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Abstract

The dynamics and predictability of Stommel�s ������ box model of the thermo�

haline circulation is studied� This nonlinear model with idealized geometry of the

North Atlantic is solved exactly� A phase space analysis of the model reveals that

the optimal perturbation a�ecting long�term climate variability is provided by high

latitude haline forcing in the Atlantic ocean� although this perturbation has little

resemblance with the most unstable mode of the system and the leading EOF�

Furthermore� the predictability problem is investigated by means of singular vec�

tor analysis and the evolution of the probability distribution function� Uncertainties

in the oceanic initial conditions do increase in the phase space of the model� In the

stochastically forced box model with identical oceanic initial conditions� the climate

predictability is examined for the damped persistence forecast� We �nd that the loss

of the predictability is related to the di�erent stages of the variance evolution which

is also measured by the relative entropy� Our analysis shows that the non�normal

system matrix of Stommel�s model does a�ect the dynamics and predictability of

the system which is useful for the interpretation of long�term climate variability and

predictability�



� Introduction

The oceanic thermohaline circulation �THC� occupies a central position in the un�

derstanding of climate variability and predictability because of its link to long�term

variability and climate changes� In the North Atlantic� warm and saline surface wa�

ter is transported northward� and on its pathway it is cooled and freshened through

surface �uxes� The large amount of heat transported by the THC is responsible for

the relatively mild climate in northern Europe� Most of the northward oceanic heat

transport is associated with the meridional overturning which is driven� at least in

part� by deep water formation in the Labrador and Nordic Seas�

The pioneering work of Stommel ������ demonstrated the existence of multi�

ple equilibria under same atmospheric forcing conditions� Stommel�s result with

an ocean box model has initiated studies using three dimensional ocean circulation

models �Bryan� ����� Manabe and Stou�er� ������ con�rming the existence of mul�

tiple equilibria� Besides the modeling studies� there is paleoclimatic evidence �e�g�

Lehmann and Keigwin� ����� that secular variability and abrupt climate changes are

linked to variations in the THC� In addition to paleoclimatic shifts� interdecadal cli�

mate variability may originate from changes of North Atlantic Deep Water �NADW�

formation� A large salinity �uctuation in the northern North Atlantic was observed

in the early seventies� known as the �Great Salinity Anomaly� �Dickson et al�� �����

which temporarily weakened deep water formation in the Labrador Sea �Lazier�

������

We present in this paper the analytical solution of Stommel�s ������ low order

model� The model mimics the North Atlantic region which seems to be a very

sensitive part of the global thermohaline circulation� With a coupled atmosphere�

ocean version of this model� we analyze the qualitative behavior of the THC in

terms of stability� variability� and predictability� The model dynamics are analyzed

in phase space and we examine the most e�ective excitation of the model variability�
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The issue of atmospheric predictability started with the work of Lorenz �������

This was later extented to a coupled atmosphere�ocean mixed layer model �Nese

and Dutton� ���
�� Although the typical predictability limit of weather phenomena

is of the order of weeks� climate variations are much more predictable due to the

large oceanic heat capacity and dynamical inertia� Other modeling studies deal with

the forecast of the dominant interannual climate �uctuation� the El Ni�no�Southern

Oscillation �Goswami and Shukla� ����� Blumenthal� ����� Eckert and Latif� ���	��

For the North Atlantic� the predictability should include an active THC which was

recently addressed by Gri�es and Bryan ����	�� In several predictability experi�

ments with their complex coupled model� they estimated the predictability of the

dominant EOF patterns� They concluded that the ocean�atmosphere interactions

yield to predictability limits beyond the intrinsic predictability limits of the atmo�

sphere� Following their approach� we will address the question of predictability in

our simple model which is forced by stochastic atmospheric white noise stemming

from the underlying dynamical processes in the atmosphere�

The paper is organized as follows

We present the exact solution of Stommel�s ������ box model �section ��� In sec�

tion 
� the dynamics and error growth is analyzed in the phase space of the model�

A stochastically forced box model is presented in section �� We are particularly

interested in the type of forcing which leads to maximal long�term variability and

predictability� The damped persistence forecast and a concept adapted from infor�

mation theory are applied to our model� The results are discussed and conclusions

are given in section ��

� Solution of Stommel�s model

In this section� a category of the nonlinear models following the simple thermohaline

model of Stommel ������ is solved exactly� The common assumption of these box
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models is that the oceanic overturning rate � can be expressed by the meridional

density di�erence

� � �c ���T � ��S� � ���

where � and � are the thermal and haline expansion coe�cients� c is a tunable

parameter� and � denotes the meridional di�erence operator� Stommel ������ con�

sidered a two�box ocean model where the boxes are connected by an over�ow at the

top and a capillary tube at the bottom� such that the capillary �ow is directed from

the high density vessel to the low density vessel following the law ����

The equations for temperature T and salinity S are the heat and salt budgets in

one oceanic box using an upstream scheme for the advective transport

d

dt
T � �

�

V
�T �

Foa

��cph
���

d

dt
S � �

�

V
�S �

S�

h
�P �E� � �
�

where V is the volume of the box with depth h � and �P � E� denotes the fresh

water �ux �precipitation minus evaporation plus runo��� Foa is the heat �ux at

the ocean�atmosphere interface� S� is a reference salinity� and ��cp denotes the heat

capacity of the ocean� For simplicity� we have restricted our notation to the case

with high latitude deep water formation� For a reversed circulation� the parameter

c in ��� must then be substituted by �c �

The budget equations for temperature and salinity ��� 
� for each box with

volume V can be subtracted from each other in order to get

d

dt
�T � � �

�

V
�T � �

Foa

��cph
���

d

dt
�S � � �

�

V
�S � �

S�

h
�P �E� � ���

As in Lohmann et al� ������� we assume a linear response model for the surface

�uxes Foa and P � E as function of sea surface temperature �Appendix A���� The






equilibrium temperature and salinity gradients ��T ���S�� correspond to those val�

ues for which the left hand side of ��� and ��� vanish� The resulting cubic function

for �T � in terms of �S� has three real solutions for a wide range of parameters in

the model �Stommel� ������

We subtract the climatic background state ��T ���S�� from the dynamical equa�

tions ��� �� resulting a nonlinear evolution equations for the anomalies �T � �T �

and �S��S� which are denoted in the following by T and S � respectively� Denot�

ing� furthermore X for the two dimensional vector �T� S� � the evolution equation

for the anomalies T and S is of the following structure

d

dt
X � AX � hbjX i X � X��� � X� for X�X� � R

n� n � N � ���

The brackets h j i denote the Euclidean scalar product� This evolution equation

��� without inhomogeneities has the stationary solution X � � � corresponding to

the stationary state ��T ���S�� � In the Appendix A��� matrix A and vector b are

speci�ed for the box model�

Let � � Rn denote the solution of

A� � � b � � � �	�

where A� is the adjoint operator to A � With the de�nition

X�t� �
�

��t�
exp�At�X� � X��X�t� � Rn ���

and the scaling function

��t�X�� � h � j exp�At�X� i � h �jX� i � � � ���

one can verify that X�t� of ��� solves the di�erential equation ���

d

dt
X � A

�

�
exp�At�X� �

 �

��
exp�At�X�

� AX � h�jAXi X � AX � hbjXi X � ����

�Bold face is used for vectors and matrices throughout the paper
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The models of Stommel ������� Marotzke and Stone ������� Lohmann et al�

������� Ruddick and Zhang ������� Winton ����	� and many others are of type ����

and their dynamics are therefore exactly known�

� Dynamics and error growth

In this section� we analyze the sensitivity of the model and its variability in phase

space� In particular� we examine why salinity perturbations are so important in

changing the THC� and how errors in the initial conditions develop further�

��� Dynamics

The model is tuned to the present climate �Lohmann et al�� ����� which places

it in the thermal regime of the THC with a meridional overturning rate �� of

��Sv ��Sv � ���m�s���� We seek the initial conditions for which X�t� asymp�

totically reaches this equilibrium state� Because � � � initially ���� this question

can be reduced to the determination of initial conditions X� where ��t�X�� � �

is positive for all t � �� The grey area in the phase space spanned by temperature

and salinity �Fig��� indicates the region of unstable initial states which are outside

the basin of attraction for the thermally driven THC� The circulation with North

Atlantic Deep Water formation is possible only in the white area �Fig���� basic states

with a large meridional salinity or small temperature gradient are not stable� Fur�

thermore� we �nd that the critical perturbation is mainly a function of the strength

of the background meridional mass transport �� �not shown��

We analyze the dynamics in the phase space spanned by temperature and salin�

ity anomalies and investigate the model sensitivity under anomalous high latitude

forcing� induced as an initial perturbation� The lines in Fig�� are phase space trajec�

tories after perturbations of di�erent magnitude have been injected into the North

Atlantic� We notice that for most trajectories� the distances from zero ��� �� in�
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creases temporarily� where the maximal distance from zero is after a decade� After

about �� years the trajectories in Fig�� point into a �mixed temperature�salinity di�

rection�� denoted further as e�� Fig�� imply that the adjustment of the THC involves

two phases A fast thermal response and a slower response on the e��direction� We

shall see later that the vector e� is identical with the most unstable mode in the

system� Because the scaling function ��t� acts upon both temperature and salinity

�equation ��� the evolution of the nonlinear model can be well characterized by the

eigenvectors of the matrix A � which is discussed in the next section�

��� Initial excitation

The operator A of the box model is found to be non�normal �AA� �� A�A� � and

the eigenvectors of A � e� and e�� are not orthogonal �Fig���� One eigenvalue �e��

is closely related to temperature anomalies� whereas the other �e�� is a �mixed tem�

perature�salinity eigenvector� �Fig� ��� The eigenvectors of the adjoint matrix A�

are denoted by e�� and e��� respectively� For the non�normal matrix A � the eigen�

vectors of A and A� do not coincide� but ful�lling the �biorthogonality condition�

e�� � e� and e�� � e� � For the linear dynamics �X� we make the ansatz

�X � c� e� exp���t� � c� e� exp���t� � ����

where the eigenvalues ���� correspond to the eigenvectors e��� � In our system� both

eigenvalues are real and negative� Because of �� � ��� the �rst term dominates

for long time�scales and the second for short time scales� Using the biorthogonality

condition� we get furthermore the coe�cients

ci �
he�i jX�i

he�i jeii
for i � �� � � ����

A perturbation is called �optimal�� if the initial error vector has minimal pro�

jection onto the subspace with fastest decaying perturbations� or equivalently if the

coe�cient c� is maximal� This is according to ���� equivalent to X� pointing
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into the direction of e�� � This unit vector e�� is called the �biorthogonal� �Palmer�

����� to the most unstable eigenvector e� which we want to excite�� The most

unstable mode e� and its biorthogonal e�� di�er greatly from each other� and the

perturbation that optimally excites the mode bears little resemblance to the mode

itself�

It is remarkable that the optimal initial perturbation vector e�� does not coincide

with a perturbation in sea surface density at high latitudes� which would reside on

the dotted line perpendicular to � � const� in Fig��� Even when using a space

spanned by ��T� �S� instead of �T� S� � to take into account the di�erent values for

the thermal and haline expansion coe�cients� vector e�� is much more dominated by

the scaled salinity anomalies than the temperature anomalies of the high latitudinal

box��

��� The error growth due to uncertain initial conditions

Assume that the oceanic initial conditions of our model are uncertain which could be

due to the lack of exact measurements or due to extreme events� Our interest is in

identifying and analyzing which uncertainties in the initial conditions are crucial for

the limitation of the system�s predictability� In our box model� the evolution X�t�

is known� Thus� the tangent linear operator A�X� can be obtained analytically�

The evolution on the tangent vector space is given by x�t� � exp�At� x� and

the growth of the error vector x�t� can be measured by the norm of the symmetric

�In order to make a geometrical picture for the mathematical considerations� assume that the
tail of the vector X� is placed on the e��line and its tip on the e��line� This vector is stretched
maximally because the tail decays to zero quickly� whereas the tip is hardly unchanged due to the
larger eigenvalue �� �

�We have chosen the �T� S��space instead of ��T� �S� � in order to make the phase space anal�
ogy more clear and to discuss the e�ect of changed � under di�erent climatic conditions� For
colder climate states� the angle between the eigenmodes e� and e� decreases and the transient
ampli�cation in Fig�� is stronger�

	



matrix eA
�t eAt 

jjx�t�jj � �
�
eAtx� j e

Atx�

�
�

�
eA

�teAt x�jx�

�
� ��
�

The eigenvectors of the so�called Oseldec�operator eA
�t eAt are the singular vectors

of the tangent linear operator A � The eigenvalues of eA
�t eAt are connected to the

ampli�cation rates of x�t��

We suppose that the initial conditions are uncertain and are normally distributed

in phase space� The initial state is then represented by a circle in phase space �Fig�
�

where the axis units correspond to the same density contribution� The development

for �ve di�erent times � day� � month� � months� � year� and � years is shown in

Fig�
� For time�scales larger than � years� the ellipsoids coincide almost with a line

on the major axis are therefore not shown in Fig�
� The initial circle is stretched

during the evolution� thereby decreasing its area by the factors ����� ����� ����� �����

and ���� � respectively� The main axes of the ellipsoids de�ne the singular vectors of

the system� The forecast ellipsoids rotate further in phase space �Fig�
�� Initially�

eA
�t eAt can be approximated by � � �A��A� t � and the ellipsoid deformation for

initial time coincides with the vector �e� � e���	� �Fig���� After a few months� the

error growth is rotated into the direction of the next term of the Taylor expansion

�A�A t�	� � of the Oseldec�operator� After one year� the dominant singular vector

coincides almost with sea surface salinity anomalies� We obtain that ellipsoids after

a few years degenerate to a line� and asymptotically they are reduced to the origin

��� �� because the matrix A is asymptotically stable�

It follows that errors in high latitude sea surface temperature �SST� are less

important in the initial conditions than sea surface salinities when predicting the

evolution of oceanic variables� We �nd that a negative feedback �damping� of SST�

anomalies in the northern North Atlantic due to the atmospheric response model is

essential for our conclusions� A positive feedback for SST�anomalies would amplify
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initial errors� making the SST highly unpredictable� We �nd furthermore that the

dominant error growth vector changes only slightly for di�erent background climatic

states ��T ���S�� and thus for a whole model trajectory X�t� � �T �t�� S�t�� �

� The stochastically forced box model

We generalize Stommel�s ������ dynamics ��� �� to the stochastically driven system

where additive noise in the temperature and salinity dynamics re�ects the variance

of heat and freshwater �uxes due to synoptic activity �Hasselmann� ��	�� Lemke�

��		�� We consider moderate stochastic forcing only� and a numerical simulation of

the stochastic di�erential equation shows that the nonlinear terms in the stochastic

di�erential equation play a minor role� For simplicity� the linearized version is

discussed only� With the abbreviation X� � T and X� � S as in the previous

sections� this set of equations can be rewritten as

d

dt
X � AX � F � � X�� � R� ����

with ��t� as a white noise forcing with unit variance and zero mean� and F as a

matrix speci�ed later� The solution of this linear stochastic di�erential equation is

the stochastic integral

X�t� � eAt X� � eAt

Z t

o

e�AsF ��s� ds � ����

��� Stochastic excitation

In the previous sections 
�� and 
�
� we have investigated at the sensitivity of the

THC with respect to initial conditions� Here� we want to consider the statistical

steady state� and to seek that stochastic forcing F which most e�ectively excites the

stationary variance� From ����� the variance induced by the stochastic forcing is

E
�

�X � �X��
�

� Tr

�
F �

�Z t

o

eA
��t�s� eA�t�s�ds

�
F

�
� Tr !F �Bt F " ����

�



with the positive hermitian Bt accumulating the perturbation growth� The variance

���� is maximal� if the matrix F consists of the eigenvectors of Bt � because then

the matrix F �Bt F has diagonal form and the trace in ���� is maximal�

Because the matrix A is asymptotically stable� the statistics are stationary� For

the statistically steady state� the eigenvectors of B� � limt��Bt are ordered

according to their contribution to the variance and are called �stochastic optimals�

�Farrell and Ioannou� ����� for the linearized dynamics ����� The leading stochastic

optimal �shown as so� in Fig���� excites most e�ectively the stationary variance�

This vector points almost into the direction of the most e�cient excitation vector e��

�Fig���� The e�ective span of the variance is referred as to the empirical orthogonal

functions �EOFs�� The �rst EOF �eof� in Fig���� explaining more than ��# of the

total variance� is quite di�erent from the vector which most e�ectively excites the

stationary variance �so�� which is a common feature of non�normal systems �Farrell

and Ioannou� ������

��� Predictability

In this section� we use the additive stochastic forcing components in ���� with equal

contributions to the high latitude density such that the variances of �T and �S have

the same magnitude in ����� We de�ne the ensemble mean vector �X � �EfX ig�

and the covariance matrix R � �Rij� �
�
Ef�X i � �Xi��X j � �Xj�g

	
� In the sta�

tistically steady state� the eigenvectors of the asymptotic variance matrix R� �

limt��Rij span the maintained variance �EOFs� The leading EOF �eof� in Fig���

is the �rst eigenvector of R� � One can prove that the time evolution of the covari�

ance matrix R�t� is given by

R�t� � R� � eAt R� eA
�t � ��	�

��



The matrix R�t� is symmetric and its eigenvectors rotate in phase space� which is a

consequence of the non�normal evolution operator A� The solution ���� corresponds

to the solution of a Fokker�Planck equation� an evolution equation for the proba�

bility distribution function �Appendix A���� Starting with a 
�function at initial

time �and assume without loss of generality zero mean�� the time evolution of the

probability distribution functions �PDFs� is shown in Fig��� In a system where the

eigenvector would be orthogonal� the PDF would not rotate because the dynamics

can be reduced to statistically independent normal modes�

The mean square di�erence between the realizations X�t� and the mean vector

�X�t� provides a de�nition of the error in the forecast and is called damped persis�

tence forecast of the ensemble mean �X �Lorenz� ��	
�� The loss of predictability

in the �rst year is largest for salinity �Fig�� a and b�� and after � years� the variance

is greatest in the direction of the �rst EOF �Fig�� c and d��

Assuming an initial anomaly X�� a net skill parameter of climate prediction may

be de�ned by the signal to noise ratio� A more objective way to de�ne predictability

is in the framework of information theory �Leung and North� ������ This concept

makes use of an ensemble entropy E�t� which yields a predictability measure for

the evolution�� Fig�� shows the negative of the relative entropy which decreases in

time� This quantity is also called transinformation� and the values of �E�t� can be

associated with the amount of uncertainty� which can be removed if we know the

initial anomaly �Leung and North� ������ The decay of �E�t� in Fig�� corresponds

to di�erent dynamical stages of our two dimensional problem� In the �rst month�

the information loss is mainly due to the broadening of the PDF in the salinity

direction �corresponding to Fig�� a�� After that time� the rms error increases with

a larger e�folding time� and the knowledge about the system is very small after a

decade �Fig���� The stationary PDF has maximal variance and contains therefore

�For a detailed de�nition and calculation of E�t� � we refer to the Appendix A��
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less information about the system� The loss of predictability can also be associated

with the overlap of the actual PDF with the stationary PDF �Eckert and Latif�

���	��

� Discussion and Conclusions

We have presented an analytical solution for the types of models proposed by Stom�

mel ������� This box model� consisting of the components to the meridional buoy�

ancy gradient in the North Atlantic ocean� has been used as a paradigm for multiple

equilibria of the large�scale ocean circulation� Starting from the analytical solution

of Stommel�s model� we found a class of exactly solvable nonlinear di�erential equa�

tions� Interestingly� this class of di�erential equations form singularities and the

dynamics has a �nite escape time� The explicit solution of the Stommel ������ box

model enables us to study the parameter sensitivity� dynamics� and error growth of

this idealized model of the thermohaline circulation� We have focussed mainly on

aspects of the model phase space spanned by temperature and salinity and on its

consequences for long�term climate variability�

Our results suggest that climatic states which are associated with NADW for�

mation are located in a speci�c part of the phase space only where the NADW

circulation with a large meridional salinity or small temperature gradient is not sta�

ble� This is also supported by the recent coupled GCM experiments of Tzipermann

����	� who �nds inherently unstable climate behavior due to weak THC�

Because of the special structure of the analytical solution� the dynamics can

be traced by the eigenvectors in phase space which are found to be highly non�

orthogonal� In the model phase space� we found that the temperature response is

very fast compared to that of the most unstable mode� The most unstable mode

represents a mixed temperature�salinity vector� Applying the concept of Farrell and
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Ioannou ������ to the non�normal system matrix of Stommel�s model of the North

Atlantic� it is retrieved that haline perturbations in the northern North Atlantic

provide the most e�ective excitate�mechanism to the thermohaline circulation� The

optimal perturbation for the model�s THC� understood in terms of an initial value

problem� is not due to high latitude density� The optimal perturbation is perpen�

dicular to the temperature eigenmode of the system and has little resemblance with

the most unstable mode and the leading EOF� Our study suggests that a proper

conceptual model with an active THC variability should not be one�dimensional

since two di�erent regimes are coupled due to an active THC� In one�dimensional

models� the stochastic optimal� the optimal excitation vector and the most unstable

normal mode coincide with each other�

Furthermore� we �nd that the leading EOF� a mixed temperature�salinity vector�

is optimally excited by salinity �uctuations in the northern North Atlantic induced

by the weather noise� With our low order model� we can show that freshwater �ux

�uctuations play thus an important role in�uencing long�term climate variability�

Several studies analyzed the long�term variability using stochastic upper boundary

conditions� Mikolajewicz and Maier�Reimer ������ and Weisse et al� ������ used

an ocean general circulation model under mixed boundary conditions with super�

imposed white noise forcing in the freshwater �ux� �nding a strong secular mode

of variability� Other studies using models with di�erent levels of complexity �as

e�g� Gri�es and Tzipermann� ����� �nd also that the long�term variability depends

strongly on the noise level of atmospheric �uxes� In terms of our terminology� their

models are forced by perturbations that are close to the leading stochastic optimal

for long�term variability�

We address the question of climate predictability in our low order model adopting

the concepts of error growth dynamics and the PDF evolution� Uncertainties in the

oceanic initial conditions grow in the phase space of the box model� The dominant
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error growth vector rotates in the phase space and after one year� this vector is

closely related to the salinity anomalies� Uncertainties in high latitude salinity are

responsible for the short�term ampli�cation of the forecast ellipsoid� because haline

anomalies provide an e�ective instability mechanism for the THC� When modeling

climate variations on decadal time�scales� the initialization of sea surface salinity is

therefore more important than errors in the initial temperature �eld�

In our consideration of the long�term variability in the North Atlantic� we added

noise to the deterministic Stommel ������ model� The stochastic component ac�

counts for an active participation of the THC variability� integrating short term

weather �uctuations� This is consistent with the red�noise hypothesis and the role

of negative feedback process in limiting climate variability �Hasselmann� ��	��� In

addition to the usual red�noise response� the low�frequency variability for the mul�

tivariate process is strongly enhanced due to the non�orthogonality of our system

eigenvectors� Formally� the change in meridional overturning is responsible for the

non�normality of the system and the coupling of temperature and salinity in the

model� The modes interact such that the ensemble response variance is larger than

the summation of two di�erent autoregressive processes for the distinct time�regimes

�Farrell and Ioannou� ������ Therefore� local linear stochastic theory may not ex�

plain sea surface temperature and salinity variability when an active meridional

overturning is involved in the dynamics which is consistent with Hall and Manabe�s

����	� �ndings in a coupled GCM�

In the stochastically forced model� the prediction is traced by the probability dis�

tribution function of the corresponding Fokker�Planck�Equation� The predictability

has been calculated as a damped persistence forecast �Lorenz� ��	
� for the mul�

tivariate process� The response of the system to an external forcing by noise is

di�erent from the error growth dynamic conducted by the singular vector analysis�

The PDF�prediction is by construction not sensitive to initial conditions� because the
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initial conditions are exactly known �ideally a 
�function�� Our stochastic approach

provides a means of quantifying the growth of the variance in time� The evolution

of the probability distribution function is largely a�ected by the non�normality of

the model� and the PDF maxima rotate in phase space� We show furthermore that

the prediction skill can be quanti�ed by the relative entropy� a measure of infor�

mation in the dynamical system �Leung and North� ������ yielding an objective

criterium for the loss of predictability in the model� We argue that predictability

is connected with the instabilities of the system� Using a model with much more

degrees of freedom and further instability mechanisms� the ensemble experiments of

Gri�es and Bryan ����	� show that sea surface temperature is only predictable for a

few years due to the overlying atmospheric variability� Additionally� their system is

hardly predictable in regions of active convection� since convective activity provides

a source of ensemble variance growth in their model with identical oceanic initial

conditions�

Although the Stommel ������ box model hardly represents the real climate sys�

tem� this model is good prototype models to understand climate variability and

predictability in the Atlantic area� Our analysis demonstrates that the non�normal

properties of the model have a strong in�uence on the dynamics and predictability�

Because non�normal system matrices are a quite general feature of �uid dynamical

systems �Reddy� ���
� Trefethen et al�� ���
�� we think that more complex models

could bene�t from a phase space approach applied here�

��
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Appendix A

A�� System matrix and exact solution

In our formulation ���� the system matrix A is speci�ed to be

A �

�
���	V � c��T �	V � q �c��T �	V
c��S�	V � p ���	V � c��S�	V

�
����

and vector b is �c�	V� �c�	V � � The abbreviations for p and q are

p �
��P �E�

�T
� S�	h ����

q �
�Foa

�T
� V	���cph� � ����

These parameters are de�ned through the atmospheric response model where the

meridional transports are parameterized as di�usion �Lohmann et al�� ������

The dynamics of the model is exactly known� when the vector � � � �A���� b

of equation �	� is speci�ed

� �

�
c��� � c� V p
c��� � c�q

�

������ � q �c��T � � �c� �S�� � c�V p�T �
� ����

The denominator in ���� is the negative determinant of matrix A� The units of

vector � � ���� ��� are �	K and �	psu� respectively�

��



A�� Fokker�Planck equation and entropy function

The Fokker�Planck equation which corresponds to the stochastic di�erential equa�

tion ���� is a partial di�erential equation for the probability distribution function

�tP �X � t� � �r � !AX P �X� t�" � r � !F F � rP �X � t�" � ����

The solution is

P �X � t� �

�
detR��

���n

����
� exp

�
�

�

�
�X � �X�R�� �X � �X�

�
� ��
�

where �X�t� and R�t� are the ensemble mean vector and covariance matrix of �����

respectively� The stationary probability distribution function P stat�X� can be re�

trieved from ��
� by replacing R by R� and �X by zero�

We de�ne the relative entropy by

E�t� � �

Z
R
n

dX P �X � t� ln !P �X � t� 	P stat�X� " ����

and �nd that E�t� increases monotonically in time and approaches zero for t�� �

This can be found by inserting the Fokker�Planck equation ���� into ���� or directly

by calculating E�t� with the solution ��
�

E�t� �
�

�
ln!det�R��

�
R�" �

�

�
�XR��

�

�X �
�

�
Tr!R��

�
eAtR�e

A�t" � ����

In addition� the relative entropy is averaged over the initial state such that the

second term in ���� vanishes and the function becomes independent on initial state�

�	
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Figure � The basin of attraction �white area� and the dynamics in the thermo�
haline phase space� With initial conditions outside the gray area� the trajectories
converge asymptotically to the origin corresponding to the thermal driven solution
of the THC� Due to the fast thermal response during the �rst decade of relaxation�
the distance of the trajectories from zero can increase temporarily�
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 Forecast ellipsoid after � day� � month� � months� � year� and � years� The
main axes of the ellipsoids de�ne the singular vectors of the system� After a year�
the dominant singular vector coincides almost with sea surface salinity anomalies�
The axes are scaled for equal contributions of salinity and temperature anomalies
to high latitude density�
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Figure � Development of the probability distribution function �PDF�� Starting with
a 
�function in ������ the PDF is shown after one month �a� and � months �b� with
contour interval �� and after one year �c� and two years �d� with contour interval
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Appendix A���


