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5.2 Thermohaline ocean circulation

Water, that is dense enough to sink from the surface to the bottom, is formed when cold air blows

across the ocean at high latitudes in winter in the northern North Atlantic (e.g. in the Labrador Sea

and between Norway and Greenland) and near Antarctica. The wind cools and evaporates water.

If the wind is cold enough, sea ice forms, further increasing the salinity of the water because sea

ice is fresher than sea water and salty water remains in the water when ice is formed. Bottom water

is produced only in these regions, and the deep ocean is affected by these deep water formation

processes. In other regions, cold, dense water is formed, but it is not quite salty enough to sink

to the bottom. At mid and low latitudes, the density, even in winter, is sufficiently low that the

water cannot sink more than a few hundred meters into the ocean. The only exception are some

seas, such as the Mediterranean Sea, where evaporation is so great that the salinity of the water

is sufficiently great for the water to sink to intermediate depths in the seas. If these seas are

can exchange water with the open ocean, the waters formed in winter in the seas spreads out to

intermediate depths in the ocean. Detailed measurements of the Atlantic current structure were

made by an expedition of the research vessel Meteor from 1925-1927. On the basis of these data,

Wüst [1935] characterized water masses necessary to describe the Atlantic currents and tracer

distribution (Fig. 5.13). Broecker proposed a circulation model based on findings of the Meteor

and other expeditions. In his model, large-scale oceanic circulation is represented by the transport

system of a conveyor belt (Fig. 5.11) [Broecker and Peng, 1982].

The oceans carry about one third to one half the heat out of the tropics needed to maintain

earth’s temperature. Heat carried by the Gulf Stream and the North Atlantic drift warms the North

Atlantic, keeping it ice free in winter, and it helps warm Europe. Norway, at 60�N is far warmer

than southern Greenland or northern Labrador at the same latitude. Palm trees grow on the west

coast of Ireland, but not in Newfoundland which is further south. The oceanic component of the

heat-transport system is also called the Global Conveyor Belt. The basic idea is that the Gulf

Stream carries heat to the North Atlantic realm. There the surface water releases heat and water to

the atmosphere. Some of the ocean water becomes sufficiently cold, salty, and dense that it sinks
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Figure 5.10: The surface (red, orange, yellow) and deep (violet, blue, green) currents in the North
Atlantic. The North Atlantic Current brings warm water northward where it cools. Some sinks
and returns southward as a cold, deep, western-boundary current. Some returns southward at the
surface. From Woods Hole Oceanographic Institution.

to the bottom in the Norwegian and Greenland Seas. It then flows southward in very cold, bottom

currents along western boundaries as a western boundary current. Some of the water remains at

the surface and returns to the south in cool surface currents such as the Labrador Current and the

Portugal Current (see Fig. 5.10).

The deep bottom water from the North Atlantic is mixed upward in other regions and ocean,

and eventually it makes its way back to the Gulf Stream and the North Atlantic. Thus most of

the water that sinks in the North Atlantic must be replaced by water from the far South Atlantic.

As this surface water moves northward across the equator and eventually into the Gulf Stream, it

carries heat out of the south Atlantic. So much heat is pulled northward by the formation of north-

Atlantic bottom water in winter that heat transport in the Atlantic is entirely northward, even in the
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southern hemisphere. Much of the solar heat absorbed by the tropical Atlantic is shipped north to

warm Europe and the Northern Hemisphere. Imagine then what might happen if the supply of heat

is shut off. We will get back to that topic in the next section, applying the box model.

We can make a crude estimate of the importance of the conveyor-belt circulation from a simple

calculation. The Gulf Stream carries 40 Sv of 18�C water northward. Of this, 15 Sv return

southward in the deep western boundary current at a temperature of 2�C. The flow carried by

the conveyor belt must therefore lose 1 Petawatts (1 Petawatt = 1015 Watt = 1 PW) in the North

Atlantic north of 24�N. Although the calculation is very crude, it is remarkably close to the value

of 1.2 ± 0.2 PW estimated by Rintoul and Wunsch (1991). Calculation: Exercise 46.

The production of bottom water is influenced by the salinity of surface waters in the North

Atlantic. It is also influenced by the rate of upwelling due to mixing in other oceanic areas. First,

let’s look at the influence of salinity. Saltier surface waters form denser water in winter than less

salty water. At first you may think that temperature is also important, but at high latitudes water

in all ocean basins gets cold enough to freeze, so all ocean produce -2�C water at the surface. Of

this, only the most salty will sink, and the saltiest water is in the Atlantic and under the ice on the

continental shelves around Antarctica.

The the conveyor is driven by deepwater formation in the northern North Atlantic, making it the

engine of conveyor belt circulation. The conveyor belt metaphor necessarily simplifies the ocean

system, it is of course not a full description of the deep ocean circulation, it contains different

aspects of it [Brüning and Lohmann, 1999]. Broecker’s [Broecker, 1987; Broecker et al., 1991]

concept provides a successful approach for global ocean circulation, although several features can

be wrong like the missing Antarctic bottom water, the upwelling areas etc.. However, the global

conveyor belt metaphor inspired new ideas of halting or reversing the ocean circulation and put it

into a global climate context [Bryan, 1986]. This was helpful for the interpretation of Greenland ice

core records (Fig. ??) indicating different climate states with different ocean modes of operation

(like on and off states of a mechanical maschine). From the analogy, it was possible to a) identify

the relevance of North Atlantic deep water production and b) realize the possibility of multiple
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Figure 5.11: The great ocean conveyor [Broecker et al., 1991]. Warm and salty water entering the
North Atlantic region is cooled. The dense water formed at the surface is convected to the deep
ocean and is part of the southward return flow.

equilibria of ocean circulation states and their association with two different climatic states.

Many terms have been used to describe the deep circulation5 and is called meridional over-

turning circulation. It is the zonal integral of the flow of mass plotted as a function of depth and

latitude:

ṽ = �
@ 

@z
(5.76)

w̃ =
@ 

@y
(5.77)

with the zonally integrated velocities ṽ, w̃, and a streamfunction  (y, z) for the overturning cir-

culation.

Figure 5.12 shows the meridional overturning circulation streamfunction  (y, z) in the At-

5Abyssal circulation; Thermohaline circulation; Meridional overturning circulation; and Global conveyor. The
term thermohaline circulation was once widely used, but it has disappeared almost entirely from the oceanographic
literature. It is no longer used because it is clear that the flow is not only density driven.
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Figure 5.12: Modelled meridional overturning streamfunction in Sv (1 Sv ⌘ 106 m3s�1) in the
Atlantic Ocean. Grey areas represent zonally integrated smoothed bathymetry.

lantic. The streamfunction is calculated as a cumulative sum of zonally integrated mass transports

of the ocean at each latitude from surface to the particular depth. The zonally intregrated mass

transport at a certain latitude derives from the zonally averaged meridional velocity component

times the height of the ocean layer and the width of the ocean. Water flows along the stream

lines. For instance, increasing positive values of MOC from surface to about 1,000m depth at mid

latitudes of the Northern Hemisphere denote northward flowing water. With increasing depth the

values of the MOC streamfunction decrease until a minimum at about 4,000m depth is reached.

These waters move southward instead. In the Atlantic two major, a shallower and a deeper over-

turning cell exist according to figure 5.12. One cell shows positive values, thus, clockwise volume

transport and stretches from almost the surface to about 2,500 - 3,000m depth. The other expands

from about 3,000m depth to the bottom of the ocean at latitudes south of 40�N. The shallower cell

denotes the modelled equivalent of North Atlantic Deep Water (NADW) while Antarctic Bottom
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Water (AABW), transporting Southern Ocean water into the Atlantic, is simulated by the deeper

cell. An overturning maximum of 18.7 Sv (1 Sv ⌘ 106 m3s�1) is found at 40�- 50�N and 1,000m

depth and an export into the Southern Ocean across 30�S of 14.9 Sv. This results in an overturning

ratio of 0.79, so only little recirculation occurs. A closer look at Figure 5.12 reveals that NADW

is predominantly formed north of 60�N with about 10 Sv. The inflow of AABW into the Atlantic

is much weaker than the outflow of NADW. At 30�S a value of less than 1 Sv is calculated by the

model while the maximum counter-clockwise overturning of the bottom water cell reaches 4.7 Sv

at 25�N.
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Figure 5.13: 1927-1929 Meteor Expedition, the first accurate hydrographic survey of the Atlantic
from Wüst [1935]. Lower panel: Salinity and dissolved oxygen on the Hauptschnitt along the
western side of the Atlantic.
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Exercise 43 – Ocean thermohaline circulation

Consider a geostrophic flow (u, v)

�fv = �
1

⇢0

@p

@x
(5.78)

fu = �
1

⇢0

@p

@y
. (5.79)

Use the hydrostatic approximation

@p

@z
= �g⇢ (5.80)

and equation (5.78) in order to derive the meridional overturning stream function �(y, z) as a

fuction of density ⇢ at the basin boundaries! � is defined via

�(y, z) =

Z
z

0

@�

@z̃
dz̃ (5.81)

@�

@z̃
=

Z
xw

xe

v(x, y, z̃) dx (zonally integrated transport), (5.82)

where xe and xw are the eastward and westward boundaries in the ocean basin (think e.g. of the

Atlantic Ocean). Units of � are m3s�1. At the surface �(y, 0) = 0.

Solution of Exercise 43: Ocean thermohaline circulation

@�

@z
=

Z
xw

xe

v(x, y, z) dx (5.83)

=
1

⇢0f

Z
xw

xe

@p

@x
dx =

1

⇢0f
(p(xw, y, z) � p(xe, y, z)) (5.84)

= �
g

⇢0f

Z
z

0

(⇢(xw, y, z
0) � ⇢(xe, y, z

0))dz0 (5.85)
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Exercise 44 – Estimates of overturning

It is observed that water sinks in to the deep ocean in polar regions of the Atlantic basin at a

rate of 15 Sv. (Atlantic basin: 80, 000, 000 km2area ⇥ 4 km depth.)

1. How long would it take to ’fill up’ the Atlantic basin?

2. Supposing that the local sinking is balanced by large-scale upwelling, estimate the strength

of this upwelling. Hint: Upwelling = area ⇥ w. Express your answer in m y�1.

3. Compare this number with that of the Ekman pumping in (5.31)!

Solution of Exercise 44: Estimates of overturning

1. Timescale T to ’fill up’ the Atlantic basin:

T =
80 · 1012 m2 · 4000m

15 · 106 m3s�1
= 2.13 · 1010s = 676 years

2. Overturning is balanced by large-scale upwelling:

area · w = 15 · 106 m3s�1

w = 0.1875 · 10�6m s�1 = 5.9 · 10�15m y�1.

3. Ekman pumping

wE ' 32 m y�1.
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Simple model of meridional overturning

It is instructive to derive a simple concept of the meridional overturning based on vorticity dynam-

ics in the (y,z)-plane. The dynamical model in two dimensions reads

@

@t
v = �

1

⇢0

@p

@y
� fu � v (5.86)

@

@t
w = �

1

⇢0

@p

@z
�

g

⇢0

(⇢� ⇢0) � w (5.87)

with  as parameter for Rayleigh friction. Using the continuity equation

0 =
@v

@y
+

@w

@z
(5.88)

one can introduce a streamfunction �(y, z) with v = @z� and w = �@y�. The associated

vorticity equation in the (y,z)-plane is therefore

@

@t
r2� = �f

@u

@z
+

g

⇢0

@⇢

@y
� r2� (5.89)

We can choose the ansatz6 satisfying that the normal velocity at the boundary vanishes, � = 0:

�(y, z, t) = �max(t) sin

✓
⇡y

L

◆
⇥ sin

✓
⇡z

H

◆
(5.91)

The parameters L and H dentote the meridional and depth extend (y goes from 0 to L, z from 0 to

H). With the assumption that the term �f @u

@z
is absorbed into the viscous terms, and the integration

6In principle, a complete Galerkin approximation shall be applied

�(y, z, t) = ⌃1
k=1⌃

1
l=1�

k,l
max(t) sin(⇡ky/L) ⇥ sin(⇡lz/H) (5.90)

yielding a first order differential equation in time for �k,l
max(t). For a different approach: [Maas, 1994], for an

overview of simple climate models: [Olbers, 2001].
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R
L

0 dy
R

H

0 dz, we derive for the three remaining terms in (5.89):

d

dt
�max

✓
⇡2

L2
+
⇡2

H2

◆ LZ

0

dy sin

✓
⇡y

L

◆ HZ

0

dz sin

✓
⇡z

H

◆
= 4LH

✓
1

L2
+

1

H2

◆
d

dt
�max

LZ

0

dy

HZ

0

dz
g

⇢0

@⇢

@y
=

g

⇢0

H (⇢north � ⇢south)

�max

✓
⇡2

L2
+
⇡2

H2

◆ LZ

0

dy sin

✓
⇡y

L

◆ HZ

0

dz sin

✓
⇡z

H

◆
=  4LH

✓
1

L2
+

1

H2

◆
�max

with ⇢north = ⇢(y = L) , and ⇢south = ⇢(y = 0), and the equation

d

dt
�max =

a

⇢0

(⇢north � ⇢south) � �max (5.92)

with a = gLH2/4(L2 + H2) .

This shows that the overturning circulation depends on the density differences on the right and

left boxes. In the literature, (5.92) is simplified to a diagnostic relation

�max =
a

⇢0 
(⇢north � ⇢south) (5.93)

because the adjustment of �max is quasi-instantaneous due to adjustment processes, e.g. Kelvin

waves.

Here, we introduce a hemispheric (Stommel-type) or interhemispheric (Rooth-type) box model

of the thermohaline circulation. The common assumption of these box models is that the oceanic

overturning rate � can be expressed by the meridional density difference:

� = �c (↵�T � ��S) , (5.94)

where↵ and � are the thermal and haline expansion coefficients, c = a(⇢0)�1 , and � denotes

the meridional difference operator applied to temperature T and salinity S, respectively. The
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Figure 5.14: Schematic picture of the hemispheric two box model (a) and of the interhemispheric
box model (b).

meriodional density differences are clearly dominated by temperature differences (Fig. 5.15a). In

a single hemispheric view, the salinity difference breakes the temperature difference.

In the model of (Rooth, 1982) the Atlantic ocean is described over both hemispheres and the

densities have to be taken in the North Atlantic and South Atlantic Ocean, respectively. In the

interhemispheric model the densities at high northern and southern latitudes are close, the pole-to-

pole differences are caused by salinity differences (Fig. 5.15b).

5.2.1 Conceptual model of the ocean circulation: Stommel’s box model

The foundational paper on the analysis of the ocean circulation is by Stommel [1961] who pro-

poses and analyzes simple "box models". This paper culminates in the analysis of the equilibrium
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Figure 5.15: a) The Atlantic surface density is mainly related to temperature differences. b) But
the pole-to-pole differences are caused by salinity differences.

solutions of a system in which two vessels connected to reservoirs are joined by a capillary that

exchanges heat and salt (Fig. 5.16).

One reservoir is warm and salty, the other cold and fresh. The flow through the capillary is

proportional to the difference in density of the two water masses, which is taken to be a linear
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function of temperature and salinity. Upon substituting the equation of state into the equations

governing the evolution of the water masses, Stommel finds two coupled nonlinear equations. In

some parameter regimes there are three steady state solutions, two of which are stable. These

two stable modes have opposite directions of flow, which he interprets as a competition between

temperature and salinity effects on density.

Figure 5.16: Schematic picture of the box model described by Stommel [1961].

As stated above Stommel Stommel [1961] considered a two-box ocean model where the boxes

are connected by an overflow at the top and a capillary tube at the bottom (Fig. 5.16), such that

the capillary flow is directed from the high density vessel to the low density vessel following with

a rate �. The common assumption of these box models is that the oceanic overturning rate � can

be expressed by the meridional density difference:

� = �c (↵�T � ��S) , (5.95)

where ↵ and � are the thermal and haline expansion coefficients, c is a tunable parameter, and �

denotes the meridional difference operator applied to the variables temperature T and salinity S,
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respectively. �T = T1�T2 with T1, T2 are the high-latitude and the tropical boxes in Fig. 5.16.

The equations for temperature T and salinity S are the heat and salt budgets using an upstream

scheme for the advective transport and fluxes with the atmosphere:

d

dt
T1 =

�

V
T2 �

F oa

1

⇢0cph
(5.96)

d

dt
S1 =

�

V
S2 �

S0

h
(P � E)1 , (5.97)

d

dt
T2 =

�

V
T1 �

F oa

2

⇢0cph
(5.98)

d

dt
S2 =

�

V
S1 �

S0

h
(P � E)2 , (5.99)

where V is the volume of the box with depth h , and (P � E) denotes the freshwater flux (pre-

cipitation minus evaporation plus runoff). Foa is the heat flux at the ocean-atmosphere interface,

S0 is a reference salinity, and ⇢0cp denotes the heat capacity of the ocean. Subtraction leads to

d

dt
�T = �

�

V
�T � �

F oa

⇢0cph
(5.100)

d

dt
�S = �

�

V
�S �

S0

h
�(P � E) . (5.101)

The heat flux F oa at the ocean-atmosphere interface can be replaced by a restoring term to the

respective atmospheric temperatures, and to a first order approximation the temperatures are fixed.

We now make an approximation of (5.100, 5.101) and assume that �T, c, and�(P � E) are

fixed parameters. The dynamics is then given by

d

dt
�S =

c

V
(↵�T � ��S)�S �

S0

h
�(P � E) . (5.102)

The steady state solution of (5.102) for �S can be obtained as

0 =
c

V
(↵�T � ��Seq) �Seq �

S0

h
�(P � E) , (5.103)
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which leads to a quadratic equation for

�Seq =
↵�T

�

 
1

2
±
s

1

4
�
�S0V �(P � E)

ch(↵�T )2

!
. (5.104)

It can be shown (exercise 45) that the negative root leads to an unstable solution. Furthermore

ch(↵�T )2 > 4�S0V �(P � E) (5.105)

which means there exists a critical �(P � E)crit above which the flow has no solution:

�(P � E)crit = ch
(↵�T )2

4�S0V
. (5.106)

What will hapen if �(P � E) > �(P � E)crit ?

Stommel [1961] modified equation (5.95) to

� = �c |↵�T � ��S| (5.107)

Then the steady-state solutions are classified according to the sign of q = ↵�T � ��S. When

q > 0, the circulation is driven by the thermal contrast. When q < 0, the haline contrast is

dominant in driving the current.
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Exercise 45 – Bifurcation of Stommel’s model

Consider Fig. 5.16 where the ocean surface water is heated at the equatorial region and flows

toward high latitudes. At the pole the water is cooled and sinks, upwelling is at the equator.

1. Starting from (5.102), calculate the linear stability of the equilibrium solution (5.104).

2. Investigate the sensitivity of the stability with respect to (P � E)crit and the other param-

eters in the model.

Solution for Bifurcation of Stommel’s model

We rewrite (5.102) into

V

c

d

dt
��S = (↵�T � ��S) ��S �

�S0 V

ch
�(P � E) . (5.108)

Denoting x = ��S, a = ↵�T, b =
�S0 V

ch
�(P � E), and a non-dimentional time

td = t
c

V
, we have

d

dtd
x = (a � x) · x � b (5.109)

The equilibrium solutions are

x1,2 =
a

2
±

s
a2

4
� b (5.110)

Therefore, (5.109) can be rewritten as

d

dtd
x = f(x) = �(x � x1) · (x � x2) (5.111)

The derivative is

f 0(x) = �(x � x1) � (x � x2) (5.112)



5.2. THERMOHALINE OCEAN CIRCULATION 209

and

f 0(x1) = �(x1 � x2) = �2

s
a2

4
� b < 0 stable (5.113)

f 0(x2) = �(x2 � x1) = +2

s
a2

4
� b > 0 unstable (5.114)

Furthermore,

b <
a2

4
which means that (5.115)

�(P � E) < �(P � E)crit = ch
(↵�T )2

4�S0V
. (5.116)

Reversed mode of the model: What happens if �(P � E) > �(P � E)crit ?

Then the direction of the circulation is anti-clockwise and the current is driven predominantly by

haline contrast with higher density at low latitudes. The equation has to modified according to

(5.107) and the equilibrium solutions are

x3,4 =
a

2
±

s
a2

4
+ b (5.117)

This solution has the requirement that a
2

4
+ b > 0. Let us now look on the linear stability of x3,4

d

dtd
x = f(x) = (x � x3) · (x � x4) (5.118)

The derivative is

f 0(x) = (x � x3) + (x � x4) (5.119)
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and

f 0(x3) = (x3 � x4) = +2

s
a2

4
+ b > 0 unstable (5.120)

f 0(x4) = (x4 � x3) = �2

s
a2

4
+ b < 0 stable (5.121)

This means tha tthere exists two stable equilibria (Fig. 5.17) for

�
a2

4
< b = 2

�S0 V

ch
(P � E) <

a2

4
=

(↵�T )2

4
. (5.122)
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Figure 5.17: Schematic bifurcation of the Stommel box model. Dashed solutions are unstable, the
solid red and blue lines represent the stable solutions, x1 and x4, respectively.
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5.2.2 Non-normal dynamics of the ocean box model*

In this section, a category of the non-linear models following the simple thermohaline model of

Stommel Stommel [1961] is analyzed. We start with (5.100, 5.101). Denoting furthermore x 2
R2 for the anomalies of (�T,�S) , Lohmann and Schneider ? have shown that the evolution

equation is of the following structure:

d

dt
x = Ax + h b|x i x . (5.123)

The brackets h | i denote the Euclidean scalar product. This evolution equation (5.123) can be

transferred to a

x(t) =
1

�(t)
exp(At)x0 , (5.124)

with a scaling function �(t, x0). The models of Stommel ?, and many others are of this type, and

their dynamics are therefore exactly known. 7

It is useful to analyze the dynamics in the phase space spanned by temperature and salinity

anomalies and investigate the model sensitivity under anomalous high latitude forcing, induced

as an initial perturbation. The lines in Fig. 5.18 are phase space trajectories after perturbations of

different magnitude have been injected into the North Atlantic. We notice that for most trajectories,

the distances from zero (0, 0) increase temporarily, where the maximal distance from zero is after

a decade. After about 10 years the trajectories in Fig. 5.18 point into a “mixed temperature/salinity

direction”, denoted further as e1.

Fig. 5.18 implies that the adjustment of the THC involves two phases: A fast thermal response

and a slower response on the e1�direction. The vector e1 is identical with the most unstable mode

in the system. Because the scaling function �(t) acts upon both temperature and salinity (5.124),

the evolution of the non-linear model can be well characterized by the eigenvectors of the matrix

7It is worth knowing that (5.100, 5.101) is equivalent to the multi-dimensional Malthus-Verhulst model (also known
as logistic equation), which was originally proposed to describe the evolution of a biological population.
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Figure 5.18: The basin of attraction (white area) and the dynamics in the thermohaline phase space.
With initial conditions outside the gray area, the trajectories converge asymptotically to the origin
corresponding to the thermally driven solution of the THC. Due to the fast thermal response during
the first decade of relaxation, the distance of the trajectories from zero can increase temporarily.
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Figure 5.19: Eigenvectors e1, e2, and adjoint eigenvectors e⇤
1, e

⇤
2 of the tangent linear operator

A+ . The dotted lines show the line of constant density and the perpendicular.
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A , which is discussed in the following.

In our system, the operator A of the box model is found to be non-normal, and the eigenvectors

are not orthogonal. One eigenvalue (e2) is closely related to temperature anomalies, whereas the

other (e1) is a “mixed temperature/salinity eigenvector” (Fig. 5.19). The eigenvectors of the

adjoint matrix A+ are denoted by e⇤
1 and e⇤

2, respectively. For the non-normal matrix A , the

eigenvectors of A and A+ do not coincide, but fulfill the “biorthogonality condition”:

e⇤
1 ? e2 and e⇤

2 ? e1 . (5.125)

Both eigenvalues �1,2 are real and negative. Because of �2 < �1, the first term dominates for

long time scales and the second for short time scales. Using the biorthogonality condition, we get

furthermore the coefficients

ci =

⌦
e⇤
i
|x0

↵

he⇤
i
|eii

for i = 1, 2 (5.126)

A perturbation is called “optimal”, if the initial error vector has minimal projection onto the

subspace with the fastest decaying perturbations, or equivalently if the coefficient c1 is maximal.

This is according to (5.126) equivalent to x0 pointing into the direction of e⇤
1 . This unit vector

e⇤
1 is called the “biorthogonal” ? to the most unstable eigenvector e1 which we want to excite.

In order to make a geometrical picture for the mathematical considerations, assume that the tail

of the vector x0 is placed on the e1�line and its tip on the e2�line. This vector is stretched

maximally because the tail decays to zero quickly, whereas the tip is hardly unchanged due to the

larger eigenvalue �1 . The most unstable mode e1 and its biorthogonal e⇤
1 differ greatly from

each other, and the perturbation that optimally excites the mode bears little resemblance to the

mode itself.

It is remarkable that the optimal initial perturbation vector e⇤
1 does not coincide with a pertur-

bation in sea surface density at high latitudes, which would reside on the dotted line perpendicular

to ⇢ = const. in Fig. 5.19. Even when using a space spanned by (↵T,�S) instead of (T, S) ,
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to take into account the different values for the thermal and haline expansion coefficients, vector

e⇤
1 is much more dominated by the scaled salinity anomalies than the temperature anomalies of

the high latitudinal box.

Numerical simulations by Manabe and Stouffer Manabe and Stouffer [1993] showed, for the

North Atlantic, that between two and four times the preindustrial CO2 concentration, a threshold

value is passed and the thermohaline circulation ceases completely. One other example of early

Holocene rapid climate change is the ’8200 yr BP’ cooling event recorded in the North Atlantic

region possibly induced by freshwater. One possible explanation for this dramatic regional cooling

is a shutdown in the formation of deep water in the northern North Atlantic due to freshwater input

caused by catastrophic drainage of Laurentide lakes Barber et al. [1999]; Lohmann [2003]. The

theoretic considerations and these numerical experiments suggest that the formation of deep water

in the North Atlantic is highly sensitive to the freshwater forcing.
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