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Physik	im	20.	Jahrhundert

• Der	Stoff,	aus	dem	die	Welt	besteht
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Quantenmechanik,	Relativitätstheorie

• Grenze	der	Teilbarkeit	(Demokrit,	Aristoteles:	
Materie	kein	kontinuierliches	Ganzes:	„Aus	
unendlich	kleinen	Teilchen	lässt	sich	die	Welt	
nicht	zusammensetzen“
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Körniger	Aufbau	der	Natur

Brownsche Bewegung:	im	Mikroskop	sichtbare	
Verschiebung	von	Teilchen	

Moleküle:	ungeordneten	Bewegung	stoßen	aus	allen	Richtungen	gegen	die	Teilchen	
rein	zufällig
Moleküle	haben	eine	Masse	und	sind	nicht	unendlich	klein.





Klimasystem



Klimavariabilität • Brownsche Partikel:	Klima
• Moleküle:	Wetter



Vorhersagbarkeit:	
Wetter	und	Klima

• Brownsche Partikel:	Klima
• Moleküle:	Wetter



Das	„Klimadilemma“
• Die Aufzeichnungen direkter Temperatur-
messungen sind kurz und fallen bereits in der
Phase starken Einflusses des Menschen.

• Für die Zeit vor instrumentellen Auf-
zeichnungen ist man auf Informationen aus
Proxy-Daten angewiesen.

• Proxy-Daten stellen indirekte Informationen
über vergangene Umweltbedingungen dar, für
die eine explizite Kenntnis der Rekorder-
systeme erforderlich sind.

Nordhemisphäre: Temperaturanomalie
HadCRU

[°C]



Das	„Klimadilemma“
• Die Aufzeichnungen direkter Temperatur-
messungen sind kurz und fallen bereits in der
Phase starken Einflusses des Menschen.
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über vergangene Umweltbedingungen
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Treibhausgas Konzentrationen:	Eiskerne
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Andere	Methode:	Zirkulationsmodelle

ModellgitterPhysikalische	Gleichungen
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Zuordnung in der Modellwelt
• fragt, ob die 

beobachteten
Änderungen konsistent
sind

• erwartete Antworten auf 
Antriebe inkonsistent mit
alternativen Erklärungen

greenhouse gas emissions
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Erwärmung der	letzten
50	Jahre sind von	
Menschen	verursacht



Ist	das	Klimaproblem	gelöst?

• Feststellen,	ob	unsere	Berechnungen	richtig	
oder	falsch	sind

• Theorie	liefert	Vorhersagen	von	unabhängigen	
Phänomenen
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Marine temperature variability                 
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Power	spectrum

Laepple and Huybers,	2014;	GRL,	PNAS

Current	climate	models	seem	to	underestimate	long-term	variability

6(annual to millennial time scales)
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Noise Forcing
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Klimavariabilität und -empfindlichkeit sind verknüpft



Power	spectrum

276 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Noise Forcing

276 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

276 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

276 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Stochastic climate
model
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As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)
with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L�1{F (s)}(t) = L�1

⇢
< T (0) >

s + �
+

c

s
· 1

s + �

�
(8.45)

= T (0) · exp(��t) +

c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim

t!1
< T (t) >=

c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< ˆT ˆT ⇤ >=

1

�2
+ !2

. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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