1. Wind-driven ocean circulation (5 points)

the Sverdrup transport V for the depth-integrated flow is calculated by

$$
\begin{equation*}
\rho_{0} \beta V=\frac{\partial}{\partial x} \tau_{y}-\frac{\partial}{\partial y} \tau_{x} \tag{1}
\end{equation*}
$$

where τ_{x} and τ_{y} are the components of the wind stress.
The Ekman transports V_{E}, U_{E} describe the dynamics in the upper mixed layer:

$$
\begin{equation*}
f V_{E}=-\tau_{x} / \rho_{0} \quad, \quad f U_{E}=\tau_{y} / \rho_{0} \tag{2}
\end{equation*}
$$

where $U_{E}=\int_{-E}^{0} u d z$ and $V_{E}=\int_{-E}^{0} v d z$ are the depth-integrated velocities in the thin friction-dominated Ekman layer at the sea surface. Denote w_{E} as the Ekman vertical velocity at the bottom of the Ekman layer. Using the continuity equation, the divergence of the Ekman transports leads to a vertical velocity w_{E} at the bottom of the Ekman layer:

$$
\begin{equation*}
-\int_{-E}^{0} \frac{\partial w}{\partial z} d z=w_{E}=\frac{\partial}{\partial x} U_{E}+\frac{\partial}{\partial y} V_{E}=\frac{\partial}{\partial x}\left(\frac{\tau_{y}}{\rho_{0} f}\right)-\frac{\partial}{\partial y}\left(\frac{\tau_{x}}{\rho_{0} f}\right) \tag{3}
\end{equation*}
$$

a) Assume that the windstress is only zonal with

$$
\begin{equation*}
\tau_{x}=-\tau_{0} \cos (\pi y / B) \tag{4}
\end{equation*}
$$

for an ocean basin $0<x<L, \quad 0<y<B$. Calculate the Sverdrup transport, Ekman transports, and Ekman pumping velocity for this special case. Make a schematic diagram of the windstress, Sverdrup transport, Ekman transports, and Ekman pumping velocity.
b) Using a), at what latitudes y are $|V|$ and $\left|V_{E}\right|$ maximum? Calculate their magnitudes. Take constant $f=10^{-4} \mathrm{~s}^{-1}$ and $\beta=1.8 \cdot 10^{-11} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ and $B=5000 \mathrm{~km}, \tau_{0} / \rho_{0}=$ $10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-2}$.
c) Using the values in b), calculate the maximum of w_{E} for constant f.

Dynamics 2
Lecturer: Prof. Dr. G. Lohmann
Due date: 18.5.2019
Exercise 4, Summer semester 2020
Tutors: Daniel Balting, Stephan Krätschmer

	Quantity	Ocean
horizontal velocity	U	$1.6 \cdot 10^{-2} \mathrm{~ms}^{-1}$
horizontal length	L	$10^{6} \mathrm{~m}$
vertical length	E	$10^{2} \mathrm{~m}$
wind stress	τ_{0}	$1.5 \cdot 10^{-1} \mathrm{~Pa}$
Coriolis parameter at $45^{\circ} \mathrm{N}$	$f_{0}=2 \Omega \sin \varphi_{0}$	$10^{-4} \mathrm{~s}^{-1}$
density	ρ_{0}	$10^{3} \mathrm{kgm}^{-3}$
viscosity (turbulent)	A_{H}	$10^{2}-10^{4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$

Table 1: Table shows the typical scales in the ocean system for the exercise.
2. Non-dimensional vorticity dynamics including wind stress (4 points)
a) Show that (1) is a special case of the vorticity equation

$$
\begin{equation*}
\frac{D}{D t}(\zeta+f)=A_{H} \nabla^{2} \zeta+\frac{1}{\rho E}\left(\frac{\partial}{\partial x} \tau_{y}-\frac{\partial}{\partial y} \tau_{x}\right) \tag{5}
\end{equation*}
$$

b) Derive the the non-dimensional version of (5). Include the Reynolds number $R e=$ $U L / A_{H}$, Rossby number Ro $=U /\left(f_{0} L\right)$, and the wind stress strength number $\alpha=$ $\tau_{0} L /\left(\rho_{0} E U^{2}\right)$.
c) Estimate the order of magnitude of the characteristic numbers for the ocean! Use Table 1.
3. Questions about the course (3 points)
a) Explain the Taylor-Proudman Theorem! (remember $f=f_{0}$, barotropic circulation) Why does the flow not go over the obstacle?
Laboratory experiments showing the formation of a Taylor column, go to 2:50,
b) Please write down the barotropic potential vorticity equation for large-scale motion!
c) What are the two dominant terms in the horizontal momentum balance for the large-scale dynamics at mid-latitudes?
d) What are the names of the 3 meridional cells in the atmosphere?

Are these cells geostrophically driven or not?

Notes on submission form of the exercises: Working in study groups is encouraged, but each student is responsible for his/her own solution. The answers to the questions can be send until the due date (12:00) to Daniel Balting (daniel.balting@awi.de) and Stephan Krätschmer (stephan.kraetschmer@awi.de).

