Stochastic climate model

(different time & length scales)



Brownian Motion: visible under the
Mikroscope: Motion of particles

Mikroskop —

Pollenkérner

Licht

pulses, irregular
Living?
Pulses from all directions, random



Physics of the 20" century

« The matter the world is made of

* views: Elementary particles, quantum
mechanics, relativity theory

 Limit of divisibility (Democritus, Aristotle):
Matter is not a continuous whole: "The
world cannot be composed of infinitely
small particles”.

HELMHOLTZ



Brownian Motion
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Einstein,Orstein, Uhlenbeck, Wiener, Fokker, Planck et al.

dx/dt = f(x) + g(x) dw/dt
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Is the random movement of particles, caused
by their bombardment on all sides by
molecules.

:gg’ Brownian motion

w\:‘

This motion can be seen in the behavior of
pollen grains placed in a glass of water

Because this motion often drives the
interaction of time and spatial scales, it is
important in several fields.



Following an idea of
Hasselmann one can divide
the climate dynamics into
two parts. These two parts are
the slowly changing climate
part and rapidly changing
weather part. The weather part
can be modeled by a
stochastic process such as
white noise



Climate variability

BIOSPHERE
LAND SURFACE

Evapotranspiration
Albedo, Drag. CO,

Air-Sea Transfer:
Water, Heat, Momentum, CO,...

Runoff:

Water. Organic Matter, . Sea Surface Temperature

Transport of Heat, Salinity, CO,

BIOGEOCHEMICAL CYCLES l&

OCEAN GATEWAYS




Distributions !

Probability of Occurance

Probabilities

Climate
Brownsche Partikel: Klim

Molekule: Wetter




Predictability
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Coarse graining -> Stochastic

N

— o
Mechanical motion of Coarse-graining,
ensemble, S=const S increases

Figure 8.11: The Ehrenfests coarse-graining: two motion - coarse-graining cycles in 2D (values of
probability density are presented by hatching density).



Lattice Boltzmann Method

Simple “mesoscopic” rules yield
complex behavior

Recently established as CFD alternative

in engineering

Have been proven to simulate Navier-

Stokes equations
Velocity space discretized

Explicit method, simple update rule:
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Examples of Resolution
(global spectral model, zoom onto Europe)

T'2] T 42

ca. 500 km Gitterabstand

T63- _

1T 106

ca. 180 km Gitterabstand



Ocean circulation models
and boundary conditions

Continental shelf

Deep-sea floor




"for groundbreaking contributions to our understanding of complex systems"

Mz

[ll. Niklas EImehed © Nobel Prize lll. Niklas EImehed © Nobel Prize
Outreach Outreach
Syukuro Manabe Klaus Hasselmann

"for the physical modelling of Earth's climate, quantifying variability
and reliably predicting global warming"
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OCTOBER 1993 HASSELMANN 1957

Optimal Fingerprints for the Detection of Time-dependent Climate Change

K. HASSELMANN
Max-Planck-Institut fiir Meteorologie, Hamburg, Germany
(Manuscript received 24 August 1992, in final form 17 March 1993)

fL=gplaz* (14)

The multiplication of the signal with the inverse of the
covariance matrix i1s seen to weight the fingerprint
components f ,in the EOF frame relative to the signal
components g, by the inverse o;% of the EOF vari-
ances, thereby slewing the fingerprint vector away from
the EOF directions with high noise levels toward the
low-noise directions.




Attribution (model world)
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Attribution (model world)
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depth

Stochastic climate model (Hasselmann, 1976)

dT

—— = — AT 4 Noise—+ Forcing

dt

microscope  —
radiative B heat loss &
heating rcagg?itrt]\ée evaporation '
A § wind particles
(} light
wind-driven

convection thbU"?nC@ :

entrainment

ok 508 B 4 e Disorderly, random motion
Figure 8.4: Schematic picture of mixed layer in the ocean. collision with molecules



https://www.awi.de/fileadmin/user_upload/AWI/Forschung/Klimawissenschaft/Dyna
mik _des Palaeoklimas/RandomSystems/index.html



P(x,t)
1.0




Diffusion of Brownian particles (Einstein)

+ 2 +2 2 +% 3
p(xt+r)—p(xt)/ S(A)dA + p/ A¢(A)dA+Q-/ 2 cRydAw a—p/ 2 iRy dA%

oC

The integral in the first term is equal to one by the definition of probability, and the second and other even terms (i.e. first and other odd
moments) vanish because of space symmetry.

+00 2
p(x,t+r)=p(x,t)-1+0+ﬂ-/ A “p(A)dA + 0 +
o | 2

p & AR
a’; 5 F; y / e - ¢(A) dA + higher order even moments
X —

Where the second moment of probability of displacement A, is interpreted as diffusivity

2
D=/A - $(A) dA

Then the density of Brownian particles p at point x at time t satisfies the diffusion equation (ignoring higher order terms):

% _p. &
at ax?



52 STOCHASTIC PROCESSES

It 1s now time for time to appear in our discussion of random systems. When it does,
this becomes the study of stochastic processes. We will look at two ways to bring in time:
the evolution of probability distributions for variables correlated in time, and stochastic
differential equations.
If z(t) 1s a time-dependent random variable, its Fourier transform
T/2

X()= lim e z(t) dt (5.27)

is also a random variable but its power spectral density S(v) is not:

Sw) = (| XMI) = (X)X W) (5.28)
. F l T/ 2wt /2 ~227r1/t
= lim — on® z(t) dt /_ o z(t') dt’

(where X * 1s the complex conjugate of X, replacing 7 with —2). The inverse Fourier
transform of the power spectral density has an interesting form,

/ S (u)e'izm"r dv

= [ e ene i a

T/2 T/2 . , .
= lim _/ / zZn‘utm(t) dt/ e-—-zlﬂ'ut .’,U(t,) dtl e-—’LZﬂ'V’T dv

T—oo T ~T)2 ~T/2



T2 T2 ,
= lim — / / / e =T) dy 2(t)x(t') dt dt’

T—00 T

~T/2J~T)2
T/2 ,T/2

= lim — / / &(t — t' — T)x(t)x(t) dt dt’
T—oo T J 12 )12

T/2
lim —/ z(t)x(t — 1) dt
Jim 7 [, #0e =

= (z(t)x(t — 7)) (5.29)
found by using the Fourier transform of a delta function
/ eTE™iSydt =1 = §(t) = / e?™ dt | (5.30)

where the delta function is defined by
[ f@ie -z do= s (5.31)

This i1s the Wiener—Khinchin theorem. It relates the spectrum of a random process to
its autocovariance function, or, if it is normalized by the variance, the autocorrelation
function (which features prominently in time series analysis, Chapter 16).
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Figure 8.9: Powerspectrum of atmospheric temperature and sea surface temperature. Here 1/ =
300 days from equation (8.43).



https://www.awi.de/fileadmin/user_upload/AWI/Forschung/Klimawissenschaft/Dy
namik_des Palaeoklimas/RandomSystems/index.html

https://www.awi.de/fileadmin/user_upload/AWI/Forschung/Klimawissensch
aft/Dynamik_des_Palaeoklimas/BrownianMotion/index.html



Energy Balance Model (OD Linear EBM) I
We solve the energy balance equation:

dT(t)

=\
dt

= F(t) — AT'(¢t)
For a step-like forcing F'(t) = Fy - H(t), the solution using the Laplace transform is:
F
T(t) = -0 (1 — e%t> + T - e ot

This model describes the delayed temperature response of the Earth's climate system due to thermal inertia.

. o EFy
Climate Sensitivity: CS= ——



W General Form of LRT:

« F(t):forcing (e.g., radiative input)

G (t): Green's function (response to a delta impulse)

. R(t): response (e.g., temperature anomaly)



If we assume T'(0) = 0:

~ 1 ~
T(s) = S
()= 3 F(s)
So the transfer function is:
A 1
G(s) =
() S+ A
& Impulse Response Function:
Taking the inverse Laplace transform:
G(t)=e ™

This is the Green'’s function: the system's response to a unit impulse of forcing at ¢ = 0.



& Interpretation in LRT Terms

Concept Meaning in EBM with C' = 1
Forcing F'(t) Radiative input

Response T'(t) Global mean temperature anomaly
Green's function G(t) e ™ (exponential decay)

Transfer function G (s) S

Time constant T =

Example: Step Forcing

Let's solve for T'(¢) when F'(t) = Fy - H(t), a step function:

Laplace of forcing:

5 F,
F -9
(5) =~
Then:
n Fy Fy (1 1 Fy
T = = — - - =T(t) = — (1
(5) s(s+A) A (s s+)\> (t) A(



il Interpretation

e Temperature gradually increases toward an equilibrium of T,,, = %

* The adjustment timescale is 7 = %

* The full temperature evolution is a convolution of the forcing with the Green's function:

T(t) = /Ot e M F(7) dr

This leads to a linear response:



How realistic is the
model?

CMIP6 (HiRes) mesh

B

<,

CMIP5 mesh

: .
Frontier mesh

Indistinguishable from observations!
O e

Displayed on a common 1/4° mesh j : , 05 ) 05 10

log10(m/s)

Ocean velocity



