
Mathematics and Climate Change

Gerrit Lohmann

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Climate: A Fluid Dynamical System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Mathematical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Nondimensional Parameters: The Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Convection in the Rayleigh-Bénard System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reduction of Dimensions and the Lorenz System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Scaling in the Climate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Projection Methods: Coarse Graining and Stable Manifold Theory . . . . . . . . . . . . . . . . . . . 16

Brownian Motion, Weather, and Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Climate Variability and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Non-normal Growth of the Climate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Boltzmann Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Abstract

Climate change is one of the most pressing scientific challenges of our times,
with transformations which are already becoming present in many areas of the
world. The demand (from the stakeholders) for clear answers under a wide range
of future scenarios has to be addressed (by the scientific community) using our
rapidly evolving knowledge of the weather and climate system. Mathematics is
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one of the essential pillars at the foundation of this knowledge, as it allows us to
quantify and predict the effects we observe in nature. In this chapter, we illustrate
some crucial mathematical techniques and theoretical approaches, in the context
of their application to the climate system. The concepts of critical parameters,
dimension reduction, and stochasticity are explored in detail.

Keywords

Climate models · Fluid dynamics · Dynamical theory · Spatiotemporal
scales · Coarse graining · Stability · Predictability

Introduction

Mathematics can be described in large parts on (unprovable, but very well founded)
axioms by purely logical steps. Physics owes, since the beginning of modern times,
its great successes due to experiments (can be repeated at any time with limitation to
measurable data) with mathematical theories and models. Strong abstraction, e.g.,
in free fall, is unavoidable and at the same time greatly reduces the “overall reality.”
Climate science is rather new subject, describing the nature of its components
and quantities like temperatures and currents. Its great success is due to a proper
combination of observations, its theoretical foundations in fluid dynamics, and the
statistical analysis of data. Unlike in physics, there is no lab to repeat measurements;
instead, we have just one realization of the climate trajectory. Until now it is
unknown on whether the gradual or the catastrophic case is more likely.

Figure 1 shows the Northern Hemisphere temperature evolution of the last 150
years. The last 150 years are quite often called the “instrumental period” since the
spatial coverage and the quality of the data is high compared to earlier periods. The
current and future climate is subject to significant change and fluctuations; a large

Fig. 1 Northern Hemisphere near-surface temperature anomaly [K] based on HadCRUT4 (Morice
et al., 2012)
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part is due to the increasing human influence on the climate system. The extent
and the rate of this change are controversial, however. It is therefore necessary to
improve the understanding of natural climate variability and trends by searching for
their causes at time different scales, i.e., the multidecadal component in Fig. 1. A
major challenge is furthermore to understand the dynamics and potential thresholds
of rapid climate changes. The analysis of the current status, of the past, of driving
mechanisms and feedbacks provides a suitable framework to study conditions which
are expected to develop in the future.

A comprehensive modeling strategy designed to address abrupt climate change
includes vigorous use of a hierarchy of models, from theory and conceptual models
with only a few degrees of freedom through models of intermediate complexity,
to high-resolution models of components of the climate system, to fully coupled
Earth system models. The simpler models are well-suited for use in developing
new hypotheses for abrupt climate change. Model-data comparisons are needed to
assess the quality of model predictions. It is important to note that the multiple
long integrations of enhanced, fully coupled Earth system models required for this
research are not possible with the computer resources available today, and thus,
these resources are currently enhanced. Since Earth system models have to simplify
the system and rely on parameterizations of unresolved processes using present data,
paleoclimate records provide a unique tool to validate models for conditions which
are different from our present one. Suitable model-data analyses provide therefore a
proper basis to estimate and possibly reduce uncertainties of future climate change
projections (Lohmann et al., 2020). Furthermore, the model scenarios in conjunction
with the long-term data can be used to examine mechanisms for the statistics of
regional climate extremes under different boundary conditions. Mathematical tools
are numerics of partial differential equations, and conceptual approaches of fluid
mechanics are described in this chapter.

In the entire climate system, different scales play an important role (Fig. 2).
These are the characteristic orders of magnitude in space and time that a system
possesses or is superimposed on the system in order to record or observe it. Climate
has a spatial and temporal dimension, which fluctuate in a wide range of spatial
and temporal scales. Spatial scales vary from local to regional to continental. Time
scales vary from seasonal to geological. The spatiotemporal dimension of complex
phenomena are defined by their typical spatial extension (e.g., the diameter of
a high-pressure area), which is linked to a structure whose magnitudes can be
specified as spatial scales. The time scale of an atmospheric process is the order
of magnitude of its lifetime. In addition, it is also possible to specify the spatial
and temporal resolution with which a system is to be viewed. A distinction is made
between the scale in space and time that an atmospheric process or an atmospheric
system has and the scale of the observation. If the spatial and temporal scales
of observation are to make it possible to capture the system in good resolution,
they must be significantly smaller than those describing the overall system. The
word “scale” in this context means order of magnitude or scale. The spectrum
of atmospheric space and time scales covers many orders of magnitude. A rough
classification, which is common in meteorology, is based on the horizontal space
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Fig. 2 Schematic diagram of the spatio-temporal scales considered. DO: Dansgaard-Oeschger,
H: Heinrich events; AMO: Atlantic Multidecadal Oscillation; PDO: Pacific Decadal Oscillation;
ENSO: El Niño-Southern Oscillation. The annual and astronomical cycles are externally driven and
have quasi-global impact. The dashed line shows a schematic power spectrum with more variability
on long time scales

scale L. Basically, climate represents a space-time continuum, so that fixed scale
limits do not occur in the real atmosphere. Rather, more or less narrow transition
ranges between the scales are the rule. Larger and smaller systems influence each
other so that the transitions between differently scaled weather phenomena are
smooth and the approach is usually based on the question. In order to illustrate
the scaling in the climate system, the procedure of non-dimensional parameters are
introduced.

Models of planetary motion based on Newton’s models of gravity and motion
were astonishingly successful, and this had a profound impact on the way in
which people viewed mathematical models and in the way that we still view them.
The eighteenth-century French scientist/mathematician Laplace, extended the basic
Newtonian model, given above, to model the motion of all the planets in the solar
system, including their influences on each other. This model accounted for the
motions of the planets as perfectly as they could be measured (including all the
small deviations from elliptical orbits caused by the planets gravitational effects on
each other). This seemed to be such a triumph that the belief grew up that everything
in the universe could be described by such models and that in principle the future
could be predicted perfectly given such models and accurate measurements of the



Mathematics and Climate Change 5

state of the universe now. Perhaps not surprisingly, Laplace was a vigorous promoter
of this idea, which gained the name determinism.

These ideas lent their name to the concept of a deterministic model – that is,
a model which if solved from identical starting conditions always has the same
solution. For much of the nineteenth-century, determinism reined and resulted in a
great deal of heart searching about free will and the like. In the twentieth century,
three areas of science comprehensively overturned the idea that everything could
be described by deterministic models. These were quantum mechanics and chaos
theory. The later had its origin in meteorology and fluid dynamics.

In the 1960s, Edward Lorenz, a mathematician and meteorologist, showed
that there are natural limits to the predictability of a nonlinear system, such as
atmospheric circulation. He discovered and described the chaotic behavior of large-
scale motion patterns in the atmosphere and showed that despite the determinacy of
the system, i.e., that although the partial differential equations could be calculated at
any time, the system itself loses its predictability after a relatively short time. Even
the smallest changes in the initial conditions caused different final states after a few
iteration steps (calculation steps). A predictability of the system is therefore limited
in time and the nonlinearity is responsible for the finite predictability of atmospheric
flow patterns. This insight became known under the technical term “butterfly effect”.

Climate physicists are constantly trying to learn from our observations how to
examine causes and effects in such a way that the observations are captured. We
write down our gained insights as mathematically formulated laws of nature. We
formulate equations of motion in the form of differential equations. Their solutions
provide information about what will happen to a given state at a given time at a later
time. In this sense, the equations of motion as such provide a causal description
par excellence – all equations of motion. Sometimes, however, there seem to be
annoying difficulties with causal chains or with predictability, for example, when
the destructive path of a hurricane is poorly predicted, or in extreme weather events.
We are even more aware of the problems in long-term predictions, such as climate
change. So is causality failing here? Of course we do not think so, otherwise we
would not be looking for causes. It then also made no sense to derive political
decisions from insights into climate evolution. And although word has got around
that quantum mechanics is not a causal physics in the classical sense, we will
hardly want to blame quantum mechanics for the cases of lack of predictability
or undetectable cause-effect relationships. Here, the intersection of mathematical
modeling and questions within climate change sciences are elaborated.

A systematic description of the mathematics and climate is given (Fig. 3). A
general question within the micro-macro dynamic is that of integration between
different levels. Two distinctly different levels emerge with different rules governing
each, but they then need to be reconciled in some way to create an overall
functioning system. Physical, chemical, biological, economic, social, and cultural
systems all exhibit this micro-macro dynamic and how the system comes to
reconcile it forms a primary determinate in its identity and overall structure. This
multidimensional nature to a system that results in the micro-macro dynamic is a
product of synthesis and emergence. An approach is coarse graining and projection
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Fig. 3 Systematic description of climate and mathematics. Changing the description of the
dynamics: from the micro- to macroscales. This is a common problem since we are not able to
describe the systems on all temporal and spatial scales

where the underlying dynamics is projected onto the macroscopic dynamics; the
other is the statistical physics theory of nonequilibrium statistical mechanics. The
Boltzmann equation, coarse graining, and the Brownian motion are the approaches
to understand the dynamics on different scales.

Climate: A Fluid Dynamical System

For present climate state, we are able to directly measure all involved quantities.
From measurements we can draw conclusions about physical, chemical, and bio-
logical relationships between the variables. Our understanding about the involved
processes is far from complete, but nevertheless we derive equations that describe
and predict the observed phenomena (Fig. 4).

Mathematical Equations

Our starting point is a mathematical model for the system of interest. In physics a
model typically describes the state variables, plus fundamental laws and equations
of state. These variables evolve in space and time. For the ocean, fundamental
equations are formulated:
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Fig. 4 Schematic view on the climate system. Global climate is a result of the complex
interactions between the atmosphere, cryosphere (ice), hydrosphere (oceans), lithosphere (land),
and biosphere (life), fueled by the nonuniform spatial distribution of incoming solar radiation
(Peixoto and Oort, 1992). We know from climate reconstructions using recorders such as ice
cores, ocean and lake sediment cores, tree rings, corals, cave deposits, and groundwater that the
Earth’s climate has seen major changes over its history. An analysis of the temperature variations
patched together from all these data reveals that climate change occurs in cycles with characteristic
periods, for example, 200 million, 100 thousand, or 4–7 years. For some of these cycles, particular
mechanisms can be identified, for example, forcing by changes in the Earth’s orbital parameters or
internal oscillations of the coupled ocean-atmosphere system. However, major uncertainties remain
in our understanding of the interplay of the components of the climate system

• State variables: Velocity (in each of three directions), pressure, temperature,
salinity, and density

• Fundamental laws: Conservation of momentum, conservation of mass, conserva-
tion of temperature, and salinity

• Equations of state: Relationship of density to temperature, salinity, and pressure
and perhaps also a model for the formation of sea ice

The state variables are expressed as a continuum in space and time and the
fundamental laws as partial differential equations. If the atmosphere is becoming too
thin in the upper levels, a more molecular, statistical description is appropriate. Even
at this stage, though, simplifications may be made. For example, it is common to
treat seawater as incompressible. Furthermore, equations of state are often specified
by empirical relationships or laboratory experiments.
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∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

or, using the substantive derivative:

Dρ

Dt
+ ρ(∇ · u) = 0. (2)

A simplification of the resulting flow equations is obtained when considering
an incompressible flow of a Newtonian fluid. The assumption of incompressibility
rules out the possibility of sound or shock waves to occur, so this simplification
is invalid if these phenomena are important. The incompressible flow assumption
typically holds well even when dealing with a “compressible” fluid – such as air at
room temperature – at low Mach numbers (even when flowing up to about Mach
0.3).

The dynamics of flow are based on the Navier-Stokes equations. This is a
statement of the conservation of momentum in a fluid and it is an application
of Newton’s second law to a continuum; in fact this equation is applicable to
any non-relativistic continuum and is known as the Cauchy momentum equation
(e.g., Landau and Lifshitz 1959). Taking this into account and assuming constant
viscosity, the Navier-Stokes equations will read, in vector form:

Inertia (per volume)
︷ ︸︸ ︷

ρ
( ∂u

∂t
︸︷︷︸

Unsteady
acceleration

+ u · ∇u
︸ ︷︷ ︸

Advective
acceleration

)

=
Divergence of stress
︷ ︸︸ ︷

−∇p
︸ ︷︷ ︸

Pressure
gradient

+ μ∇2u
︸ ︷︷ ︸

Viscosity

+ F
︸︷︷︸

Other
body
forces

. (3)

Note that only the advection terms are nonlinear for incompressible Newtonian
flow. This acceleration is an acceleration caused by a (possibly steady) change in
velocity over position, for example, the speeding up of fluid entering a converging
nozzle. Though individual fluid particles are being accelerated and thus are under
unsteady motion, the flow field (a velocity distribution) will not necessarily be time
dependent.

The vector field F represents “other” (body force) forces. Typically this is only
gravity but may include other fields (such as electromagnetic). In a non-inertial
coordinate system, other “forces” such as that associated with rotating coordinates
may be inserted. We note that the Coriolis force will be one of the main contributions
in the rotating Earth system. Often, these forces may be represented as the gradient
of some scalar quantity. Gravity in the z direction, for example, is the gradient
of −ρgz. Since pressure shows up only as a gradient, this implies that solving a
problem without any such body force can be mended to include the body force by
modifying pressure.

If temperature effects are also neglected, the only “other” equation (apart from
initial/boundary conditions) needed is the mass continuity equation. Under the



Mathematics and Climate Change 9

incompressible assumption, density is a constant and it follows that the equation
will simplify to:

∇ · u = 0. (4)

This is more specifically a statement of the conservation of volume (see diver-
gence). These equations are commonly used in three coordinates systems: Cartesian,
cylindrical, and spherical. While the Cartesian equations seem to follow directly
from the vector equation above, the vector form of the Navier-Stokes equation
involves some tensor calculus which means that writing it in other coordinate
systems is not as simple as doing so for scalar equations (such as the heat equation).

Taking the curl of the Navier-Stokes equation results in the elimination of
pressure. This is especially easy to see if two-dimensional Cartesian flow is assumed
(w = 0 and no dependence of anything on z), where the equations reduce to:

Dt

(

∇2ψ
)

= ν∇4ψ (5)

where ∇4 is the (2D) biharmonic operator and ν is the kinematic viscosity ν = μ
ρ
.

This single equation together with appropriate boundary conditions describes 2D
fluid flow, taking only kinematic viscosity as a parameter. Note that the equation
for creeping flow results when the left side is assumed zero. In axisymmetric flow
another stream function formulation, called the Stokes stream function, can be used
to describe the velocity components of an incompressible flow with one scalar
function. The concept of taking the curl of the flow will become very important
in climate dynamics (vorticity dynamics). The term ζ = ∇2ψ is called relative
vorticity, and the term f = 2Ω sin ϕ is due to the rotating Earth (Ω is the radiation,
ϕ the latitude). The dynamics can be described by the barotropic vorticity equation
as

Dt(ζ + f ) = ν∇2ζ (6)

which is heavily used in climate research.

Nondimensional Parameters: The Reynolds Number

In climate, we are interested in the critical parameters of the system. For the case of
an incompressible flow in the Navier-Stokes equations, assuming the temperature
effects are negligible and external forces are neglected, the equations consist of
conservation of mass

∇ · u = 0 (7)

and momentum
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∂tu + (u · ∇)u = − 1

ρ0
∇p + ν∇2u (8)

where u is the velocity vector and p is the pressure and ν denotes the kinematic
viscosity. The equations can be made dimensionless by a length scale L, determined
by the geometry of the flow, and by a characteristic velocity U. For inter-comparison
of analytical solutions, numerical results, and experimental measurements, it is
useful to report the results in a dimensionless system. This is justified by the
important concept of dynamic similarity (Buckingham, 1914). The main goal
for using this system is to replace physical or numerical parameters with some
dimensionless numbers, which completely determine the dynamical behavior of the
system.

The procedure for converting to this system first implies, first of all, the selection
of some representative values for the physical quantities involved in the original
equations (in the physical system). For our current problem, we need to provide
representative values for velocity (U), time (T ), and distances (L). From these,
we can derive scaling parameters for the time derivatives and spatial gradients also.
Using these values, the values in the dimensionlesssystem (written with subscript d)
can be defined:

u = U · ud (9)

t = T · td (10)

x = L · xd (11)

with U = L/T . From these scalings, we can also derive

∂t = ∂

∂t
= 1

T
· ∂

∂td
(12)

∂x = ∂

∂x
= 1

L
· ∂

∂xd

(13)

Note furthermore the units of [ρ0] = kg/m3, [p] = kg/(ms2), and [p]/[ρ0] =
m2/s2. Therefore the pressure gradient term has the scaling U2/L. Furthermore,
divide the momentum equation by U2/L and the scalings vanish completely in front
of the terms except for the ∇2

dud-term:

∇d · ud = 0 (14)

and conservation of momentum

∂

∂td
ud + (ud · ∇d)ud = −∇dpd + 1

Re
∇2

dud (15)
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The dimensionless parameter Re = UL/ν is the Reynolds number and the only
parameter left.

For large Reynolds numbers, the flow is turbulent. In most practical flows Re is
rather large (104 −108), large enough for the flow to be turbulent. A large Reynolds
number allows the flow to develop steep gradients locally. The typical length scale
corresponding to these steep gradients can become so small that viscosity is not
negligible. So the dissipation takes place at small scales. In this way different length
scales are present in a turbulent flow, which range from L to the Kolmogorov
length scale. This length scale is the typical length of the smallest eddy present
in a turbulent flow. In the climate system, this dissipation by turbulence is modeled
via eddy terms. To evaluate the critical parameters and scales, we implicitly assume
such procedure. A classical example is provided in the next section.

Convection in the Rayleigh-Bénard System

A system of three ordinary differential equations is introduced whose solutions
afford the simplest example of deterministic flow that we are aware of. The system
is a simplification of the one derived by Saltzman (1962), to study finite-amplitude
convection.

Consider the Rayleigh-Bénard circulation (Fig. 5). Rayleigh (1916) studied
the flow occurring in a layer of fluid of uniform circulation depth H , when the
temperature difference between the upper and lower surfaces is maintained at a
constant value ΔT .

T (x, y, z = H) = T0

T (x, y, z = 0) = T0 + ΔT (16)

The Boussinesq approximation is used, which results in a buoyancy force term
which couples the thermal and fluid velocity fields. Therefore

ρ ≈ ρ0 = const. (17)

Benard−Cell

(high temperature)

(low temperature)

H/a

H

T0 + ΔTx

y

z
T0

g

Fig. 5 Geometry of the Rayleigh-Bénard system (see text for details)
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except in the buoyancy term, where:

ρ = ρ0(1 − α(T − T0)) with α > 0. (18)

ρ0 is the fluid density in the reference state. This assumption reflects a common
feature of geophysical flows, where the density fluctuations caused by temperature
variations are small, yet they are the ones driving the overall flow. We have the
following relations. Furthermore, we assume that the density depends linearly on
temperature T .

This system possesses a steady-state solution in which there is no motion, and
the temperature varies linearly with depth:

u = w = 0

Teq = T0 +
(

1 − z

H

)

ΔT (19)

When this solution becomes unstable, convection should develop.
In the case where all motions are parallel to the x − z-plane, and no variations

in the direction of the y-axis occur, the governing equations may be written (see
Saltzman 1962) as:

Dtu = − 1

ρ0
∂xp + ν∇2u (20)

Dtw = − 1

ρ0
∂zp + ν∇2w + g(1 − α(T − T0)) (21)

DtT = κ∇2T (22)

∂xu + ∂zw = 0 (23)

where w and u are the vertical and horizontal components of the velocity. Further-
more, ν = η/ρ0, κ = λ/(ρ0Cv) the momentum diffusivity (kinematic viscosity)
and thermal diffusivity, respectively.

Now, the pressure is eliminated to derive the vorticity equation Dt

(∇2ψ
) =

ν∇4ψ . Here, it is useful to define the stream function Ψ for the two-dimensional
motion, i.e.,

∂Ψ

∂x
= w (24)

∂Ψ

∂z
= −u. (25)

∂

∂x
(21) − ∂

∂z
(20) = ∂

∂x
Dtw − ∂

∂z
Dtu = Dt

∂w

∂x
− Dt

∂u

∂z
(26)
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== Dt

∂2Ψ

∂x2
− Dt

∂2Ψ

∂z2
= Dt∇2Ψ. (27)

Furthermore, one can introduce the function Θ as the departure of temperature
from that occurring in the state of no convection (19):

T = Teq + Θ (28)

In the temperature term in ∂
∂x

(21) on the right-hand side:

∂

∂x
g(1 − α(Teq + Θ − T0)) = −gα

∂

∂x
Θ

The left-hand side of (22) reads

DtT = DtTeq + DtΘ = w · −ΔT

H
+ DtΘ = −ΔT

H

∂Ψ

∂x
+ DtΘ

Then, the dynamics can be formulated as

Dt

(

∇2Ψ
)

= ν∇4Ψ − gα
∂Θ

∂x
(29)

DtΘ = ΔT

H

∂Ψ

∂x
+ κ∇2Θ. (30)

Nondimensionalization of the problem yields equations including the dimension-
less Prandtl number σ and the Rayleigh number Ra which are the control parameters
of the problem. One can take the layer thickness H as the length of unit, the time
T = H 2/κ of vertical diffusion of heat as the unit of time, and the temperature
difference ΔT as the unit of temperature.

Reduction of Dimensions and the Lorenz System

Saltzman (1962) derived a set of ordinary differential equations by expanding Ψ

and Θ in double Fourier series in x and z, with functions of t alone for coefficients,
and substituting these series into (29) and (30). A complete Galerkin approximation

Ψ (x, z, t) =
∞
∑

k=1

∞
∑

l=1

Ψk,l(t) sin

(

kπa

H
x

)

× sin

(

lπ

H
z

)

(31)

Θ(x, z, t) =
∞
∑

k=1

∞
∑

l=1

Θk,l(t) cos

(

kπa

H
x

)

× sin

(

lπ

H
z

)

(32)
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yields an infinite set of ordinary differential equations for the time coefficients. He
arranged the right-hand sides of the resulting equations in double Fourier series
form, by replacing products of trigonometric functions of x (or z) by sums of
trigonometric functions, and then equated coefficients of similar functions of x

and z. He then reduced the resulting infinite system to a finite system by omitting
reference to all but a specified finite set of functions of t . He then obtained time-
dependent solutions by numerical integration. In certain cases, all, except three
of the dependent variables, eventually tended to zero, and these three variables
underwent irregular, apparently nonperiodic fluctuations. These same solutions
would have been obtained if the series had been at the start truncated to include
a total of three terms. Accordingly, in this study we shall let

a

1 + a2 κ Ψ = X
√

2 sin
(πa

H
x
)

sin
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z
)

(33)
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(34)

where X(t), Y (t), and Z(t) are functions of time alone.
It is found that fields of motion of this form would develop if the Rayleigh

number

Ra = gαH 3ΔT

νκ
, (35)

exceeds a critical value

Rc = π4a−2(1 + a2)3 . (36)

The minimum value of Rc, namely, 27π4/4 = 657.51, occurs when a2 = 1/2.
In fluid mechanics, the Rayleigh number for a fluid is a dimensionless number
associated with the relation of buoyancy and viscosity in a flow. When the Rayleigh
number is below the critical value for that fluid, heat transfer is primarily in the
form of conduction; when it exceeds the critical value, heat transfer is primarily in
the form of convection.

When the above truncation (33) and (34) is substituted into the dynamics, we
obtain the equations (Lorenz model):

Ẋ = −σX + σY (37)

Ẏ = rX − Y − XZ (38)

Ż = −bZ + XY (39)

Here a dot denotes a derivative with respect to the dimensionless time td =
π2H−2(1 + a2)κt , while σ = νκ−1 is the Prandtl number, r = Ra/Rc, and
b = 4(1 + a2)−1.
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Fig. 6 Numerical solution of
the Lorenz model, in the
X − Y phase space with the
parameters r = 28, σ = 10,
and b = 8/3
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Equations (37), (38), and (39) are called Lorenz model in the literature (Lorenz,

1960, 1963, 1984; Maas, 1994; Olbers, 2001). The system may give realistic results
when the Rayleigh number is slightly supercritical, but their solutions cannot be
expected to resemble those of the complete dynamics when strong convection
occurs, in view of the extreme truncation. Figure 6 shows the numerical solution
in the phase space with the parameters r = 28, σ = 10, and b = 8/3. The
chaotic nature of this system inspired climate scientist and scientists in general. This
phenomenon had probably the greatest impact of climate science to mathematics.

Scaling in the Climate System

As we will see now, the Coriolis effect is one of the dominating forces for the large-
scale dynamics of the oceans and the atmosphere. It is convenient to work in the
rotating frame of reference of the Earth. The equation can be scaled by a length
scale L, determined by the geometry of the flow, and by a characteristic velocity
U. One can estimate the relative contributions in units of m/s2 in the horizontal
momentum equations:

∂v
∂t

︸︷︷︸

U/T ∼10−8

+ v · ∇v
︸ ︷︷ ︸

U2/L∼10−8

= − 1

ρ
∇p

︸ ︷︷ ︸

δP/(ρL)∼10−5

+ 2� × v
︸ ︷︷ ︸

f0U∼10−5

+ f ric
︸︷︷︸

νU/H 2∼10−13

(40)

where fric denotes the contributions of friction due to eddy stress divergence
(usually ∼ ν∇2v). Typical values are given in Table 1. The values have been taken
for the ocean.

It is furthermore useful to think about the orders of magnitude: Because of the
continuity equation U/L ∼ W/H and since the horizontal scales are orders of
magnitude larger than the vertical ones, the vertical velocity is very small relative
to the horizontal. For small-scale motion (like small-scale ocean convection or
cumulus clouds), the horizontal length scale is of the same order as the vertical one
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Table 1 Table shows the typical scales in the atmosphere and ocean system. Using these orders
of magnitude, one can derive estimates of the different terms in (40)

Quantity Atmosphere Ocean

Horizontal velocity U 10 m s−1 10−1 m s−1

Vertical velocity W 10−1 m s−1 10−4 m s−1

Horizontal length L 106 m 106 m

Vertical length H 104 m 103 m

Horizonal pressure changes δP (horizontal) 103 Pa 104 Pa

Mean pressure P0 105 Pa 107 Pa

Time scale T 105 s 107 s

Gravity (gravitation + centrifugal) g 10 m s−2 10 m s−2

Earth radius a 107 m 107 m

Coriolis parameter at 45◦N f0 = 2Ω sin ϕ0 10−4 s−1 10−4 s−1

2nd coriolis parameter at 45◦N f1 = 2Ω cos ϕ0 10−4 s−1 10−4 s−1

Density ρ 1 kg m−3 103 kg m−3

Viscosity (turbulent) ν 10−5 kg m−3 10−6 kg m−3

and therefore the vertical motion is in the same order of magnitude as the horizontal
motion. The time scales are related to T ∼ L/U ∼ H/W .

It is essential to think about the relative importance of the different terms in the
momentum balance (40). The Rossby Number Ro is the ratio of inertial (the left-
hand side) to Coriolis (second term on the right-hand side) terms

Ro = (U2/L)

(f U)
= U

f L
. (41)

It is used in the oceans and atmosphere, where it characterizes the importance of
Coriolis accelerations arising from planetary rotation. It is also known as the Kibel
number. Ro is small when the flow is in a so-called geostrophic balance.

Projection Methods: Coarse Graining and Stable Manifold Theory

The structure of fluid dynamical models and thus climate models is valid for systems
with many degrees of freedom, many collisions, and for substances which can
be described as a continuum. The transition from the highly complex dynamical
equations to a reduced system is an important step since it gives more credibility
to the approach and its results. The transition is also necessary since the active
entangled processes are running on spatial scales from millimeters to thousands
of kilometers, and temporal scales from seconds to millennia (Figs. 2 and 3).
Therefore, the unresolved processes on subgrid scales have to be described. This
is the typical problem in statistical physics, known as the so-called Mori-Zwanzig
approach (Mori, 1965; Zwanzig, 1960, 1980). The basic idea is the evolution of
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a system through a projection on a subset (macroscopic relevant part), where a
randomness reflects the effects of the unresolved degrees of freedom. A particular
example is the Brownian motion (Einstein, 1905; Langevin, 1908). Another solution
for the transition form may degrees of freedom to the macroscopic laws goes back
to Boltzmann (1896). The Boltzmann equation, also often known as the Boltzmann
transport equation (Bhatnagar et al., 1954; Boltzmann, 1896; Cercignani, 1990),
describes the statistical distribution of one particle in a fluid. It is one of the most
important equations of nonequilibrium statistical mechanics, the area of statistical
mechanics that deals with systems far from thermodynamic equilibrium. It is
applied, for instance, when there is an applied temperature gradient or electric field.
Both, the Mori-Zwanzig and Boltzmann approaches play also a fundamental role in
physics. The microscopic equations show no preferred time direction, whereas the
macroscopic phenomena in the thermodynamics have a time direction through the
entropy. The underlying procedure is that part of the microscopic information is lost
through coarse graining in space and time.

In order to get a first idea of coarse graining, one may think of the transition
from Rayleigh-Bénard convection to the Lorenz system (section Convection in the
Rayleigh-Bénard system). In our formula, the Galerkin approximation (31) and
(32) provided a suitable projector to simply truncate the series at some specified
wave number cutoff into a low-order system (such as in equations (33) and (34).
The mathematical theory behind this truncation is called the center manifold theory
(Haken, 1983; Oseledets, 1968). We could arrive at the slow manifold of the climate
system, to which all the faster response variables (e.g., the atmosphere) are attracted.
In mathematics, the slow manifold of an equilibrium point of a dynamical system
occurs as the most common example of a center manifold. One of the main methods
of simplifying dynamical systems is to reduce the dimension of the system to that
of the slow manifold – center manifold theory rigorously justifies the modeling
(Arnold, 1998; Arnold and Imkeller, 1998; Lorenz, 1986; Roberts, 2008).

The Mori-Zwanzig formalism (Mori, 1965; Zwanzig, 1960) and the slow mani-
fold theory provide a conceptual framework for the study of dimension reduction
and the parameterization of less relevant variables by a stochastic process. It
includes a generalized (Langevin, 1908) theory. Langevin (1908) studied Brownian
motion from a different perspective to Einstein’s seminal 1905 paper (Einstein,
1905), describing the motion of a single Brownian particle as a dynamic process
via a stochastic differential equation, as an Ornstein-Uhlenbeck process (Uhlenbeck
and Ornstein, 1930).

The Gaussian filtering of hydrodynamic equations that leads to the Smagorinsky
equations (Smagorinsky, 1963) is, in its essence, a version of coarse graining. The
projection method includes the procedure to describe turbulent energy dissipation
in turbulent flows, where the larger eddies extract energy from the mean flow and
ultimately transfer some of it to the smaller eddies which, in turn, pass the energy
to even smaller eddies, and so on up to the smallest scales, where the eddies convert
the kinetic energy into internal energy of the fluid. At this scales (also known as
Kolmogorov scale), the viscous friction dominates the flow (Frisch, 1996).
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Brownian Motion, Weather, and Climate

The daily observed maximum and minimum temperatures are often compared to the
“normal” temperatures based upon the 30-year average. Climate averages provide a
context for something like “this winter will be wetter (or drier, or colder, or warmer,
etc.) than normal.” It has been said “Climate is what you expect. Weather is what
you get.” What is the difference between weather and climate? This can be also
answered by an example/a metaphor in the football league. Predicting the outcome
of the next game is difficult (weather), but predicting who will end up as German
champion is unfortunately relatively easy (climate).

For climate, this transition between the climate and weather scales has been
formulated conceptually (Hasselmann, 1976; Leith, 1975) and later re-formulated
in a mathematical context (Arnold, 2001; Chorin et al., 1999; Gottwald, 2010). The
effect of the weather on climate is seen by red-noise spectra in the climate system,
showing one of the most fundamental aspects of climate and serving also as a null
hypothesis for climate variability studies.

In a stochastic framework of climate theory, one may use an appropriate
stochastic differential equation (Langevin equation)

d

dt
x(t) = f (x) + g(x)ξ, (42)

where ξ = d
dt

W(t) is a stationary stochastic process and the functions f, g : Rn →
Rn describe the climate dynamics. The properties of the random force are described
through its distribution and its correlation properties at different times. The process
ξ is assumed to have a Gaussian distribution of zero average,

< ξ(t) >= 0 (43)

and to be δ-correlated in time,

< ξ(t)ξ(t + τ) >= δ(τ ) (44)

where δ is the delta function defined by

∫

R
f (x) δ(x − x0) dx = f (x0). (45)

The brackets indicate an average over realizations of the random force. Formally,
ξ(t) is a random variable, i.e., ξ(t)(α) with different realizations due to random
variable α. The expectation < ξ(t) > is thus the mean over all α :< ξ(t)(α) >α .
Using the ergodic hypothesis, the ensemble average 〈〉 can be expressed as the time
average limT →∞ 1

T

∫ T/2
−T/2 dt of the function. Almost all points in any subset of

the phase space eventually revisit the set. For a Gaussian process, only the average
and second moment need to be specified since all higher moments can be expressed
in terms of the first two. Note that the dependence of the correlation function on the
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time difference τ assumes that ξ is a stationary process. ξ is called a white-noise
process.

Additionally, there might be an external forcing F(x, t) which is generally time,
variable, and space dependent. In his theoretical approach, Hasselmann (1976)
formulated a linear stochastic climate model

d

dt
x(t) = Ax + σξ + F(t), (46)

with system matrix A ∈ Rn×n, constant noise term σ , and stochastic process
ξ. Many features of the climate system can be well described by (46), which
is analogous to the Ornstein-Uhlenbeck process in statistical physics (Uhlenbeck
and Ornstein, 1930). Notice that σξ represents a stationary random process. The
relationship derived above is identical to that describing the diffusion of a fluid
particle in a turbulent fluid. In a time scale separated system, during one slow-time
unit the fast uninteresting variables y perform many “uncorrelated” events (provided
that the fast dynamics are sufficiently chaotic). The contribution of the uncorrelated
events to the dynamics of the slow interesting variables x is as a sum of independent
random variables. By the weak central limit theorem, this can be expressed by a
normally distributed variable. Note, in the absence of any feedback effects Ax,
the climate variations would continue to grow indefinitely as the Wiener process.
A perturbation in a system with a negative feedback mechanism will be reduced,
whereas in a system with positive feedback mechanisms, the perturbation will grow.
In the one-dimensional case, A can be rewritten as −λ. The real part of λ determines
then the stability of the system and is called feedback factor.

Climate Variability and Sensitivity

Imagine now that the temperature of the ocean mixed layer of depth h is governed
by a one-dimensional system

dT

dt
= −λT + Qnet + f (t) , (47)

where the air-sea fluxes due to weather systems are represented by a white-noise
process with zero average < Qnet >= 0 and δ-correlated in time < Qnet(t)Qnet(t +
τ) >= δ(τ ). The function f (t) is a time-dependent deterministic forcing. Assume
furthermore that f (t) = c · u(t) with u(t) as unit step or the so-called Heaviside
step function. Because < Qnet >= 0, < T (t) > can be solved using the Laplace
transform:

< T (t) > = L−1{F(s)}(t) = L−1
{

< T (0) >

s + λ
+ c

s
· 1

s + λ

}

(48)
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= T (0) · exp(−λt) + c

λ
(1 − exp(−λt)) (49)

because we have < T (0) >= T (0). As equilibrium response, we have

ΔT = lim
t→∞ < T (t) >= c

λ
. (50)

The fluctuation can be characterized by the spectrum

S(ω) =< T̂ T̂ ∗ >= 1

λ2 + ω2
. (51)

and therefore, the spectrum and the equilibrium response are closely coupled
(fluctuation-dissipation theorem). In mathematics, this is called Wiener-Chintschin-
Theorem (Chintchin, 1934; Wiener, 1930). For some energy considerations, it is
useful to rewrite equation (47) as

C
dT

dt
= −λCT + fC , (52)

with C = cpρdz as the heat capacity of the ocean. For a depth of 200 m of water
distributed over the globe, C = 4.2 · 103Ws kg−1K−1 × 1000 kg m−3 × 200 m =
8.4 · 108 Ws m−2 K−1 . The temperature evolution is

T (t) = T (0) · exp(−λc/C t) + fC

λC

(1 − exp(−λC/C t)) (53)

The left-hand side of (52) represents the heat uptake by the ocean, which plays a
central role in the transient response of the system to a perturbation (53).

Typical changes in fC are 4 W m−2 for doubling of CO2, λC = 1 −
2 Wm−2K−1. The typical time scale for a mixed layer ocean is C/λC = 13 −
26 years . Please note that the climate system is simplified by a slab ocean with
homogeneous temperature and heat capacity. This is an approximation as the heat
capacity should vary in time as the perturbation penetrates to deeper oceanic levels.
The equilibrium temperature change ΔT is

ΔT = ΔfC

λC

= c

λ
(54)

with values of ΔT = 2 − 4 K. The term CS = 1
λC

is called climate sensitivity to a
radiative forcing ΔfC :

ΔT = CS · ΔfC. (55)
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In the literature, the concept of climate sensitivity is quite often used as the
equilibrium temperature increase for a forcing ΔfC related to doubling of CO2.
It is obvious that the CS depends on the included sources of feedback of the system
which are related to climate components and their respective time scales (e.g.,
Lohmann 2018). Due to the non-normality in (46), the effective damping may not
be directly related to the eigenvalues of the system.

Non-normal Growth of the Climate System

In the one-dimensional case for x(t) = exp(at), we have the inverse Laplace
transform

exp(at) = L−1{F(s)}(t) = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

est 1

s − a
ds, (56)

and the entire range of t is controlled t by the resolvent | 1
s−a

|. Using the Fourier
transformation, (46) with forcing F(t) is transformed to

(iωI − A)x̂ = F̂ (57)

x̂ = (iωI − A)−1F̂ (58)

where I is the identity. The so-called resolvent operator of matrix A is R(ω) =
(iωI − A)−1. The behavior of the norms || exp(At)|| over the entire range of t is
controlled t by the resolvent norm ||R(ω)||. If A is a normal operator

A A+ = A+ A, (59)

where + denotes the adjoint-complex operator, then

||R(ω)|| = 1/dist(iω, σ (A)) (60)

is completely determined by the spectrum σ(A) alone. The operator dist denotes
the shortest distance of ω to the eigenvalues, the spectrum σ(A). This explains
the success of eigenvalue analysis. In contrast to this, for non-normal operators the
behavior of ||R(ω)|| may deviate from that dramatically, and hence in this context
pseudospectral analysis is just the right tool. For example, there are problems in
fluid mechanics where σ(A) is contained in the left half-plane, which suggests
laminar behavior, but it protrudes strongly into the right half-plane, which implies
that ||eAt || has a big hump before decaying exponentially fast to zero Reddy et al.
(1993) and Trefethen et al. (1993). More about the dynamics can be learned by
examining the pseudospectrum of A in the complex plane. Inspection of many
geophysical systems shows that most of the systems fail the normality condition.
The ε−pseudospectrum of operator A is defined by two equivalent formulations:
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Λε(A) = {z ∈ C : ||(zI − A)−1|| ≥ ε−1}
= {z ∈ C : [ smallest singular value of (zI − A)] ≤ ε}. (61)

This set of values z in the complex plane are defined by contourlines of
the resolvent (zI − A)−1. The resolvent determines the system’s response to
a forcing as supplied by external forcing F(x, t), stochastic forcing g(x)ξ, or
initial/boundary conditions. The pseudospectrum reflects the robustness of the
spectrum and provides information about instability and resonance. One theorem
is derived from Laplace transformation stating that transient growth is related to
how far the ε−pseudospectrum extends into the right half-plane:

|| exp(A t) || ≥ 1

ε
sup

z∈Λε(A)

Real(z). (62)

In terms of climate theory, the pseudospectrum indicates resonant amplifica-
tion. Maximal amplification is at the poles of (zI − A)−1, characterized by the
eigenfrequencies. In a mathematical normal matrix A, the system’s response is
characterized solely by the proximity to the eigenfrequencies. In the non-normal
case, the pseudospectrum shows large resonant amplification for frequencies which
are not eigenfrequencies. This transient growth mechanism is important for both
initial value and forced problems.

An atmospheric general circulation model PUMA (Fraedrich et al., 2005) is
applied to the problem. The model is based on the multilevel spectral model
described by Hoskins and Simmons (1975). For our experiments we chose five
vertical levels and a T21 horizontal resolution. PUMA belongs to the class of
models of intermediate complexity (Claussen et al., 2002); it has been used to
understand principle feedbacks (Lunkeit et al., 1998), and dynamics on long time
scales (Romanova et al., 2006). For simplicity, the equations are scaled here such
that they are dimensionless. The model is linearized about a zonally symmetric mean
state providing for a realistic storm track at midlatitudes (Frisius et al., 1998). In a
simplified version of the model and calculating the linear model A with n = 214,
one can derive the pseudospectrum. Figure 7 indicates resonances besides the poles
(the eigenvalues) indicated by crosses. The Im(z)−axis shows the frequencies and
the Re(z)−axis the damping/amplification of the modes. Important modes for the
climate system are those with −0.5 < Im(z) < 0.5 representing planetary Rossby
waves. The basic feature is that transient growth of initially small perturbations can
occur even if all the eigenmodes decay exponentially. Mathematically, an arbitrary
matrix A can be decomposed as a sum

A = D + N (63)

where A is diagonalizable and N is nilpotent (there exists an integer q ∈ N with
Nq = 0) and D commutes with N (i.e., DN = NA). This fact follows from
the Jordan-Chevalley decomposition theorem. This means that we can compute the
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Fig. 7 Contours of log10(1/ε). The figure displays resonant structures of the linearized atmo-
spheric circulation model. The modes extend to the right half-plane and are connected through
resonant structures, indicating for transient growth mechanism inherent in atmospheric dynamics

exponential of (A t) by reducing to the cases:

exp(At) = exp( (D + N) t) = exp(Dt) exp(Nt) (64)

where the exponential of Nt can be computed directly from the series expansion, as
the series terminates after a finite number of terms. Basically, the number q ∈ N is
related to the transient growth of the system (q = 1 means no transient growth).

The resonant structures are due to the mode interaction: It is not possible
to change one variable without the others, because they are not orthogonal.
Interestingly, one can also compute the A+ model, showing the optimal perturbation
of a mode through its biorthogonal vector which is the associated eigenvector of the
adjoint A+. The analysis indicates that non-normality of the system is a fundamental
feature of the atmospheric dynamics. This has consequences for the error growth
dynamics and instability of the system, e.g. Palmer (1996) and Lohmann and
Schneider (1999). Similar features are obtained in shear flow systems (Reddy et al.,
1993; Trefethen et al., 1993) and other hydrodynamic applications. This transient
growth mechanism is important for both initial value and forced problems of the
climate system (Farrell and Ioannou, 1996).



24 G. Lohmann

Predictability

In climate we may ask about our initial state. Climatologists always feel uncertain
when we want to give the initial values. There is always a more or less big inaccuracy
due to weather and uncertainties in many quantities which cannot be observed at
any time step (e.g., the deep ocean). The Lyapunov exponents λ play an important
role in knowing the predictability of a system. This is because the larger they are,
the smaller the number of steps for which predictions can be made with a certain,
desired accuracy. Consider a trajectory x(t) and a nearby trajectory x(t) + δ(t)

where δ(t) is a vector with infinitesimal initial length. As the system evolves, track
how δ(t) changes. The maximal Lyapunov exponent of the system is the number
λ such that |δ(t)| ≈ |δ(0)| · exp(λt). A classical example is again the Lorenz
system (37), (38), and (39) where for large parts of the phase space, we have limited
predictability because initial errors can grow.

Every dynamical system has a spectrum of Lyapunov exponents, one for each
dimension of its phase space. Like the largest eigenvalue of a matrix, the largest
Lyapunov exponent is responsible for the dominant behavior of a system. In case of
weather and climate, this Lyapunov exponent is therefore also time scale dependent.
Causality in climate has only a limited range in time and can only be verified in the
context of finite errors. Please note that even in classical mechanics, strict causal
relationships cannot be verified experimentally! It is true that the classical laws of
motion are generally deterministic. But the connection with the real physical world
is always possible only with limited accuracy due to the unavoidable measurement
errors. Therefore, the actual state can only be given with a certain probability
distribution within state ranges. In the usual discussion, this important part of
physics is often faded out; one likes to limit oneself to the equations of motion
alone.

Natural events also have their own time scales, namely, the so-called Lyapunov
times tLyap (these result from the expansion rates at tLyap = λ−1). This Lyapunov
time of a weather situation, it is about seconds to days, for climate years to decades.
We now have to compare the two relevant time scales tM and tLyap. Three cases are
possible:

• The Lyapunov time of the climate system under investigation is much larger than
the humanly relevant time scale (tLyap >> tM ): Then we can imagine the initial
state inaccuracy to be smaller and smaller in our minds, because this would only
increase the prediction time. Even if it would become infinite in our thoughts
because we let the measurement inaccuracy become zero, we would not even
notice it. Therefore, in these cases we consider the event (within the accepted
accuracy) to be predictable, causal.

• The human relevant time scale is much larger than the Lyapunov time of the
investigated system (tM >> tLyap): In this case prediction is no longer possible;
the actual course is completely different from the expected one. We observe
statistical, random behavior, since we do not know the actual initial state.
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• The relevant time scale is about as large as the Lyapunov time of the system under
study (tM ≈ tLyap): Then no exact but approximate predictions are possible; it
is also not entirely random, statistically. The predictions can even be improved
by measurement progress or by less demanding requirements for prediction
accuracy. A good example is the weather forecasts, which are only possible to
a limited extent; in the short and medium term, they are now quite reliable.

In essence, therefore, causality depends on the time of interest in comparison to
the forecast time, whether we can regard a phenomenon “practically” as causal, as
predictable in (sometimes excellent approximation), or whether the event appears to
us to be completely random, or finally as lying in the transition area and is therefore
experienced as improvable by increasing the accuracy, i.e., as neither causal nor
statistical. Climate is not only a differential equation; it must also be coupled to
the real world by specifying the initial values with measurement errors and by
translating the final values into measurable predictions. Thus it loses its purely
mathematical, causal character determined by the solution of differential equations.

Besides the initial conditions, uncertainties can appear through the external
forcing. Prominent external forcing are the change in greenhouse gases into the
atmosphere (e.g., Fig. 8) which strongly affect the long-term evolution of the Earth
system. Another external forcing is due to changes in insolation by orbital parame-
ters. There parameters vary on multi-millennial time scales (thousand years = ky)
and can be calculated by orbital theory. Milankovitch (1941) suggested the ice
sheet growth and decay is triggered by this external forcing. There are several
open questions for paleoclimate dynamics. Despite the pronounced change in Earth
system response evidenced in paleoclimatic records, the frequency and amplitude
characteristics of the orbital parameters, i.e., eccentricity (∼100 ky), obliquity
(∼41 ky), and precession (∼21 and ∼19 ky), do not vary (Berger and Loutre, 1991),
the climate frequency does. The uncertainty on long time scale is usually dominated
by the external forcing and the short time scale by the initial value problem; the
intermediate times at 10–50 years for the coming decades are dominated by internal
variability and uncertainty in model physics (Hawkins and Sutton, 2009). The
uncertainty of global and especially regional temperature estimates on decadal to
multidecadal time scales is manifested by large-scale coherent pattern like AMO,
PDO, and the quasi-decadal mode (cf. Fig. 2). For a while, people tended to think
that deterministic models would still always provide the best models in these cases.
One thought of the climate system is that deterministic models would be completely
adequate for describing the Earth’s atmosphere, which is basically just a layer of
gas subject to external heating. As seen here, the phenomenon of stochasticity
means that this is not so. As in the Lorenz system, chaos is introduced into the
climate system. So, in many cases, for quite fundamental reasons, deterministic
mathematical models do not provide adequate models. Statistical models are
mathematical models, each replicate realization of which will be different from
other realizations with the same model, even under identical conditions. Statistical
models are the major means of making sense of the climate dynamics (Fig. 9).
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Fig. 8 Different climate scenarios with a coupled Earth system model (Ackermann et al., 2020).
Time series of 11-year mean (a) CO2 forcing as concentration of CO2 equivalent in the atmosphere,
(b) global near-surface average temperature, (c) sea ice volume in the Northern Hemisphere;
shaded areas indicate 1 standard deviation

Boltzmann Dynamics

One of the most significant theoretical breakthroughs in statistical physics was due
to Ludwig Boltzmann (Boltzmann 1896, 1995 for a recent reprint of his famous
lectures on kinetic theory), who pioneered nonequilibrium statistical mechanics.
Boltzmann postulated that a gas was composed of a set of interacting particles,
whose dynamics could be (at least in principle) modeled by classical dynamics.
Due to the very large number of particles in such a system, a statistical approach
was adopted, based on simplified physics composed of particle streaming in space
and billiard-like inter-particle collisions (which are assumed elastic).

As already mentioned above, a fluid can be described by several physical
theories, of different granularities. The fact that we can, in principle, recover the
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Fig. 9 The wavelet sample
spectrum of long-term
climate change. The climate
record is based on Lisiecki
and Raymo (Lisiecki and
Raymo, 2005). The wavelet is
calculated using Morlet
wavelet with ω0 = 6. Thin
and thick lines surround
pointwise and areawise
significant patches,
respectively

phenomena predicted by the coarse-grained theories from solutions of the fine-
grained theories also suggests a non-conventional way of constructing numerical
algorithms for simulating fluid flows: Instead of directly modeling the coarse-
grained equations (i.e., Navier-Stokes equations for human-scale flows), we can
construct a simplified model of the fine-grained equations, which will exhibit the
same behavior at the larger scales.

In the following, an example derived for the Lattice Boltzmann Model (LBM) is
shown which is related to the thermohaline circulation. Water that is dense enough
to sink from the surface to the bottom is formed when cold air blows across the
ocean at high latitudes in winter in the northern North Atlantic (e.g., in the Labrador
Sea and between Norway and Greenland) and near Antarctica. The wind cools and
evaporates water. If the wind is cold enough, sea ice forms, further increasing the
salinity of the water because sea ice is fresher than seawater and salty water remains
in the water when ice is formed. Bottom water is produced only in these regions, and
the deep ocean is affected by these deepwater formation processes. In other regions,
cold, dense water is formed, but it is not quite salty enough to sink to the bottom. At
mid and low latitudes, the density, even in winter, is sufficiently low that the water
cannot sink more than a few hundred meters into the ocean. The only exception
are some seas, such as the Mediterranean Sea, where evaporation is so great that
the salinity of the water is sufficiently great for the water to sink to intermediate
depths in the seas. If these seas are can exchange water with the open ocean, the
waters formed in winter in the seas spreads out to intermediate depths in the ocean.
A numerical solution of this equation is shown in Fig. 10.
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Conclusions

Climate change occurred during the history of the Earth, the tectonic movements
over billions of years, and climate has varied between extremes before any
anthropogenic action could have arisen. However, anthropogenic action in terms
of heavy usage of fossil fuel has the potential to affect the Earth to a point
where its habitability is significantly affected. In terms of the time scale, it is
noted that we might disturb planetary-scale processes in the course of a few
decades. The complication is due to the fact that the climate system has inherent
fluctuations (internal climate variability), uncertainties in model formulations, and
scenario uncertainties for past and future climate scenarios. Modeling is necessary
to produce a useful understanding of abrupt climate processes. Model analyses
help to focus research on possible causes of abrupt climate change, such as
human activities; on key areas where climatic thresholds might be crossed; and
on fundamental uncertainties in climate system dynamics. Improved understanding
of abrupt climatic changes that occurred in the past and that are possible in the
future can be gained through climate models. For climate science, most fundamental
laws were discovered decades ago (Landau and Lifshitz, 1987) (although there are
Navier-Stokes existence and smoothness problems in three dimensions, see The
Clay Mathematics Institute, http://www.claymath.org/millennium-problems/). The
system has specific scales and characteristic numbers. Part of the uncertainty is
due to the difficulty to find a proper description of the system. Since it is hard to
disagree with the simple statement “more data are better,” the task here is rather to
identify those dimensions in the data space where invested resources may yield to a
maximum of new information. In this way, data assimilation techniques could help
for an estimate of the state of the system but also its uncertainty (Burgers et al.,
1998; Kalman, 1960; Nerger and Hiller, 2013).

High-resolution models are required to elucidate the causal chains in the climate
system, notably during abrupt transitions of the last deglaciation, and provide a
benchmark for future transitions under rapid CO2 increase. Practically, given the
present high-performance computer capacities, efficient and parallelized model
codes, it is now possible to conduct simulations for 50–100 model years per
day even with a multi-scale ansatz (Lohmann et al., 2020; Sein et al., 2018).
Recent developments have considerably improved the computational efficiency
and scalability of unstructured-mesh approaches on high-performance computing
systems (Danilov et al., 2017). The surface ocean current in such high-resolution
simulation (Fig. 11) has a completely different structure including eddies than the
structure in coarse resolution model.

Weather and climate extremes cause huge economic damages and harm many
lives each year (Franzke, 2017). There is evidence that some types of weather
and climate extremes, like heat waves and flooding, have already increased or
intensified over the last few decades, and climate projections reveal a further
intensification for many types of weather and climate extremes in many regions
though the uncertainties still remain large. Future research may be enhanced along

http://www.claymath.org/millennium-problems/
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Fig. 11 Representation of
small-scale features of ocean
currents in high-resolution
ocean models: simulated
velocity field: simulated
velocity field in the North
Atlantic at 100 m depth in
December 1950 using
FESOM with high-resolution
locally eddy-resolving mesh
based on Sein et al. (2018)

three directions data, statistics, theory, and models, leading to an increase in the
current knowledge about the climate evolution. It is crucial that researchers deepen
or acquire the ability to integrate all directions into their arsenal of mathematical
methods.
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