1. Simple Box model (6 points)

The stability of the AMOC is studied in a simple box model.

Figure 1: Sketch of the simple box model of the Atlantic Overturning. F_1 and F_2 denote the freshwater transport in the atmosphere at the interfaces of the ocean boxes.

Use the python program (here)

a) Show that the stability of the AMOC depends on F_1 and not on F_2 .

b) Evaluate the importance of the high latitude temperatures on AMOC, and on AMOC's stability.

c) Calculate a hysteresis for a control parameter of the model. Discuss your results!

2. EBM on the computer (6 points)

Go to the

EBM web site

or EBM web site2

Answer the following for both models:

a) What will happen if the CO_2 content in the atmosphere is doubled? Radiative forcing for doubling of $CO_2 = 4W/m^2$. The easiest way is to lower the parameter A in equation (1).

b) Describe the effect if the diffusivity is enhanced by a factor of 2!

c) The coalbedo of sea ice can vary. Describe the effect when enhancing the value by 0.1!

Dynamics II, Summer semester 2025	Exercise 9
Lecturer: Prof. Dr. G. Lohmann, Dr. M. Ionita	16.6.2025
Tutors: Alessandro Gagliardi, Georg Hüttner	Due date: 23.6.2025

3. Analytical EBM (4 points)

The temperature is described as T(y) and the heat transport (sensible, latent and ocean) is modelled as diffusion:

$$C_p \partial_t T + k \partial_y^2 T = (1 - \alpha) Q_S^{top} - (A + B T)$$
(1)

Show the solution if the planetary albedo α is chosen as a constant parameter. Use the ansatz with a global component and a latitude component

$$T(y,t) = T_0(t) + T_1(t) \cdot \cos\left(\frac{2y}{R}\right)$$
(2)

$$Q_S^{top} = Q_0 + Q_1 \cdot \cos\left(\frac{2y}{R}\right) \tag{3}$$

with $y = R\varphi$, R is the Earth radius, φ the latitude.

Separate the dynamics for T_0 and T_1 .

Notes on submission form of the exercises: Working in study groups is encouraged, but each student is responsible for his/her own solution. The answers to the questions can be send until the due date (12:00 pm) to Alessandro Gagliardi (Alessandro.Gagliardi@awi.de), Georg Huettner (Georg.Huettner@awi.de).