## 1. Wind-driven ocean circulation (5 points)

the Sverdrup transport V for the depth-integrated flow is calculated by

$$\rho_0 \beta V = \frac{\partial}{\partial x} \tau_y - \frac{\partial}{\partial y} \tau_x \tag{1}$$

where  $\tau_x$  and  $\tau_y$  are the components of the wind stress.

The Ekman transports  $V_E, U_E$  describe the dynamics in the upper mixed layer:

$$fV_E = -\tau_x/\rho_0 \qquad , \qquad fU_E = \tau_y/\rho_0 \tag{2}$$

where  $U_E = \int_{-E}^{0} u dz$  and  $V_E = \int_{-E}^{0} v dz$  are the depth-integrated velocities in the thin friction-dominated Ekman layer at the sea surface. Denote  $w_E$  as the Ekman vertical velocity at the bottom of the Ekman layer. Using the continuity equation, the divergence of the Ekman transports leads to a vertical velocity  $w_E$  at the bottom of the Ekman layer:

$$-\int_{-E}^{0} \frac{\partial w}{\partial z} dz = w_E = \frac{\partial}{\partial x} U_E + \frac{\partial}{\partial y} V_E = \frac{\partial}{\partial x} \left( \frac{\tau_y}{\rho_0 f} \right) - \frac{\partial}{\partial y} \left( \frac{\tau_x}{\rho_0 f} \right) \quad . \tag{3}$$

a) Assume that the windstress is only zonal with

$$\tau_x = -\tau_0 \cos(\pi y/B) \tag{4}$$

for an ocean basin 0 < x < L, 0 < y < B. Calculate the Sverdrup transport, Ekman transports, and Ekman pumping velocity for this special case. Make a schematic diagram of the windstress, Sverdrup transport, Ekman transports, and Ekman pumping velocity.

b) Using a), at what latitudes y are |V| and  $|V_E|$  maximum? Calculate their magnitudes. Take constant  $f = 10^{-4} \text{ s}^{-1}$  and  $\beta = 1.8 \cdot 10^{-11} \text{ m}^{-1} \text{s}^{-1}$  and B = 5000 km,  $\tau_0/\rho_0 = 10^{-4} \text{ m}^2 \text{s}^{-2}$ .

c) Using the values in b), calculate the maximum of  $w_E$  for constant f.

|                                     | Quantity                     | Ocean                          |
|-------------------------------------|------------------------------|--------------------------------|
| horizontal velocity                 | U                            | $1.6 \cdot 10^{-2}  ms^{-1}$   |
| horizontal length                   | $\mathbf{L}$                 | $10^{6}  m$                    |
| vertical length                     | $\mathbf{E}$                 | $10^{2}  m$                    |
| wind stress                         | $	au_0$                      | $1.5 \cdot 10^{-1} Pa$         |
| Coriolis parameter at $45^{\circ}N$ | $f_0 = 2\Omega\sin\varphi_0$ | $10^{-4}  s^{-1}$              |
| density                             | $ ho_0$                      | $10^{3}  kgm^{-3}$             |
| viscosity (turbulent)               | $A_H$                        | $10^{2} - 10^{4} m^{2} s^{-1}$ |

Table 1: Table shows the typical scales in the ocean system for the exercise.

## 2. Non-dimensional vorticity dynamics including wind stress (4 points)

a) Show that (1) is a special case of the vorticity equation

$$\frac{D}{Dt}\left(\zeta+f\right) = A_H \nabla^2 \zeta + \frac{1}{\rho E} \left(\frac{\partial}{\partial x} \tau_y - \frac{\partial}{\partial y} \tau_x\right) \quad . \tag{5}$$

b) Derive the non-dimensional version of (5). Include the Reynolds number  $Re = UL/A_H$ , Rossby number  $Ro = U/(f_0L)$ , and the wind stress strength number  $\alpha = \tau_0 L/(\rho_0 E U^2)$ .

c) Estimate the order of magnitude of the characteristic numbers for the ocean ! Use Table 1.

## 3. Questions about the course (3 points)

a) Explain the Taylor-Proudman Theorem! (remember  $f = f_0$ , barotropic circulation) Why does the flow not go over the obstacle?

Laboratory experiments showing the formation of a Taylor column, go to 2:50,

b) Please write down the barotropic potential vorticity equation for large-scale motion!

c) What are the two dominant terms in the horizontal momentum balance for the large-scale dynamics at mid-latitudes?

d) What are the names of the 3 meridional cells in the atmosphere? Are these cells geostrophically driven or not?

<u>Notes on submission form of the exercises:</u> Working in study groups is encouraged, but each student is responsible for his/her own solution. The answers to the questions can be send until the due date to Yuchen Sun (yuchen.sun@awi.de).