1. Concept of dynamic similarity (4 points)

For the case of an incompressible flow, assuming the temperature effects are negligible and external forces are neglected, the Navier-Stokes equations consist of conservation of mass

$$
\begin{equation*}
\nabla \cdot \mathbf{u}=0 \tag{1}
\end{equation*}
$$

and conservation of momentum

$$
\begin{equation*}
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho_{0}} \nabla p+\nu \nabla^{2} \mathbf{u} \tag{2}
\end{equation*}
$$

where \mathbf{u} is the velocity vector and p is the pressure, ν denotes the kinematic viscosity.
a) Show: The equations (1|2) can be made dimensionless by a length-scale L, determined by the geometry of the flow, and by a characteristic velocity U. For example: $u=U \cdot u_{d}$.

Note: the units of $\left[\rho_{0}\right]=k g / m^{3},[p]=k g /\left(m s^{2}\right)$, and $[p] /\left[\rho_{0}\right]=m^{2} / s^{2}$. Therefore the pressure gradient term in (2) has the scaling U^{2} / L.
b) Show: The scalings vanish completely in front of the terms except for the $\nabla^{2} \mathbf{u}_{\mathbf{d}^{-}}$ term! The dimensionless parameter is the Reynolds number and the only parameter left!

Remark: For large Reynolds numbers, the flow is turbulent. In most practical flows Re is rather large $\left(10^{4}-10^{8}\right)$, large enough for the flow to be turbulent.
2. Elimination of the pressure term (5 points)

Assume a 2D flow without non-linear terms and friction, where the equations reduce to:

$$
\begin{align*}
\rho \frac{\partial u}{\partial t} & =-\frac{\partial p}{\partial x} \tag{3}\\
\rho \frac{\partial v}{\partial t} & =-\frac{\partial p}{\partial y} \tag{4}
\end{align*}
$$

a) Show: Subtract $\partial / \partial y$ of (3) from $\partial / \partial x$ of (4) results in the elimination of pressure.
b) Show: Defining the stream function ψ through

$$
\begin{equation*}
u=-\frac{\partial \psi}{\partial y} \quad ; \quad v=\frac{\partial \psi}{\partial x} \tag{5}
\end{equation*}
$$

(mass continuity being unconditionally satisfied), the incompressible Newtonian 2D momentum and mass conservation degrade into one equation:

$$
\begin{equation*}
\partial_{t}\left(\nabla^{2} \psi\right)=0 \tag{6}
\end{equation*}
$$

c) We now consider the rotating framework and add the Coriolis terms $-\rho f v$ and $\rho f u$ to the left hand side of (3/4). Subtract $\partial / \partial y$ of (3) from $\partial / \partial x$ of (4) to eliminate the pressure terms to derive the vorticity equation! Show that (6) changed into

$$
\begin{equation*}
\partial_{t}\left(\nabla^{2} \psi\right)+\beta v=0 \tag{7}
\end{equation*}
$$

3. Scaling of the dynamical equations (2 points)

We work in the rotating frame of reference of the Earth. The equation can be scaled by a length-scale L, determined by the geometry of the flow, and by a characteristic velocity U . We can estimate the relative contributions in units of $\mathrm{m} / \mathrm{s}^{2}$ in the horizontal momentum equations:

$$
\begin{equation*}
\underbrace{\frac{\partial \mathbf{v}}{\partial t}}_{U / T \sim 10^{-8}}+\underbrace{\mathbf{v} \cdot \nabla \mathbf{v}}_{U^{2} / L \sim 10^{-8}}=\underbrace{-\frac{1}{\rho} \nabla p}_{\delta \mathbf{P} /(\rho \mathbf{L}) \sim \mathbf{1 0}}+\underbrace{2 \boldsymbol{\Omega} \times \mathbf{v}}_{\mathbf{f}_{0} \mathbf{U} \sim \mathbf{1 0 ^ { - 5 }}}+\underbrace{f r i c}_{\nu U / H^{2} \sim 10^{-13}} \tag{8}
\end{equation*}
$$

where fric denotes the contributions of friction due to eddy stress divergence (usually $\sim \nu \nabla^{2} \mathbf{v}$). Typical values are given in Table 1. The values have been taken for the ocean.
a) Please repeat the estimate for the atmosphere using Table 1 .
b) The Rossby number Ro is the ratio of inertial (the left hand side in (8)) to Coriolis (second term on the right hand side in (8)) terms

$$
\begin{equation*}
R o=\frac{\left(U^{2} / L\right)}{(f U)}=\frac{U}{f L} . \tag{9}
\end{equation*}
$$

Ro is small when the flow is in a so-called geostrophic balance. Please calculate Ro for the atmosphere and ocean using Table 1.

	Quantity	Atmosphere	Ocean
horizontal velocity	U	$10 \mathrm{~ms}^{-1}$	$10^{-1} \mathrm{~ms}^{-1}$
horizontal length	L	$10^{6} \mathrm{~m}$	$10^{6} \mathrm{~m}$
horizonal Pressure changes	$\delta \mathrm{P}$ (horizontal)	$10^{3} \mathrm{~Pa}$	$10^{4} \mathrm{~Pa}$
time scale	T	$10^{5} \mathrm{~s}$	$10^{7} \mathrm{~s}$
Coriolis parameter at $45^{\circ} \mathrm{N}$	$f_{0}=2 \Omega \sin \varphi_{0}$	$10^{-4} \mathrm{~s}^{-1}$	$10^{-4} \mathrm{~s}^{-1}$
density	ρ	$1 \mathrm{kgm}^{-3}$	$10^{3} \mathrm{kgm}^{-3}$
viscosity (turbulent)	ν	$10^{-5} \mathrm{kgm}^{-3}$	$10^{-6} \mathrm{kgm}^{-3}$

Table 1: Table shows the typical scales in the atmosphere and ocean system.

Notes on submission form of the exercises: Working in study groups is encouraged, but each student is responsible for his/her own solution. The answers to the questions can be send until the due date (12:00) to Hanna Knahl (hanna.knahl@awi.de), Alexander Thorneloe (alexander.thorn@awi.de).

