather than being forced to the edges of the cup, as would

be expected in a spiral centrifuge.3 Stirring the liquid makes it spin around the cup. Because of

inertia, the pressure is higher along the rim than in the middle. However, near the bottom and

outer edges the liquid is slowed by the friction against the cup. There the outward force cannot

overcome the pressure gradient, so these pressure differences become more important for the water

flow. This is called a boundary layer or more specifically an Ekman layer.

In a teacup, where the rotation is slower at the bottom, the pressure gradient takes over and cre-

ates an inward flow along the bottom. Higher up, the liquid flows outward instead. This secondary

flow travels inward along the bottom bringing the leaves to the center, then up, out and down near

the rim. The leaves are too heavy to lift upwards, so they stay in the middle. Combined with the

primary rotational flow, the leaves will spiral inward along the bottom.

Besides tea leaves stirred in a cup, other classroom demonstrations can show the secondary

circulation that arises due to the presence of friction. We discuss a simple laboratory experiment

below, which demonstrates these ideas in a more controlled setting and can be readily applied to

both atmospheric low and high pressure systems. All one needs is a rotating turntable, a cylindrical

container (a large transparent beaker or a cylindrical insert inside a square container works fine),

and some potassium permanganate crystals. When rotated at a constant rate, all the water comes

3The formation of secondary flows in an annular channel was theoretically treated by Boussinesq in 1868.The
migration of near-bottom particles in river-bend flows was experimentally investigated by A.Ya.Milovich in 1913.
The solution first came from Albert Einstein in a 1926 paper where he used it to explain the erosion of river banks
(Baer’s law) [Einstein, 1926].
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Figure 5.5: The blue line is the secondary flow that pushes the tea leaves to the middle of the
bottom.

into solid body rotation, and so there is no Coriolis or centrifugal accelerations acting. The key

experimental requirement is to be able to speed up or slow down (by 10% or so) the rate of rotation

of the turntable so as to induce relative motion between the water and the tank, thus creating a

frictional boundary layer. The rotating platform can be used in a whole series of experiments to

demonstrate atmospheric and oceanic phenomena, as presented in Marshall and Plumb (2007) and

their "Weather in a Tank" website.

A tank of water is placed on the rotating platform long enough for water to reach solid body

rotation, say, about 10 minutes for 10-15 rpm. Then we drop a very few potassium permanganate

crystals in an equilateral triangle about the center. This shows up as three small clouds when

viewed by a rotating camera. We also drop a few colored paper dots on the surface to see the

flow outside the boundary layer. As the table is slowed down by a few rpm (about 10%), the

permanganate on the bottom traces the near bottom circulation, which is cyclonic and inward, just

like a low pressure system. The paper dots floating on the surface do not go inward. Why does this

happen?

The water outside the boundary layer is still rotating with the original fast rotation rate, while

the water at the bottom is rotating slower, at the new slower rotation rate. This speed differential,

just like the low pressure system leads to an inward flow which is seen in the permanganate streaks
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Figure 5.6: To carry out the experiment we first very slightly reduce (by 10% max) the rate of
rotation of the turntable. Because of the inertia of the turning fluid, it continues to spin at its
original speed and so moves relative to the tank: permanganate streaks are pulled around not in
circles as one might initially expect, but rather inward turning, anticlockwise spirals, as can be seen
in the top panel. A beautiful symmetric pattern is remarkably easy to achieve. This is analogous
to the near-surface flow in a low pressure system, as can be seen by comparing with Fig. 1.2 (see
low pressure system). To visualize the flow at the upper surface, we can float a few paper dots on
the surface (black dots are the most visible in this application). We observe circular, rather than
spiraling, motion. To create an analogy of a high pressure system we now simply increase the
speed of the turntable by 10% or so (back up to, roughly, its original speed). We observe the dye
streaks on the bottom reversing and, over time, spiraling clockwise and outwards, as can be seen
in the lower panel in this figure. This should be compared to the pattern of surface winds that can
be seen in the high pressure system in Fig. 1.2. From Marshall and Plumb (2007).
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at the bottom (Fig. 5.6). Similarly, the pressure gradient can be reversed by increasing the speed

by a few rpm to the original speed, and it leads to permanganate streaks that show an outward anti-

cyclonic flow, analogous to the surface boundary layer of a High pressure system. This secondary

flow in the boundary layer has important implications for movement in the vertical direction. The

inward flow associated with a low pressure system leads to rising air near the center of the Low.

As this air rises, it expands (pressure always decreases going upward in the atmosphere) and cools.

Since the saturation of the air is very strongly dependent on the temperature, as the air cools, it

may get saturated, and the water vapor may condense out to form clouds! This is why the Low

pressure systems are the ones associated with stormy weather and precipitation. Conversely, high

pressure systems are associated with outward motion in the boundary layer, and hence subsidence.

As the air descends, it gets compressed due to the pressure increase, warms, and becomes less and

less saturated. Thus the High pressure systems are fair weather systems.
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Figure 5.7: The balance of potential vorticity can clarify why western boundary currents are nec-
essary. Left: Vorticity input by the wind ⇣⌧ balances the change in relative vorticity ⇣ in the east
as the flow moves southward and f decreases. The two do not balance in the west where ⇣ must
decrease as the flow moves northward and f increases. Right: Vorticity in the west is balanced by
relative vorticity ⇣b generated by shear in the western boundary current.

5.1.5 Western Boundary Currents

The balance of vorticity provides an alternative explanation for the existence of western boundary

currents. Consider the gyrescale flow in an ocean basin (Fig. 5.7), say in the North Atlantic from

10�N to 50�N. The wind blowing over the Atlantic adds negative vorticity ⇣⌧ . As the water flows

around the gyre, the vorticity of the gyre must remain nearly constant, else the flow would spin

faster or slower. Overall, the negative vorticity input by the wind must be balanced by a source of

positive vorticity.

Throughout most of the basin the negative vorticity input by the wind is balanced by an increase

in relative vorticity. As the flow moves southward throughout the basin, f decreases and ⇣ must

increase according to (3.64) because the depth of the wind-driven circulation does not change

much.

The balance breaks down, however, in the west where the flow returns northward. In the west,

f increases, ⇣ decreases, and a source of positive vorticity is needed. The positive vorticity ⇣b is

produced by the western boundary boundary current.
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Stommel’s Theory of Western Boundary Currents

At the same time Sverdrup was beginning to understand circulation in the eastern Pacific, Stommel

was beginning to understand why western boundary currents occur in ocean basins. To study the

circulation in the north Atlantic, Stommel (1948) used essentially the same equations used by

Sverdrup (5.11, 5.12, 5.13, 5.14, 5.15 and 5.16) but he added a bottom stress proportional to

velocity to (5.15) and (5.16):
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where F and R are constants.

Stommel calculated steady-state solutions for flow in a rectangular basin 0  y  b, 0 
x  � of constant depth D filled with water of constant density. His first solution was for a non-

rotating Earth. This solution had a symmetric flow pattern with no western boundary current (Fig.

5.8, left). Next, Stommel assumed a constant rotation, which again led to a symmetric solution

with no western boundary current. Finally, he assumed that the Coriolis force varies with latitude.

This led to a solution with western intensification (Fig. 5.8, right).

Exercise 41 – The Stommel model of the wind-driven circulation

The wind-driven circulation in a homogeneous ocean of constant depth h is described by

Rr2
 + �@x = curl(⌧/⇢0) (5.66)

= (@x⌧
y � @y⌧

x)/⇢0 (5.67)

where R is a coefficient of bottom friction, � the derivative of the Coriolis frequency at a central

latitude, and the ⌧ the windstress vector. Finally,  is the streamfunction of the depth integrated
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Figure 5.8: Stream function for flow in a basin as calculated by Stommel (1948). Left: Flow for
non-rotating basin or flow for a basin with constant rotation. Right: Flow when rotation varies
linearly with y.

velocity

U = (U, V ) =

Z 0

�h

udz

i.e.

U = �@y , V = @x 

1. Derive this equation from the conservation of momentum (linearized) and mass (volume!)

assuming w = 0 at the mean surface z = 0 and at the bottom z = �h. For simplicity

take Cartesian coordinates for the horizontal, � = df/dy. Boundary condition for the flux

of momentum are ⌧ (z = 0) = ⌧ and ⌧ (z = �h) = R(�V,U). Hint: integrate both

equations vertically and take the curl of the integrated momentum balance.

2. in the boundary layer the terms on the left hand side of (5.66) get large. Show by scaling

that the width of the layer is W = R/�.

3. how large must R be to get a width W = 100 km? (� = 2 ⇥ 10�11 m�1s�1).
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Munk’s Solution

Sverdrup’s and Stommel’s work suggested the dominant processes producing a basin-wide, wind-

driven circulation. Munk (1950) built upon this foundation, adding information from Rossby

(1936) on lateral eddy viscosity, to obtain a solution for the circulation within an ocean basin.

Munk used Sverdrup’s idea of a vertically integrated mass transport flowing over a motionless

deeper layer. This simplified the mathematical problem, and it is more realistic. The ocean cur-

rents are concentrated in the upper kilometer of the ocean, they are not barotropic and independent

of depth. To include friction, Munk used lateral eddy friction with constant AH = Ax = Ay.

Equations (5.11) (5.12) become:

1

⇢
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Munk integrated the equations from a depth �D to the surface at z = z0 which is similar to

Sverdrup’s integration except that the surface is not at z = 0. Munk assumed that currents at the

depth �D vanish, that (5.15) and (5.16) apply at the horizontal boundaries at the top and bottom

of the layer, and that AH is constant. To simplify the equations, Munk used the mass-transport

stream function (3.47), and eliminated the pressure term by taking the y derivative of (5.68) and

the x derivative of (5.69):

AHr4 | {z }
Friction

��
@ 

@x
= � curlz ⌧

| {z }
Sverdrup Balance

(5.70)

where
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4

@x4
+ 2
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4

@x2 @y2
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@
4

@y4
(5.71)

is the biharmonic operator. Equation (5.70) is the same as (5.20) with the addition of the lateral

friction term AH . The friction term is large close to a lateral boundary where the horizontal

derivatives of the velocity field are large, and it is small in the interior of the ocean basin. Thus in
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the interior, the balance of forces is the same as that in Sverdrup’s solution.

Equation (5.70) is a fourth-order partial differential equation, and four boundary conditions are

needed. Munk assumed the flow at a boundary is parallel to a boundary and that there is no slip at

the boundary:

 boundary = 0,

✓
@ 

@n

◆

boundary
= 0 (5.72)

where n is normal to the boundary. Munk then solved (5.70) with (5.72) assuming the flow was in

a rectangular basin extending from x = 0 to x = r, and from y = �s to y = +s. He further

assumed that the wind stress was zonal and in the form:

⌧ = a cosny + b sinny + c (5.73)

n = j ⇡/s, j = 1, 2, ... (5.74)

Munk’s solution (figure 5.9) shows the dominant features of the gyre-scale circulation in an

ocean basin. It has a circulation similar to Sverdrup’s in the eastern parts of the ocean basin

and a strong western boundary current in the west. Using AH = 5 · 103m
2

s
gives a boundary

current roughly 225km wide with a shape similar to the flow observed in the Gulf Stream and the

Kuroshio.

The transport in western boundary currents is independent of AH , and it depends only on (5.20)

integrated across the width of the ocean basin. Hence, it depends on the width of the ocean, the curl

of the wind stress, and �. Using the best available estimates of the wind stress, Munk calculated

that the Gulf Stream should have a transport of 36Sv and that the Kuroshio should have a transport

of 39Sv. The values are about one half of the measured values of the flow available to Munk. This

is very good agreement considering the wind stress was not well known.4

4Recent recalculations show good agreement except for the region offshore of Cape Hatteras where there is a strong
recirculation. Munk’s solution was based on wind stress averaged over 5� squares. This underestimated the curl of
the stress. Leetmaa and Bunker (1978) used modern drag coefficient and 2� ⇥ 5� averages of stress to obtain 32Sv
transport in the Gulf Stream, a value very close to that calculated by Munk.
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Figure 5.9: Left: Mean annual wind stress ⌧x (y) over the Pacific and the curl of the wind stress.
�b are the northern and southern boundaries of the gyres, where My = 0 and curl ⌧ = 0.
�0 is the center of the gyre. Upper Right: The mass transport stream function for a rectangular
basin calculated by Munk (1950) using observed wind stress for the Pacific. Contour interval
is 10 Sverdrups. The total transport between the coast and any point x, y is  (x, y). The
transport in the relatively narrow northern section is greatly exaggerated. Lower Right: North-
South component of the mass transport. After Munk (1950).
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Summarizing important concepts of vorticity

• Vorticity strongly constrains ocean dynamics

• Vorticity due to earth’s rotation is much greater than other sources of vorticity

• Taylor and Proudman showed that vertical velocity is impossible in a uniformly rotating

flow. Hence Ekman pumping requires that planetary vorticity varies with latitude.

• The curl of the wind stress adds relative vorticity to central gyres of each ocean basin. For

steady state circulation in the gyre, the ocean must lose vorticity in western boundary cur-

rents.

• Positive wind stress curl leads to divergent flow in the Ekman layer. The ocean’s interior

geostrophic circulation adjusts through a northward mass transport.

Exercise 42 – Cyclostrophic wind

When the flow is sufficiently near the equator so that f is small or when the Corolis force is

negligible compared to the centripedal acceleration, the gradient wind equation becomes

vk ⇥ v

R
= �

1

⇢
rzp (5.75)

where k is the unit vector in z direction, v is the velocity vector, v ist the meridional velocity, R

Earth radius, rz horizontal nabla operator.

1. Derive this equation!

2. What is the associated gradient wind equation including the Coriolis force?

3. What is the Rossby number?
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