Paleoclimate Dynamics-identifying driving mechanisms of climate change

Gerrit Lohmann (AWI, Uni) ESSReS course 10th October 2011, 11:00-12:30

- Broaden the view of the climate system
- Interpretation of past environmental changes
- Data and Modelling
- Climate variability: North Atlantic Oscillation
- Driving mechanisms

Climate Trends at different Timescales

Temperature of the last **150 years** (instrumental data)

Hadley Centre, UK 2000

Observations: Temperature trend since 1901

External: Solar – Orbital focing

- 20000, 40000, 100000 years
- 0.5, 1 year
- Geometry of the Sun-Earth configuration

Early instrumental Data

- Anfänge physikalischer Messtechnik
 - ca. 1650 erste Luftdruckmessungen (Italien, Frankreich, Schweden)
 - 1654-1670 erste aufgezeichneten Lufttemperaturmessungen (Pisa)
 - 1677-1704 erste Niederschlagsmessreihen (England)
 - ca. 1700 erste Windmessungen in Deutschland (Leibniz)
- Vieljährige (lückenlose) Messreihen
 - Längste lückenlose und homogene Lufttemperaturmessreihe der Erde: "Zentral-England"-Reihe seit 1659
 - Längste Niederschlagsreihe: Kew (bei London) seit 1697
 - Längste Luftdruckreihe: De Built (Holland) seit 1740
 - Längste Windreihe: Hohenpeißenberg seit 1781

Data sources

Stations in Europe:

"Pfälzische Meteorologischen Gesellschaft"

Societas Meteorologica Palatina (1781-1795)

Climate Change

Detection

Understanding

1911

mountain glaciers (Morteratsch)

Climate Trends at different Timescales

Temperature of the last 1000 years

Temperature of the last 1000 years

Compilation of Mann, 2002

Proxy Data

- Indirect data, often qualitative
- Long time series from archives
- Information beyond the instrumental record

А

В

Upscaling

Interpretation of Proxy Data

Statistic

$$\begin{split} & \underbrace{\text{Covariance (cross, auto)}}_{\text{e.g. coral e.g. meteorol. data}} \\ & \gamma(\Delta) = E\left(\left(\left(x \left(t \right) - \overline{x} \right) \left(y \left(t + \Delta \right) - \overline{y} \right) \right) \right) \end{split}$$

Correlation (cross, auto)

 $\rho_{xy} = \frac{\gamma(\Delta)}{\text{normalized}}$

measures the tendency of x (t) and y (t) to covary

Climate Modes from Proxy Data

Red Sea coral

ARCTIC OSCILLATION SIGNATURE IN A RED SEA CORAL

Felis et al. Paleoceanography 2000

ARCTIC OSCILLATION SIGNATURE IN A RED SEA CORAL

ARCTIC OSCILLATION SIGNATURE IN A RED SEA CORAL

mechanistic understanding

Longer timescales

- Holocene
- Glacial-interglacial
- Role of the ocean
- Role of ice sheets
- feedbacks

Climate Trends at different Timescales

Deglaciation – Greenland ice core

Deglaciation

Modelling

Circulation Models

Fluid dynamical equations

Momentum equations:

$$u_t + Adv(u) - \left(f + \frac{u \tan \phi}{a}\right)v = -\frac{1}{a \cos \phi} \left(\frac{p}{\rho_0}\right)_{\lambda} + F^{\lambda}$$
$$v_t + Adv(v) + \left(f + \frac{u \tan \phi}{a}\right)u = -\frac{1}{a} \left(\frac{p}{\rho_0}\right)_{\phi} + F^{\phi}$$
$$0 = -\left(\frac{p}{\rho_0}\right)_z - g\rho$$

Continuity equation:

$$\frac{1}{a\cos\phi}\left[(u)_{\lambda} + (v\cos\phi)_{\phi}\right] + (w)_z = 0$$

Equation for tracers χ , temperature T, salinity (humidity) S:

$$\chi_t + Adv(\chi) = A_{HH} \nabla^2 \chi + A_{HV} \chi_{zz}$$

Equation of state:

$$\rho=\rho(\Theta,S,z)$$

The equations are "coarse grained" in space and time.

Subgrid scale processes are **parameterized** by diffusive mixing.

Grid resolution

atmosphere

ocean

Conceptual model of the Atlantic THC

H-events Recovery of the THC

Detecting THC changes by surface quantities

-0.6 -0.9

-1.2

40E

2ÖE

mw – control

2m temperature anomaly (annual mean) °C

mw — control p-e anomaly (annual mean) m/year

90N

50N 40N 30N 20N

10N ·

EQ

10S 20S

305 | 120W

100W

80W

60W

4ÓW

200

2 meter temperature interhemispheric Seesaw

Projection onto several Phenomena

Lohmann 2003

Millenial variability

Signature at the end of a meltwater pertubation

Motivation: Geological Data

Transition Glacial-Interglacial

Time

Blunier und Brook 2001

Glacial-Interglacial
Solar – Orbital focing

- 20000, 40000, 100000 years
- 0.5, 1 year
- Geometry of the Sun-Earth configuration

CO₂ and temperature

Pre-industrial

Climate Trends at different Timescales

Glacial-Interglacial

Annual Cycle

Northern Hemisphere Summer

Boreal Summer

Annual Cycle

Northern Hemisphere Summer

Boreal Summer

Annual Cycle

Fixed axis of Earth rotation

Precession & Eccentricity

Example for astronomical (Milankovitch) forcing

The Eemian climate (the last interglacial, 124 000 years)

Jan-Feb-Mar-Apr-May-Jun-Jul-Aug-Sep-Oct-Nov-Dec

Different from Sunspots ! Photo: Nasa

Frequencies

65 degrees north latitude from the present to 1 million years ago.

Spectral analysis: examine the frequency distribution of these oscillations over the last 6 million years. With this method one can see how the strength of the orbital frequencies varies over time.

Precession

Reasons

- **Obliquity:** caused by the gravitational pull of large planets, including Jupiter. Earth's obliquity varies cyclically with a period of 41,000 years.
- Eccentricity of the orbit ~100,000 years due mostly to the gravitation perturbations due to Venus.
- Precession (~20,000) due to the equatorial bulge of the Earth, caused by the centrifugal force of the Earth's rotation. That rotation changes the Earth from a perfect sphere to a slightly flattened one, thicker across the equator. The attraction of the Moon and Sun on the bulge is then the "nudge" which makes the Earth precess.

Portrait of Milutin Milankovitch by Paja Jovanovic, 1943

• Glaciations correspond to summer insolation minima...

Transitions from Greenhouse to Icehouse Climate: Evidence from Marine Sediments

Global deep-sea O-18 (Zachos et al. 2001)

Transitions from Greenhouse to Icehouse Climate: Evidence from Marine Sediments

Global deep-sea O-18 (Zachos et al. 2001)

Transitions from the Greenhouse to the Icehouse Climate: Evidences from Marine

(Zachos et al. 2001)

Proxy estimates of atmosph. pCO2 (Pearson & Palmer 2000; Pagani et al. 1999, 2005)

Paleogeography : The Mid-Miocene World

Similar to present day, but:

- Central American Isthmus open
- Tethys
- No deepwater connection
 North Atlantic & Arctic Ocean

Scotese, paleomap project

Paleogeography : The Mid-Miocene World

Similar to present day, but:

- Central American Isthmus open
- Tethys
- No deepwater connection
 North Atlantic & Arctic Ocean
- Mountain ranges are elevating (Andes, Alps, Tibet, etc.)
- Greenland without ice

Scotese, paleomap project

Earth System Models New developments within COSMOS:

Paleoclimate Dynamics-identifying driving mechanisms of climate change

Gerrit Lohmann (AWI, Uni) ESSReS course 2 June 2010

- Broaden the view of the climate system
- Interpretation of past environmental changes
- Data and Modelling
- Climate variability: North Atlantic Oscillation
- Driving mechanisms

Climate Trends at different Timescales

Holocene: Temperature proxy for the last 7000 years

Surface temperatures & terrigenous input (Ti/Ca) recorded in GeoB 3910-2

Jaeschke et al. 2007

Meltwater and Climate

weak glacial, strong interglacial THC

weak glacial THC:

C¹³ benthic forams Cd/Ca Nd isotopes Pa/Th

Piotrowski et al. 2004

Meltwater and Climate

What causes the abrupt warming in the North?

Ocean Model LSG

- Dynamical equations for T, S, u, v,14C, ...
- 3.5° horizontal resolution, 11 vertical levels
- Parameterization of overflow; 'Quick' advection scheme
- Background climate: ECHAM3/ T42 for present-day and glacial conditions
- Coupling: air temperature, hydrological cycle and wind; EBM

Key elements of James Croll's Astronomical Theory Ice Ages

- 1. Earth's climate was influenced by changes in its orbit around the sun
- 2. Croll focused on changes in precession and eccentricity.
- 3. He was aware of changes in the Earth's tilt but had no means of quantifying it.
- 4. He hypothesized that ice sheets would grow during <u>severe winters</u> resulting from the interacting effects of precession and eccentricity.
- To explain how very small changes in eccentricity could influence climate he formulated the concept of a "climatic feedback", specifically the Ice-Albedo Feedback.

Key elements of Milankovitch's Astronomical Theory Ice Ages

- 1. Quantified variations in the Earth's <u>obliquity</u>, <u>precession</u> and <u>eccentricity</u>.
- 2. Determined the seasonal and latitudinal distribution of solar radiation (insolation) on Earth.
- 3. Argued that obliquity, followed by precession forcing, should dominate the climate response, with less influence due to eccentricity.
- 4. Argued that <u>summer insolation</u> at mid-latitudes rather than winter insolation was the critical forcing for ice sheet growth.
- Despite these considerable advances, Milankovitch's theory was not widely accepted in his day. It's major limitation was the lack of a well dated, continuous climate curve to test the hypothesis.

The modern rebirth of the Milankovitch Hypothesis required several advances

- 1. Continuous sedimentary sequences
- 2. A reliable means of extracting continuous climate information from these sediments
- 3. Improved dating methods (chronology)
- 4. Quantitative analysis methods