1. Concept of dynamic similarity (3 points)

For the case of an incompressible flow, assuming the temperature effects are negligible and external forces are neglected, the Navier-Stokes equations consist of conservation of mass

$$
\begin{equation*}
\nabla \cdot \mathbf{u}=0 \tag{1}
\end{equation*}
$$

and conservation of momentum

$$
\begin{equation*}
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho_{0}} \nabla p+\nu \nabla^{2} \mathbf{u} \tag{2}
\end{equation*}
$$

where \mathbf{u} is the velocity vector and p is the pressure, ν denotes the kinematic viscosity.
a) Show: The equations (1|2) can be made dimensionless by a length-scale L, determined by the geometry of the flow, and by a characteristic velocity U. For example: $u=U \cdot u_{d}$.

Note: the units of $\left[\rho_{0}\right]=k g / m^{3},[p]=k g /\left(m s^{2}\right)$, and $[p] /\left[\rho_{0}\right]=m^{2} / s^{2}$. Therefore the pressure gradient term in (2) has the scaling U^{2} / L.
b) Show: The scalings vanish completely in front of the terms except for the $\nabla^{2} \mathbf{u}_{\mathbf{d}^{-}}$ term! The dimensionless parameter is the Reynolds number and the only parameter left!

Remark: For large Reynolds numbers, the flow is turbulent. In most practical flows Re is rather large $\left(10^{4}-10^{8}\right)$, large enough for the flow to be turbulent.

2. Angular momentum and Hadley cell (5 points)

Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere one expects such a flow to conserve absolute angular momentum, i.e.,

$$
\begin{equation*}
\frac{D A}{D t}=0 \tag{3}
\end{equation*}
$$

where A is the absolute angular momentum per unit mass (parallel to the Earth's rotation axis)

$$
\begin{equation*}
A=r(u+\Omega r)=\Omega R^{2} \cos ^{2} \varphi+u R \cos \varphi \tag{4}
\end{equation*}
$$

Ω is the Earth rotation rate, u the eastward wind component, $r=R \cos \varphi$ is the distance from the rotation axis, R the Earth's radius, and φ latitude.
a) Show, for inviscid zonally symmetric flow, that the relation $\frac{D A}{D t}=0$ is consistent with the zonal component of the equation of motion

$$
\begin{equation*}
\frac{D u}{D t}-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x} \tag{5}
\end{equation*}
$$

in (x, y, z) coordinates, where $y=R \varphi$.
b) Use angular momentum conservation to describe in words how the existence of the Hadley circulation explains the existence of both the subtropical jet in the upper troposphere and the near-surface trade winds.
c) If the Hadley circulation is symmetric about the equator, and its edge is at 20° latitude, determine the strength of the subtropical jet. Use (3, 4).
3. Conservation of potential vorticity: (3 points)

An air column at $53^{\circ} \mathrm{N}$ with $\zeta=0$ initially streches from the surface to a fixed tropopause at 10 km height. If the air column moves until it is over a mountain barrier of 2 km height at $30^{\circ} \mathrm{N}$, what is its absolute vorticity and relative vorticity as it passes the mountain top?

Assume: $\sin 53^{\circ}=0.8 ; \sin 30^{\circ}=0.5$
The angular velocity of the Earth $\Omega=2 \pi /(1$ day $)$.
Potential vorticity: $(\zeta+f) / h$

Notes on submission form of the exercises: Working in study groups is encouraged, but each student is responsible for his/her own solution. The answers to the questions can be send until the due date (12:00) to Fernanda Matos (Fernanda.Matos@awi.de), Ahmadreza Masoum (Ahmadreza.Masoum@awi.de).

