Chapter 9

Time series I: time-domain

Aim: The aim of this lecture is to provide a brief introduction to the analysis
of time series with emphasis on the time domain approach.

9.1 Introduction

The variation in time of environmental quantities can be studied using the
rich branch of statistics known as time series analysis. A discrete (as
opposed to continuous) time series' is a sequence of observed values
{x1,xs,... ,x,} measured at discrete times {¢1,ts,...,t,}. Climatological
time series are most often sampled at regular intervals ¢, = k7 where 7 is
the sampling period.

The main aims of time series analysis are to explore and extract signals
(patterns) contained in time series, to make forecasts (i.e. future predictions
in time), and to use this knowledge to optimally control processes.

The two main approaches used in time series analysis are time domain
and spectral (frequency) domain. The time domain approach represents
time series directly as functions of time, whereas the spectral domain ap-
proach represents time series as spectral expansions of either fourier modes
or wavelets.

L NOTE: time series NOT timeseries !
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9.2 Time series components

A lot can be learnt about a time series by plotting x; versus t; in a time
series plot. For example, the time series plot in Figure 9.1 shows the evo-
lution of monthly mean sea-level pressures measured at Darwin in northern
Australia.
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Figure 9.1: Time series of the montly mean sea-level pressure observed at
Darwin in northern Australia over the period January 1950 to July 2000.

A rich variety of structures can be seen in the series that include:

e Trends - long-term changes in the mean level. In other words, a
smooth regular component consisting primarily of fourier modes hav-
ing periods longer than the length of the time series. Trends can be
either deterministic (e.g. world population) or stochastic. Stochas-
tic trends are not necessarily monotonic and can go up and down (e.g.
North Atlantic Oscillation). Extreme care should be exercised in ex-
trapolating trends and it is wise to always refer to them in the past
tense.

e (Quasi-)periodic signals - having clearly marked cycles such as the
seasonal component (annual cycle) and interannual phenomena such
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as El Ninio and business cycles. For peridocities approaching the length
of the time series, it becomes extremely difficult to discriminate these
from stochastic trends.

e Irregular component - random or chaotic noisy residuals left over
after removing all trends and (quasi-)periodic components. They are
(second-order) stationary if they have mean level and variance that
remain constant in time and can often be modelled as filtered noise
using time series models such as ARIMA.

Some time series are best represented as sums of these components (ad-
ditive) while others are best represented as products of these components
(multiplicative). Multiplicative series can quite often be made additive by
normalizing using the logarithm transformation (e.g. commodity prices).

9.3 Filtering and smoothing

It is often useful to either low-pass filter (smooth) time series in order to
reveal low-frequency features and trends, or to high-pass filter (detrend)
time series in order to isolate high frequency transients (e.g. storms).

Some of the most commonly used filters are:

e Moving average MA(q)
This simple class of low-pass filters is obtained by applying a running
mean of length ¢ to the original series

q/2

1
o= > T (9.1)

k=—q/2

For example, the three month running mean filter MA(3) is useful for
crudely filtering out intraseasonal oscillations. Note, however, that the
sharp edges in the weights of this filter can causing spurious ringing
(oscillation) and leakage into the smoothed output.
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¢ Binomial filters (1/2,1/2)™

These smoother low-pass filters are obtained by repeatedly applying
the MA(2) filter that has weights (1/2,1/2). For example, with m =
4 applications the binomial filter weights are given by (1/2,1/2)* =
(1,4,6,4,1)/16 which tail off smoothly towards zero near the edges.
For large large numbers of applications, the weights become Gaussian
and the filtering approximates Gaussian kernel smoothing.

Holt exponential smoother

This simple and widely used recursive filter is obtained by iterating
vy = arg+ (1 — o)y (9.2)

where « is a tunable smoothing parameter. This low-pass filter gives
most weight to most recent historical values and so provides the basis
for a sensible forecasting procedure when applied to trend, seasonal,
and irregular components (Holt-Winters forecasting).

Detrending (high-pass) filters

High-pass filtering can most easily be performed by subtracting a suit-
ably low-pass filtered series from the original series. The detrended
residuals x; — y; contain the high-pass component of z. For example,
the backward difference detrending filter Ax = x; —x; 1 is simply twice
the residual obtained by removing a MA (2) low-pass filtered trend from
a time series. It is very efficient at removing stochastic trends and is
often used to detrend non-stationary time series (e.g. random walks in
commodity prices).

9.4 Serial correlation

Successive values in time series are often correlated with one another. This
persistence is known as serial correlation and leads to increased spectral
power at lower frequencies (redness). It needs to be taken into account when
testing significance, for example, of the correlation between two time series.
Among other things, serial correlation (and trends) can severely reduce the
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Time series plot of SLP 12 month differences
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Figure 9.2: Time series plot of one-year backward differences in monthly
mean sea-level pressure at Darwin from the period January 1951 to July
2000. The differencing has efficiently removed both the seasonal component
and the long-term trend thereby revealing short-term interannual variations.

effective number of degrees of freedom in a time series. Serial correlation can
be explored by estimating the sample autocorrelation coefficients
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where £ = 0,1,2,... is the time lag. The zero lag coefficient 7 is always
equal to one by definition, and higher lag coefficients generally damp towards
small values with increasing lag. Only autocorrelation coefficients with lags
less than n/4 are sufficiently well-sampled to be worth investigation.

The autocorrelation coefficients can be plotted versus lag in a plot known
as a correlogram. The correlogram for the Darwin series is shown in Fig.
9.3. Note the fast drop off in the autocorrelation function (a.c.f.) for
time lags greater than 12 months. The lag-1 coefficient is often (but not
always) adequate for giving a rough indication of the amount of serial corre-
lation in a series. A rough estimate of the decorrelation time is given by



