Dynamics 2
Lecturer: Prof. Dr. G. Lohmann
Due date: 19.4.2020
Exercise 1, Summer semester 2021 Tutors: Justus Contzen, Lars Ackermann 12.4.2020

1. Scaling of the dynamical equations (2 points)

We work in the rotating frame of reference of the Earth. The equation can be scaled by a length-scale L, determined by the geometry of the flow, and by a characteristic velocity U . We can estimate the relative contributions in units of $\mathrm{m} / \mathrm{s}^{2}$ in the horizontal momentum equations:

$$
\begin{equation*}
\underbrace{\frac{\partial \mathbf{v}}{\partial t}}_{U / T \sim 10^{-8}}+\underbrace{\mathbf{v} \cdot \nabla \mathbf{v}}_{U^{2} / L \sim 10^{-8}}=\underbrace{-\frac{1}{\rho} \nabla p}_{\delta \mathbf{P} /(\rho \mathbf{L}) \sim 1 \mathbf{0}^{-5}}+\underbrace{2 \boldsymbol{\Omega} \times \mathbf{v}}_{\mathbf{f}_{0} \mathbf{U} \sim \mathbf{1 0 ^ { - 5 }}}+\underbrace{\text { fric }}_{\nu U / H^{2} \sim 10^{-13}} \tag{1}
\end{equation*}
$$

where fric denotes the contributions of friction due to eddy stress divergence (usually $\sim \nu \nabla^{2} \mathbf{v}$). Typical values are given in Table 1. The values have been taken for the ocean.
a) Please repeat the estimate for the atmosphere using Table 1 .
b) The Rossby number Ro is the ratio of inertial (the left hand side in (1)) to Coriolis (second term on the right hand side in (11) terms

$$
\begin{equation*}
R o=\frac{\left(U^{2} / L\right)}{(f U)}=\frac{U}{f L} \tag{2}
\end{equation*}
$$

Ro is small when the flow is in a so-called geostrophic balance. Please calculate Ro for the atmosphere and ocean using Table 1 .

	Quantity	Atmosphere	Ocean
horizontal velocity	U	$10 \mathrm{~ms}^{-1}$	$10^{-1} \mathrm{~ms}^{-1}$
horizontal length	L	$10^{6} \mathrm{~m}$	$10^{6} \mathrm{~m}$
horizonal Pressure changes	$\delta \mathrm{P}$ (horizontal)	$10^{3} \mathrm{~Pa}$	$10^{4} \mathrm{~Pa}$
time scale	T	$10^{5} \mathrm{~s}$	$10^{7} \mathrm{~s}$
Coriolis parameter at $45^{\circ} \mathrm{N}$	$f_{0}=2 \Omega \sin \varphi_{0}$	$10^{-4} \mathrm{~s}^{-1}$	$10^{-4} \mathrm{~s}^{-1}$
density	ρ	$1 \mathrm{kgm}^{-3}$	$10^{3} \mathrm{kgm}^{-3}$
viscosity (turbulent)	ν	$10^{-5} \mathrm{kgm}^{-3}$	$10^{-6} \mathrm{kgm}^{-3}$

Table 1: Table shows the typical scales in the atmosphere and ocean system.

Dynamics 2
Lecturer: Prof. Dr. G. Lohmann
Due date: 19.4.2020
Exercise 1, Summer semester 2021
Tutors: Justus Contzen, Lars Ackermann
12.4.2020

2. Concept of dynamic similarity (3 points)

For the case of an incompressible flow, assuming the temperature effects are negligible and external forces are neglected, the Navier-Stokes equations consist of conservation of mass

$$
\begin{equation*}
\nabla \cdot \mathbf{u}=0 \tag{3}
\end{equation*}
$$

and conservation of momentum

$$
\begin{equation*}
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho_{0}} \nabla p+\nu \nabla^{2} \mathbf{u} \tag{4}
\end{equation*}
$$

where \mathbf{u} is the velocity vector and p is the pressure, ν denotes the kinematic viscosity.
a) Show: The equations (3|4) can be made dimensionless by a length-scale L , determined by the geometry of the flow, and by a characteristic velocity U. For example: $u=U \cdot u_{d}$.
Note: the units of $\left[\rho_{0}\right]=k g / m^{3},[p]=k g /\left(m s^{2}\right)$, and $[p] /\left[\rho_{0}\right]=m^{2} / \mathrm{s}^{2}$. Therefore the pressure gradient term in (4) has the scaling U^{2} / L.
b) Show: The scalings vanish completely in front of the terms except for the $\nabla^{2} \mathbf{u}_{\mathrm{d}}{ }^{-}$ term! The dimensionless parameter is the Reynolds number and the only parameter left!

Remark: For large Reynolds numbers, the flow is turbulent. In most practical flows Re is rather large $\left(10^{4}-10^{8}\right)$, large enough for the flow to be turbulent.

3. Advection (3 points)

A ship is steaming northward at a rate of $10 \mathrm{~km} / \mathrm{h}$. The surface pressure increases toward the northwest at a rate of $5 \mathrm{~Pa} / \mathrm{km}$. What is the pressure tendency recorded at a nearby island station if the pressure aboard the ship decreases at a rate of $100 \mathrm{~Pa} / 3 \mathrm{~h}$?
4. Download and install the \mathbf{R} version for your operating system (for many linux distributions R is also available in the package management system). Furthermore, look at the web page for R studio http://www.rstudio.com/, R studio is a free and open source user interface for R. One particular package is Shiny. This makes it super simple for R users like you to turn analyses into interactive web applications that anyone can use. The latest version of R for Linux, OS X and Windows is freely available on the CRAN webpage: http://cran.r-project.org (Fig. 1).

Figure 1: R is available for download from the CRAN webpage: http://cran.r-project.org.

5. Short programming questions. (2 points)

Write down the output for the following R-commands:
a) $\mathrm{a}<-\mathrm{c}(0,-5,4,20)$; mean (a)
b) $\max (a)-\min (a)$
c) $a * 2+c(3,1,-1,0)$
f) Plot the potential

```
y=-100:100
x=y/50
r=1
z=-r * x^2/2 + r * x^3/3
plot(x,z,type='l')
```

and the derivative of $\mathrm{z}(\mathrm{x})$

Notes on submission form of the exercises: Working in study groups is encouraged, but each student is responsible for his/her own solution. The answers to the questions can be send until the due date (12:00) to Justus Contzen (Justus.Contzen@awi.de), Lars Ackermann (Lars.Ackermann@awi.de).

