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11 The Atlantic circulation is a key component of the global ocean conveyor that transports heat and
12 nutrients worldwide. Its likely weakening due to global warming has implications for climate and ecology.
13 However, the expected changes remain largely uncertain as low-resolution climate models currently in use
14 do not resolve small scales. Although the large-scale circulation tends to weaken uniformly in both the low-
15 resolution and our high-resolution climate model version, we find that the small-scale circulation in the
16 North Atlantic changes abruptly under global warming and exhibits pronounced spatial heterogeneity.
17 Furthermore, the future Atlantic Ocean circulation in the high-resolution model version expands in
18 conjunction with a sea ice retreat and strengthening toward the Arctic. Finally, the cutting-edge climate
19 model indicates sensitive shifts in the eddies and circulation on regional scales for future warming and thus
20 provides a benchmark for next-generation climate models that can get rid of parametrizations of unresolved
21 scales.
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23 Introduction.—The Atlantic Meridional Overturning
24 Circulation (AMOC), an important part of the global ocean
25 conveyor, is projected to slow in the warming 21st century
26 [1,2], as carbon dioxide emissions continue to increase and
27 melting of the Greenland ice sheet accelerates [3]. Its
28 decline would affect the Northern Hemisphere [4] and
29 decelerate global carbon cycle [5]. Although a collapse of
30 the large-scale AMOC (large scale means basin scale in this
31 context) is unlikely in the near future [1,2], the regional
32 scales are not investigated so far.
33 The small scales (in this context, ocean eddies and
34 convection) are also crucial in climate and ecology.
35 For example, the mesoscale eddies transport considerable
36 heat [6] and nutrients [7]. Satellite observations have shown
37 a global acceleration of eddy activity over the course of
38 altimetry records [8]. Ocean convection, which forms deep
39 water and transforms the upper limb of AMOC into lower
40 limb, acts as heat [9] and carbon [10,11] pump. They have
41 undergone some changes over the last decades [12–14].
42 Small-scale eddies play an important role in precondition-
43 ing and restratifying the water column before and after
44 convection events, influencing the variability of deep water
45 formation [15]. Simulations using high-resolution ocean
46 and climate models, as well as measurements in key regions
47 of the AMOC, indicate that the decline in AMOC over the
48 past 20 years is primarily the result of weakened deep-water
49 formation in the subarctic Atlantic [16]. Since the AMOC
50 characterizes the zonally integrated circulation (Fig. 1), the

51small scales might hold the key in understanding its
52changes [17–19].
53However, projecting these small scales under future
54climate is challenging due to the low resolution of climate
55models [20]. The subarctic Atlantic, where convection and
56the overturning occur, is very rich in eddy activity.
57However, eddies are not resolved due to their small spatial
58scale. Simulation of convection is generally problematic, in
59part because it is modulated by misrepresented small-scale
60boundary currents and eddies [21]. In addition, the complex
61topography determines the dynamics of boundary currents
62and overflows. These small scales are not properly resolved
63in the current generation of climate models, so even AMOC
64predictions remain largely uncertain [17]. The projected
65AMOC collapse has a certain threshold [22,23], but the
66small scales could have different thresholds to collapse.
67The AMOC collapse is also suggested to be resolution
68dependent—the AMOC in higher-resolution model might
69be less sensitive to freshwater forcing and driven predomi-
70nantly by internal feedbacks [22].
71Climate model.—With the development of a high-reso-
72lution climate model [24], it is possible to assess how the
73AMOC and eddies may change [20]. Here, we use a
74cutting-edge high-resolution climate model [24] (herein-
75after abbreviated as HR), which has been used for studying
76small scales and corresponding regional climate and
77ecology in the other ocean basins [25–27] to examine
78AMOC and small scales in the subarctic Atlantic under
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79 global warming. We also use a low-resolution analog
80 model version [24] to compare results (hereinafter abbre-
81 viated as LR).
82 The models used in this study are based on CESM1.3
83 [28]. HR has a nominal horizontal resolution of 0.1° in the
84 ocean and sea ice components and 0.25° in the atmosphere
85 and land components. LR has a nominal horizontal
86 resolution of 1°, which is consistent with most current
87 generation climate models [29]. The oceanic eddies are
88 parametrized in LR [30]. The time period of both versions
89 is 1950–2100, with 1950–2005 and 2006–2100, respec-
90 tively, applied with historical forcing and representative
91 concentration pathway 8.5 forcing (high CO2 emission
92 scenario) [1,2]. The spin-up time is 250 years, with a
93 climate forcing fixed to preindustrial (year 1850) condi-
94 tions. The detailed setup of the models can be found in an
95 overview paper [24].
96 Atlantic Meridional Overturning Circulation.—The
97 AMOC stream function Ψ in the model [31] is defined as

Ψðy; zÞ ¼
Z

z

0

Z
xe

xw
vðx; y; z̃Þdxdz̃;

9899 where xe and xw are the eastern and western boundaries of
100 the Atlantic basin, v is the meridional velocity. The AMOC
101 index is defined as the spatial maximum of Ψ at 26 °N.
102 The AMOC indices are surprisingly consistent between
103 HR and LR [Fig. 1(a)]. Their magnitude is comparable to
104 the observation [32] and reconstructions [33,34] of AMOC
105 at 26 °N. The AMOC indices in both models similarly
106 decline by ∼8 Sv from 2000 to 2100 CE with the sharpest
107 decline beginning in ∼2020. The AMOC decline reflected
108 in the spatial distributions of the trends is somewhat weaker
109 in HR [Figs. 1(b) and 1(c)]. It is suggested to be modulated
110 by the resolved processes in HR: the better resolved
111 Labrador Current limits the offshore transport of freshwater
112 from Arctic Ocean into the convection region, and thereby
113 the decline in Labrador Sea overturning is weaker in

114HR [35]. The mean states of AMOC show larger
115differences [Figs. 1(b) and 1(c) magenta lines]. In HR,
116the upper limb of North Atlantic deep water is shallower.
117This is attributed to the no longer necessary parametrization
118for the Nordic Sea overflows and stronger Antarctica
119Bottom Water flow in HR [24]. Although the large-scale
120AMOC indices are very similar between the model
121versions, the changes in the spatial structure of AMOC
122are more evident in the high-resolution model. The AMOC
123indices cannot reflect regional-scale changes either
124[31,36,37], which is detected in other basins of HR [25,27].
125The overturning stream function across sections (MOCσ)
126is defined as [38]

MOCσðσ; tÞ ¼
Z

σ

σmin

dσ
Z

se

sw
vðs; σ; tÞds;

127128where sw and se are the western and eastern boundaries of
129the sections, s is the distance coordinate along the sections,
130v is the velocity perpendicular to the sections, σ is the
131potential density referenced to 0 m. The integral of density
132is taken from the surface density (σmin) across all density
133surfaces. The maximum of MOCσ at a certain time is
134recognized as the magnitude of AMOC at the sections.
135The Subpolar North Atlantic Program (OSNAP) sections
136[Fig. 2(a)] are designed to observe the western and eastern
137overturning in the subarctic Atlantic since 2014 [38]. In
138HR, the overturning in the subarctic Atlantic compares
139better with the observations, in terms of magnitude and
140variability (Fig. 2 in [39], Fig. S1). The detailed analysis is
141provided in Supplemental Material [40] (see also
142Refs. [41–54] therein). Further north at the Greenland-
143Scotland Ridge [GSR; Fig. 2(a)], an overflow parametriza-
144tion is not used for HR, in contrast to LR. Here, we see an
145increase of AMOC in HR [Fig. 2(b)], which is the opposite
146to the decline at 26 °N and OSNAP sections. While in LR,
147there is almost no overturning and also no increase
148[Fig. 2(c)].

F1:1 FIG. 1. Atlantic Meridional Overturning Circulation under global warming. (a) Its annual-mean indices in HR (red line) and LR (blue
F1:2 line). The black, magenta, green lines, respectively, represent AMOC at 26 °N observed by RAPID project (2005–2020) [30], a
F1:3 reconstruction from the GloSea5 reanalysis (1993–2016) [31], a reconstruction from satellite altimetry and cable measurements (1994–
F1:4 2012) [32]. (b),(c) Linear decadal trend over 1950–2100 in the stream function of HR (b) and LR (c). The solid magenta contours denote
F1:5 the long-term mean stream functions.
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149 This amplification of AMOC suggests that ventilation
150 and subduction north of the GSR is increasing under global
151 warming. As sea ice retreats and open-ocean area increases,
152 air-sea interaction enhances ocean mixing. This leads to an
153 strengthening of AMOC toward the Arctic, as projected by
154 climate modeling [48] that indicates sites of convection and
155 subduction moving northward to the central Arctic with
156 global warming. Reference [55] also found AMOC
157 emerges beyond the GSR, which strengthens as the areas
158 of deep mixing move northward toward the central Arctic
159 following sea ice retreat. In addition, there is observational
160 evidence supporting increased mixing and convection as
161 the sea ice edge retreats [56,57]. Our results in HR support
162 the hypothesis that the AMOC intensifies toward the Arctic
163 under global warming.
164 Following the decline in sea ice, several locations show
165 weakly increasing trends of march mixed layer depth
166 (MLD, representing the convection strength [48], definition
167 written in Supplemental Material) (Fig. S3d [40]). The
168 convection in the Nordic Sea shows a tipping point at the
169 year 2000 for both models [Fig. 2(d)]. In HR, the MLD
170 strongly declines to a minimum of ∼300 m in the 1980s,
171 and then rising abruptly to 1000 m in 1990s. A similar
172 decline was observed in the 1980s [58] and recovery in the
173 1990s [59]. After 2000, it drops to ∼200 m and then
174 remains stable, indicating that convection has almost
175 collapsed. In LR, the MLD begins to decline in 2000
176 and remains ∼400 m since 2020 CE. The variability in HR
177 is more abrupt and step-wise. Regarding the convection in
178 the other seas, one can refer to Supplemental Material [40].
179 To summarize, at the regional scale in the North Atlantic,
180 HR outperforms LR in simulating local circulations and
181 shows a completely different response of the AMOC to
182 global warming. When representing regional ocean circu-
183 lations, the small scales should be key.
184 Eddy kinetic energy.—The eddy kinetic energy (EKE)
185 reflects the strength of eddy activity in the ocean. The eddy
186 activity is not resolved and parametrized in LR [30]. The
187 detailed discussion of regional EKE changes in HR is
188 written in Supplemental Material [40]. The EKE is calcu-
189 lated based on sea surface height from HR, which will be
190 referred as η hereinafter. First, the daily surface geostrophic
191 velocity ðug; vgÞ is calculated as

ug ¼
−g
f

∂η
∂x

; vg ¼
g
f
∂η
∂y

;

192193where the gravitational acceleration g ¼ 9.81 ms−2,
194Coriolis frequency f ¼ 2Ω sinφ with the angular speed
195of Earth Ω ¼ 7.292 × 10−5 rad s−1 and latitude φ.
196Afterward the perturbation ðu0g; v0gÞ is defined as

u0g ¼ ug − ug; v0g ¼ vg − vg;

197198where the overbar denotes annual mean. ðu0g; v0gÞ does not
199contain interannual variability and is recognized as eddy
200velocity [60]. Therefore, the EKE is calculated as

EKE ¼ 1

2
ðu02g þ v02g Þ:

201202203Prominent shifts in the eddy activity, which are key to
204regional climate change, occur under the background of a
205moderately declining AMOC [Fig. 3(b) and Fig. S2 [40] ].
206The enhanced EKE near Fram Strait is related to the
207increasing freshwater outflow (due to sea ice retreat) that
208increases barotropic instability, as well as the increasing
209freshwater presence inshore that increases the horizontal
210density gradient and thus baroclinic instability. The eddy
211activity causes freshwater spread into the convection region
212in the GIN sea and thus its variability could be partly related
213to the HR shifts in the convection. Given the lateral
214freshwater spread, the EKE decrease as seen in the
215following EGC could be due to a decreased velocity and
216density gradient. This further leads to a stable (and even
217increasing) density in the EGC [Fig. 3(c)] in HR. While in
218LR, the density decrease across the GSR section is
219generally uniform [Fig. 3(d)]. In HR, the contrast in the
220west-east density change [Fig. 3(c)] causes a regional
221AMOC increase at the GSR section.
222Discussion.—Eddies are ubiquitous in the world ocean
223and alter seawater properties, ocean circulation, biogeo-
224chemical fluxes, and mixed-layer properties [61]. In the
225North Atlantic, GIN Sea and Barents Sea, pronounced
226mixed layer anomalies and very energetic mesoscale eddies
227are observed [62], suggesting a robust relationship between
228eddy amplitude and mixed layer variations [15]. In

F2:1 FIG. 2. Meridional Overturning Circulation in the North Atlantic. (a) The locations of the three sections—OSNAPWest, OSNAP East,
F2:2 and Greenland-Scotland Ridge (GSR). Color shading denotes the ocean depth. (b),(c) Hovmöller diagram of MOCσ at GSR during
F2:3 1950–2100 in HR (b) and LR (c). (d) Area-mean March mixed layer depth in the Nordic Sea (averaging areas are shown in Fig. S3 [40]),
F2:4 smoothed by a 10-year running mean. The vertical dashed line denotes a tipping point.

Q1

Q2

PHYSICAL REVIEW LETTERS VOL..XX, 000000 (XXXX)

2



229 addition, eddies near deep convection and boundary cur-
230 rents cause flattening of steep isopycnals [63], affecting
231 directly deep-water formation and thus AMOC. Given the
232 slowing of AMOC and the potential crossing of a tipping
233 point in the future [64], our study suggests that the feedback
234 between AMOC and small scales could change in the
235 future. High-resolution climate modeling provides new
236 opportunities to study the links between eddies, convection,
237 and AMOC under climate change.
238 Although the decrease in the AMOC index under global
239 warming is basically the same in HR and LR, HR changes
240 the AMOC structure and eddy activity significantly. In HR,
241 abrupt shifts in regional circulation and eddy activity are
242 detected under global warming: the AMOC shows a
243 strengthening trend at GSR, suggesting enhanced ventila-
244 tion toward the Arctic, which is only seen in HR.
245 Convection nearly ceases after 2000 CE in the eastern
246 subpolar gyre, in contrast to a moderately decreasing
247 convection in LR. The change in eddy activity indicates
248 significant spatial heterogeneity: substantial increase
249 around Fram Strait and decrease in the EGC induce the
250 AMOC increase at GSR by altering the density distribution.
251 To summarize, it is likely that the small and regional scales

252of AMOC have different tipping points compared to the
253general AMOC.
254Consequently, the upper-ocean variability and water
255mass properties can strongly differ between high and
256low resolution [65]. The shifts in the eddy activity imply
257an abrupt change in the pattern of horizontal movement of
258heat and nutrients under global warming. The resulting
259convection shifts imply the transition in the vertical move-
260ment of heat and nutrients. Although the AMOC is
261uniformly decreasing, the regional redistribution of heat
262and nutrients may be transitioning to a different state
263because of the small-scale shifts. This can be crucial when
264we try to reconstruct large-scale AMOC shifts that have
265occurred in the past, based on limited spacial informa-
266tion [66].
267We conclude that the interplay between convection, eddy
268activity, and AMOC is scale dependent, posing a challenge
269for the large-scale circulation and mesoscale features in a
270warming ocean. In the 1970s, the framework for climate
271models was established [67,68], and a prototype climate
272model was used to demonstrate that anthropogenic CO2 is
273causing global warming [69]. Since then, given the limi-
274tation of model resolution, the focus of research has been

F3:1 FIG. 3. Surface eddy kinetic energy and density distribution in the subarctic Atlantic under global warming. (a),(b) Mean (a) and linear
F3:2 decadal trend (b) of EKE over 1950–2100 in HR. FRAM and EGC, respectively represent East Greenland Current and Fram Strait. (c),
F3:3 (d) Linear decadal trend over 1950–2100 of density at the GSR section in HR (c) and LR (d).
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275 on large-scale climate pattern that are externally driven.
276 With the developing computing capacities, it is time to
277 “think big and model small” [18], to understand the meso-
278 scale changes which can hold a key for surprises [70].
279 Regional high-resolution climate models like Med-
280 CORDEX aiming at Mediterranean climate [71] have
281 shown series of impacts from model resolution and
282 resolved processes on regional climate. Incorporating the
283 interplay of small-scale processes is key to assess the large-
284 scale ocean evolution, but also requires direct observations
285 at critical locations. On the other hand, the observed decline
286 in AMOC at 26 °N over the past two decades [72,73] is now
287 placed in the context of actual small-scale shifts that cannot
288 be simply inferred from the AMOC decline at a certain
289 latitude.
290
291 The data that support the findings of this study are
292 available upon request.
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