
MarData course 2020

Gerrit Lohmann

Alfred Wegener Institute
Helmholtz Centre for Polar and Marine Research

University of Bremen, Physics 

Climate science

Climate variability across time scales: 

challenges from limited data & modeling



Climate Trends at different Timescales

Temperature of the last 150 years (instrumental data)

Anthropogenic
influenced climate

Northern Hemisphere Temp. anomaly 
HadCRU

[°C]



Challenges:  Food, Energy, Climate

Human Population: 7 billions



Human Population: 7 billions

CO2 Increase:
Land cover: 22%
CO2-Emissions: 78%
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Uncertainty largely due to missing
information at high latitudes

Temperature Anomaly 1930
White areas: not enough data
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Climate variability beyond the instrumental record:
Decadal, centennial, millennial
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Proxy Data
• Indirect data, often qualitative
• Long time series from archives
• Information beyond the instrumental record



Climate records from 
ice cores

Lake/permafrost
sediment records

Marine sediment
records

Data in the Earth System

Ice drilling camp, 2009 Polarstern, marine sediments Lake/permafrost sediments



Deglaciation – Greenland ice core

Grootes et al. 2000

Climate Trends at different Timescales



Deglaciation



Atmospheric Gas Concentrations from Ice Cores

Time  (Thousands of Years Before Present)
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Eccentricity



Questions

• Response of climate models to forcing?

• Common pattern of data and models?

• Climate sensitivity and variability
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Orbital focing

• ~20.000, ~40.000, ~100.000 years
• 0.5, 1 year

• Geometry of the Sun-Earth configuration



Sunspots



p * 107

Global                             

p * 1010
Millenia

4 *107

p * 108
Decadal Quasi-decadal

AMO

Dissipative Systems (as atmosphere & ocean) cannot
maintain large gradients on long time scales

Ice agess

s

s

Spatio-Temporal Scales

Spatial || temporal Scales



Insolation (6k minus present)



Marine temperature trends  (last 6000 years)
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Alkenone-based temperature trends

Annual mean sea surface temperature trends

Lohmann et al., 2013, CP 
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)

with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L
�1

{F (s)}(t) = L
�1

⇢
< T (0) >

s + �
+

c

s
·

1

s + �

�
(8.45)

= T (0) · exp(��t) +
c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Marine temperature variability                 
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Power spectrum

Laepple and Huybers, 2014; GRL, PNAS

Current climate models seem to underestimate long-term variability

6(annual to millennial time scales)



Climate variability  and sensitivity are related

Power spectrum
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Noise Forcing
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Stochastic climate model
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Forcing

Response too low

Damping too high 
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Variance too low

Lohmann 2018(Fluctuation Dissipation Theorem)
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Momentum equations
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Model Strategy

Intermediate
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optimisation

AOGCMs



Temperatures from EBMs: the e↵ective heat capacity matters 10

Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).

Energy balance model

Temperatures from EBMs: the e↵ective heat capacity matters 2

the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus

have only one dependent variable: the Earth’s near-surface air temperature T.

With the development of computer capacities, simpler models have not disappeared;

on the contrary, a stronger emphasis has been given to the concept of a hierarchy of

models’ as the only way to provide a linkage between theoretical understanding and

the complexity of realistic models (von Storch et al., 1999; Claussen et al., 2002). In

contrast, many important scientific debates in recent years have had their origin in the

use of conceptually simple models (Le Treut et al., 2007; Stocker, 2011), also as a way

to analyze data (Köhler et al., 2010) or complex models (Knorr et al., 2011).

Pioneering work has been done by North (North, 1975a,b, North et al., 1981, 1983)

and these models were applied subsequently (e.g., Ghil, 1976; Su and Hsieh, 1976;

Ghil and Childress, 1987; Short et al., 1991; Stocker et al., 1992). Later the EMBs

were equipped by the hydrological cycle (Chen et al., 1995; Lohmann et al., 1996;

Fanning and Weaver, 1996; Lohmann and Gerdes, 1998) to study the feedbacks in

the atmosphere-ocean-sea ice system. One of the most useful examples of a simple,

but powerful, model is the one-/zero-dimensional energy balance model. As a starting

point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced

(Fig. 1)

(1� ↵)S⇡R2 = 4⇡R2
✏�T

4 (1)

where the left hand side represents the incoming energy from the Sun (size of the disk=

shadow area ⇡R
2) while the right hand side represents the outgoing energy from the

Earth (Fig. 1). T is calculated from the Stefan-Boltzmann law assuming a constant

radiative temperature, S is the solar constant - the incoming solar radiation per unit

area– about 1367Wm
�2, ↵ is the Earth’s average planetary albedo, measured to be

0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8JK�4m�2s�1, and ✏ is the e↵ective emissivity of Earth (about 0.612) (e.g.,

Archer, 2010). The geometrical constant ⇡R2 can be factored out, giving

(1� ↵)S = 4✏�T 4 (2)

Solving for the temperature,

T =
4

s
(1� ↵)S

4✏�
(3)

Since the use of the e↵ective emissivity ✏ in (1) already accounts for the greenhouse

e↵ect we gain an average Earth temperature of 288 K (15�C), very close to the global

temperature observations/reconstructions (Hansen et al., 2011) at 14�C for 1951-1980.

Interestingly, (3) does not contain parameters like the heat capacity of the planet. We

will explore that this is essential for the temperature of the Earth’s climate system.

2. A closer look onto the spatial distribution

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

✏�T
4 = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4)



Modelled circulation changes in the Holocene
last 7000 years: Models & Data
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Holocene cooling
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When do we reach the temperature level of 

6000 years before present (climate optimum)? 

5300 year old man 
Ötztaler Alpen 3210m H

http://de.wikipedia.org/wiki/%25C3%2596tztaler_Alpen


Shallow 
ice cores



Rimbu and Lohmann 2009

Atmospheric Blocking Circulation
Greenland Shallow Ice Core Positions Variability of Accumulation Rate 



Rimbu and Lohmann 2009

Atmospheric Blocking Circulation

Synoptic Scale Blocking Situation

Greenland Shallow Ice Core Positions Variability of Accumulation Rate 

Blocking Frequency for 1948-1992



WATER VAPOR TRANSPORT

Enhanced moisture transport 
during high blocking activity



minimum value of daily
minimum temperature (TNn)



Past climates help us to understand the climate system as a whole

To elaborate processes (first and second order)

Test hypotheses by scenarios and comparing model results to data

Climate variability across time scales: 
challenges from limited data & modeling



Past climates help us to understand the climate system as a whole

To elaborate processes (first and second order)

Test hypotheses by scenarios and comparing model results to data

Holocene: High latitude cooling, low-latitude warming
Models and data disagree in amplitude & variability (fdt)

Dynamics: Heterogeneities in temperature, 
large gradients can persist on long time scales

Interpretation of proxy data:
Bring the current climate into a long-term context, extremes

Climate variability across time scales: 
challenges from limited data & modeling





The use of of δ18O in precipitation as a temperature proxy

[Johnsen et al., Tellus, 1989]

[Grootes et al., Nature, 1993]

Converting temporal changes 
of δ18O into past temperature 

changes

Modern spatial relation  
between δ18O and surface temperature  

(on Greenland):

δ18O = 0.67 · Tsurf

cooling of -5° to -12°C correct?

a priori assumption:
- temporal and spatial slopes are equal
- „constant characteristics“ of circulation processes



The δ18O signal in marine sediment cores

• verschiedene Isotope haben ein unterschiedliches 
Molekulargewicht und auch eine unterschiedliche 
molekulare Symmetrie

• beide Effekte führen zu kleinen Änderungen des 
Dampfdrucks

• Fraktionierung: Leichtere Isotope (H216O) verdampfen eher, 
während die schweren Isotope (H218=, HDO) in der 
flüssigen (oder festen) Phase bleiben

• die Stärke der Fraktionierung ist (vor allem) temperatur-
abhängig und wird i.a. in einer delta-Notation ausgedrückt: 

                    δProbe [‰] = ((RProbe  / RSMOW) -1.) * 1000.

[plot adapted from the GNIP brochure, IAEA, 1996]

[http://www.globalchange.umich.edu/globalchange1/current/lectures/kling/paleoclimate/paleo_fig06.jpg]



Transformation of snow to ice
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Example: difference between ice age and gas age
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Extended Data Figure 1 | Difference between gas age and ice age (Dage) at
WAIS Divide. a, Comparison of WDC Dage with other Antarctic cores. Ice
core abbreviations: EDC, EPICA Dome Concordia; EDML, EPICA Dronning
Maud Land; TALDICE, Talos Dome; WDC, WAIS Divide. Dage values are
taken from refs 23, 63–65. The vertical axis is on a logarithmic scale. b, Dage
uncertainty bounds obtained from an ensemble of 1,000 alternative Dage

scenarios; details are given elsewhere23. A Dage scenario obtained with an
alternative densification model (ref. 39 instead of ref. 38) is shown in blue.
c–e, Histograms of the 1,000 Dage scenarios at 20 kyr BP (c), 40 kyr BP

(d) and 60 kyr BP (e); stated values give the distribution mean 6 the 2s
standard deviation.

LETTER RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved

WAIS Divide Project Members, Nature, 2015
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Transitions from Greenhouse to Icehouse Climate: 
Evidence from Marine Sediments

Proxy estimates of atmospheric 
pCO2 (Pearson & Palmer 2000; Pagani et al. 
1999, 2005)

Global deep-sea O-18
(Zachos et al. 2001)

Integrative approach
Data-Modelling

Antarctic ice sheet

NH ice sheet
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Transitions from Greenhouse to Icehouse Climate: 
Evidence from Marine Sediments

Miocene

Proxy estimates of atmospheric 
pCO2 (Pearson & Palmer 2000; Pagani et al. 
1999, 2005)

Global deep-sea O-18
(Zachos et al. 2001)

Integrative approach
Data-Modelling

Antarctic ice sheetAntarctic ice sheet

NH ice sheet
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Transitions from Greenhouse to Icehouse Climate: 
Evidences from Marine Sediments

Eocene/Oligocene

Miocene

Proxy estimates of atmospheric 
pCO2 (Pearson & Palmer 2000; Pagani et al. 
1999, 2005)

Global deep-sea O-18
(Zachos et al. 2001)

• Eocene long-term climate cooling 
• Eocene/Oligocene glaciation of Antarctica; drop in pCO2
• Compare to the Miocene/Pliocene cooling; low pCO2

Antarctic ice sheet

NH ice sheet




