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Starting from the classical Stommel (1961) two-box model for the North Atlantic merid-
ional overturning circulation, Timmermann and Lohmann (2000, herealter TL) consider the

dynamics of the following system of equations:
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where y represents the scaled salinity difference between the two boxes, gy is the sealed
salinity forcing, £ is a white noise process, and ¢ is an QOrnstein-Uhlenbeck (red noise) process
with variance o /27 and autocorrelation e-folding time 7. TL associate ¢ with Auctuations of
the temperature difference between the two boxes around the mean value [which is 1 in the
scaled variables). The representation of variability in the temperature gradient by a red noise
process is motivated by the findings of Lohmann and Schneider (1998) that in the Stommel
model temperature differences vary on a much shorter timescale than salinity differences.
As v — 0, ¢ becomes Gaussian white noise, and the probability density function (PDE)
of y satisfies a one-dimensional Fokker-Planck equation (FPE) from which the stationary
PDF (that is, the PDF describing the system after the initial transients have died off)
may be evaluated analytically. Because ¢ is multiplied by y in equation (1), the # — 0
lirnit rmust be taken carefully. In technical jargon, equation {1} converges to a Stratonovich
stochastic differential equation as + - 0; a brief review of stochastic caleulus and the Fokker-
Planck equation is given in Penland [199), and a more comprehensive discussion appears
in Gardiner (1997). For = # 0, the PDF of y alone is no longer deseribed by an FPE.
Une can, however, write down a FPE for the joint PDF of y and . Unfortunately, the

stationary version of this FPE i3 a partial differential equation in two variables that cannot



be solved analytically. In this note, we comment on two aspects of TL: first, the derivation
and interpretation of equations (1) and (2), and second, the validity of the approximation
used in TL to obtain analytic forms for the stationary PDF of y for 7 # 0.

We first comment on the derivation and interpretation of equations (1) and (2). The
original system of equations in TL describes the dynamics of the salinity gradient, AS,
when the temperature gradient AT is described as red noise fuetuations AT' arcund a

mean value ATy
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where t* ig the dimensional time, V' is the box volume, ¢ ig the proportionality constant
between the density gradient and the meridional Aux, ¢ and 8 are respectively the thermal
and haline expansion coeflicients, S; is a reference salinity, & is the box depth, P~ E is the
salinity forcing, +* is the temperature Auctuation relaxation timescale, ¥ is a noise strength,
and £ is Gaussian white nolse. TL argue that equations (1) and (2) follow from (3) and (4)
under a suitable rescaling of variables. However, in equation (3), the process AT appears
only inside the absclute value sign, while in equation (1), the process appears oulside the
absolute value sign. In fact, equation (1) does not follow from (3). Furthermore, it can be
shown that for (3), the stationary PDF of AS in the limit that AT becomes a white noise
process is a delta function at AS = 0 {Peter Imkeller, personal communication), which is
not phygically reasonable.

An alternate interpretation of (1) is as follows. We consider the Stommel (1961) model:
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where Cp is the oceanic heat capacity. The freshwater forcing P — E is an unspecified
function of AT, and the atmosphere-ocean heat flux F, has the net effect of relaxing AT
to some value ATy, The quantity 5 in equations (5) and [6) is a parameterisation of the
eddy transport of temperature and salinity between the boxes; this eddy mixing may be
associated with transport due to, for example, the wind-driven gyres or quasigeostrophic
eddies. The process ) is nof constrained to be positive, so eddy transport between the bosces
may be upgradient (see e.g. Nakamura and Chao, 2000). A similar term appears in response
to fuctuations in mechanical forcing in the model of the thermally and wind-driven ocean
circulation introduced by Maas (1994). In general, 5 should have a nonzero mean value, 50
that the eddy transport is on average downgradient. The goal here, however, is to describe
a meaningful interpretation of the model analysed in TL, in which 5 is of mean zero.

As in Cessi (1994), we assume that the timescale on which AT is relaxed to AT, by
the thermal forcing F,, is sufficiently small, relative to the timescales of salinity dynamics,
that AT =~ AT, Further, we maodel 57 a8 a red noise (Orostein-Uhllenbeck) process with

autocorrelation e-folding timescale +* and variance 22 /27*, Then we obtain the system

9 AS = _LlaAT, — BAS|AS +5AS + (P E) (7)
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where £(1) is a white-noise process. Defining the nondimensional quantities:
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equations (7] and (&) reduce to (1) and [2) where
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In the above, we have used the fact that for a white noise process,
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under a rescaling of time, which follows from the fact that the white noise must be delta-
correlated in both the dimensional and nondimensional variables.

Thus, a meaningful physical interpretation can be made of equations (1) and (2), but
thig interpretation differs from that of TL.

We now comment on the validity of the approximation used by TL to obtain an analytic
solution of the PDF of i for + £ 0. TL employ an approximation due to Jung and Hianggl
(1987}, known as the Unified Coloured Noise Appresimation (UCNA), to reduce the system
(1)-(2) to an approximate 1-dimensional system, whose associated stationary Fokker-Planck
equation admits and analytic solution. TL caleulate the following UCNA expression for the
stationary PDE of y:
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where N, N; are appropriate normalisations. Figures 6 and T of TL plot p, as a function of y

for different values of = and . For small values of 7, the resulte resemble those of the white
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noise limit. For increasing v, p, given by (16) displays qualitatively different behaviour.
In particular, nodes and new extrema appear in the PDEF. These results are interpreted as
“noise-induced transitions”, and the analogy of quantum-mechanical tunneling 18 used to

describe the passage of the system across the node of the PDF.
Another approach to determine an approximation of the PDF associated with (1)-(2) is to
integrate the equations numerically; the simplest algorithm is a forward Euler discretisation

(Kloeden and Platen, 1992). Denoting the discrete time step by 4 so that

fp = k& (17)

the forward Euler discretisation of (1)-(2) is
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where Wy is a sequence of zoro-mean, unit variance Gaussian random variables. Equations
(18} and (19) were integrated for 150000 time units with a timestep § = 0.05 for the parame-
ter values 7, o used in Figures 6 and 7 of TL. Figures 1 and 2 display Gaussian kernel density
estimates of the PDFs obtained from the simulation, along with the UCNA approximations
(16). The numerical results are robust to reduction of the stepsize §, and inspection of the
Lirme series indicates that the record is long encugh for estimation of the PDF from the time
geries to be appropriate.

Comparing the numerical and UCNA results in Figures 1 and 2, it is clear that for small
values of 7, the stationary PDFs produced by numerical integration and by the UCNA are

in close agreement. However, for 7 ~ (1), there are marked differences. In particular, the



PDEg produced by numerical integration do not display any nodes or new extrema. Instead,
the result of raising 7 for fixed o is seen to be a shift of the PDEF toward the right-hand
peak. The differences between the numerical and UCNA approcdimations occur because of a
breakdown of the validity of the UCNA for 7 of O{1).

By construction, the UCNA assumes a timescale separation between the processes y and
¢; it is only valid when ¢ varies much more rapidly than y. This implies that the UCNA is
a small 7 approximation, but how small is “small®? TL note that the domain of validity of

the UCNA is given by the following pair of inequalities:
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where { is a “characteristic timescale” of variability of y. Defining a “typical” value of y,
TL argue for the global (in y) satisfaction of these conditions. In fact, their validity must
be considered locally in y. In particular, the UCNA certainly fails wherever & vanishes. For

0 < y < 1, this occurs for
1 1y*
— i 22
y=75_ (ET] b pta 122)

(a second root is discarded because it occurs for i < 0, outside the domain of consideration).

For 7 < ﬁ, this root also falls outside of [0,1]. However, for + > ﬁ: & vanishes for
y € [0,1], and the UCNA fails within the domain of interest. In particular, it is clear from
(16} that & vanishes at precisely the values y where p, has a node. Thus, the emergence of
zeros in the PDF of y is an artifact of the breakdown of the UCNA. In fact, the UCNA fails not

just at the points at the zeros of &, but in a surrounding neighbourhood, as is demonstrated

by the differences between the numerical and UCNA PDFs for 7 = 0.8 < ﬁ For gy = 1,

i



& never vanishes, but because the overall amplitude of the PDF is a function of its global
structure, at best only the shape of the PDF for y > 1 will agree with that produced by the
UCNA. Thus, for 7 of (1), the UCNA breaks down locally in g, with global consequences
for the structure of the PDE.

Calculating the stationary PDF of a system in a one-dimensional potential subject to
coloured noise remains an unsolved problem in physies. A number of different approxima-
tions have been proposed, but they are valid only in the limit of small or of very large 7
(Horsthembe and Lefever, 1984; HAangei and Jung, 1995). To obtain the stationary PDFs
of i in the case where its timescale i3 of the same order of magnitude as ¢, at present we
must take recourse to numerical methods. We note that an essential conclusion of TL is
unchanged, namely that inereasing o populates the lefi-hand peak of the stationary PDF of

y at the expense of the right-hand peak, while increasing 7 has the opposite effect.
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Figure 1: Stationary PDF of i from numerical integration (thick line) and from the UCNA

approximation (thin line), for & = 0.3.
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Figure 2: As in Figure 1, for & = 1.



