Climate science

Climate variability across time scales: challenges from limited data & modeling

MarData course 2020

Gerrit Lohmann

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

University of Bremen, Physics

Climate Trends at different Timescales

Temperature of the last **150 years** (instrumental data)

Human Population: 7 billions

Human Population: 7 billions

CO₂ Increase: Land cover: 22% CO₂-Emissions: 78%

June 1958 - June 2018 Atmospheric CO2

JuneCO₂ | Year Over Year | Mauna Loa Observatory

Motivation: Observational Record

Temperature Anomaly 1930 White areas: not enough data

Motivation: Observational Record

Temperature Anomaly 1930 White areas: not enough data

Climate variability beyond the instrumental record: Decadal, centennial, millennial

ALI

Shallow ice cores

Proxy Data

- Indirect data, often qualitative
- Long time series from archives
- Information beyond the instrumental record

Data in the Earth System

Ice drilling camp, 2009

Polarstern, marine sediments

Lake/permafrost sediments

Climate Trends at different Timescales

Deglaciation – Greenland ice core

Deglaciation

Atmospheric Gas Concentrations from Ice Cores

EPICA 2008

Questions

- Response of climate models to forcing?
- Common pattern of data and models?
- Climate sensitivity and variability

Orbital parameters

Orbital focing

- ~20.000, ~40.000, ~100.000 years
- 0.5, 1 year
- Geometry of the Sun-Earth configuration

Spatio-Temporal Scales

Dissipative Systems (as atmosphere & ocean) cannot maintain large gradients on long time scales

Insolation (6k minus present)

Marine temperature trends (last 6000 years)

Annual mean sea surface temperature trends

Alkenone-based temperature trends

Marine temperature trends (last 6000 years)

Alkenone-based temperature trends

Marine temperature variability

(annual to millennial time scales)

Current climate models seem to underestimate long-term variability

Laepple and Huybers, 2014; GRL, PNAS

Climate variability and sensitivity are related

Stochastic climate model

$$rac{dT}{dt} = -\lambda T + ext{Noise} + ext{Forcing}$$

(Fluctuation Dissipation Theorem)

Holocene SST -Trends 6000 years: high resolution

Holocene SST -Trends 6000 years

Spatio-Temporal Scales

Dissipative Systems (as atmosphere & ocean) cannot maintain large gradients on long time scales

Spatial || temporal Scales

<u>No:</u>

Persistence Jets, atm. dyn, Western BC, sea ice

Momentum equations

$$\frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u - \frac{uv \tan \varphi}{a} - \frac{uw}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + fv - f^{(2)}w + v\nabla^2 u$$
$$\frac{\partial v}{\partial t} + \mathbf{v} \cdot \nabla v - \frac{u^2 \tan \varphi}{a} - \frac{vw}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial y} - fu + v\nabla^2 v$$

Model Strategy

Pictorial definition of EMICs (Claussen et al. 2002)

Energy balance model

Figure 1. Schematic view of the energy absorbed and emitted by the Earth following (1). Modified after Goose (2015).

last 7000 years: Models & Data

Holocene temperature trend

When do we reach the temperature level of 6000 years before present (climate optimum)?

Year of summer warmer than in the Holocene

5300 year old man Ötztaler Alpen 3210m H

ALI

Shallow ice cores

Atmospheric Blocking Circulation

Rimbu and Lohmann 2009

Atmospheric Blocking Circulation

WATER VAPOR TRANSPORT

Enhanced moisture transport during high blocking activity

Climate variability across time scales:// challenges from limited data & modeling

Past climates help us to understand the climate system as a whole To elaborate processes (first and second order) Test hypotheses by scenarios and comparing model results to data

Climate variability across time scales:// challenges from limited data & modeling

Past climates help us to understand the climate system as a whole To elaborate processes (first and second order) Test hypotheses by scenarios and comparing model results to data

Holocene: High latitude cooling, low-latitude warming Models and data disagree in amplitude & variability (fdt)

Dynamics: Heterogeneities in temperature, large gradients can persist on long time scales

Interpretation of proxy data: Bring the current climate into a long-term context, extremes

The use of of δ^{18} O in precipitation as a temperature proxy

[Grootes et al., Nature, 1993]

The $\delta^{18}O$ signal in marine sediment cores

[plot adapted from the GNIP brochure, IAEA, 1996]

Transformation of snow to ice

Example: difference between ice age and gas age

Extended Data Figure 1 | Difference between gas age and ice age (Aage) at WAIS Divide. a, Comparison of WDC Δ age with other Antarctic cores. Ice core abbreviations: EDC, EPICA Dome Concordia; EDML, EPICA Dronning Maud Land; TALDICE, Talos Dome; WDC, WAIS Divide. Aage values are taken from refs 23, 63–65. The vertical axis is on a logarithmic scale. b, Aage uncertainty bounds obtained from an ensemble of 1,000 alternative Δ age

scenarios; details are given elsewhere²³. A Δ age scenario obtained with an alternative densification model (ref. 39 instead of ref. 38) is shown in blue. c-e, Histograms of the 1,000 Δ age scenarios at 20 kyr BP (c), 40 kyr BP (d) and 60 kyr BP (e); stated values give the distribution mean ± the 2 σ standard deviation.

Future

Transitions from Greenhouse to Icehouse Climate: Evidence from Marine Sediments

Integrative approach Data-Modelling

Global deep-sea O-18 (Zachos et al. 2001) PTOX pCO2 1999, 2

Proxy estimates of atmospheric pCO2 (Pearson & Palmer 2000; Pagani et al. 1999, 2005)

Transitions from Greenhouse to Icehouse Climate: Evidence from Marine Sediments

(Zachos et al. 2001)

pCO2 (Pearson & Palmer 2000; Pagani et al. 1999, 2005)

Transitions from Greenhouse to Icehouse Climate: Evidences from Marine Sediments

Global deep-sea O-18 (Zachos et al. 2001) Proxy estimates of atmospheric pCO2 (Pearson & Palmer 2000; Pagani et al. 1999, 2005)

