General approaches to paleoclimates

Krakow 2014

Gerrit Lohmann

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

My Town

Bremen

Bremerhaven (Harbor of Bremen)

My teachers

Tools @ AWI

AWI

Climate Change

Natural Causes External: Sun-Earth Geometry Internal: Feedbacks, Noise Anthropogene Causes Land cover changes \diamond CO₂-Emissions

 CO_2

CO₂ Increase: Land cover: 22% CO₂-Emissions: 78%

The Challenge: Sustainable Energy

Human Population: 7.047 billion

The Challenge: Sustainable Management of an Ever-Changing Planet

Global Crop Cover Change 1700 to 1992

Center for Sustainability and the Global Environment Institute for Environmental Studies University of Wisconsin-Madison

Climate Trends at different Timescales

Temperature of the last 150 years (instrumental data)

Observations: Temperature trend since 1901

How is this related to past changes?

Climate Trends at different Timescales

Temperature of the last 1000 years

Nicolaus Kopernikus In Krakow

Proxy Data

- Indirect data, often qualitative
- Long time series from archives
- Information beyond the instrumental record

Upscaling Konzept

Climate archives

Climate variabiliy

Climate Trends at different Timescales

Holocene: Temperature proxy for the last 7000 years

Lorenz, Kim, Rimbu, Schneider, Lohmann 2007

Climate Trends at different Timescales

Deglaciation – Greenland ice core

Deglaciation

Ice drilling camp, 2009

Polarstern, marine sediments

Lake/permafrost sediments

Information from ice cores

Atmospheric Gas Concentrations from Ice Cores

Orbital focing

- 20000, 40000, 100000 years
- 0.5, 1 year
- Geometry of the Sun-Earth configuration

Glacial-Interglacial variability

Glacial-Interglacial variability

Natural variability and perturbed climate

(Kominz et al., 2008; Pagani et al., 2009; Kramer et al., 2011; Crowley & Kim 1995, Wei et al.,)

Greenland ice volume change

Time Journey: Range of Variability

Temp. anomaly to preindustrial time COSMOS (Wei et al., 2012)

Validation of the models

Mid-Holocene (6000 years Before Pres 15 15 10 10 ΡI 5 5 0 n -5 -5 -10-10 2000 2000 200 , <u>100</u> 2200 2200 0.4 0.2 40 30 20 0.6 10 1.0 0.8 Million years

Temp. anomaly to to preindustrial time COSMOS (Zhang et al., 2012)

Polar amplification

Temp. anomaly to to pre-industrial time COSMOS (Pfeiffer & L, 2013)

Warm climates Polar amplification Sea level

Temp. anomaly to to preindustrial time COSMOS (Stepanek & L, 2012; Haywood et al., 2013)

Warm climates Polar amplification

Temp. anomaly to to preindustrial time COSMOS (Knorr et al., 2011)

Geodynamic-tectonic processes on paleoenvironmental conditions and glacial evolution

Circulation Models

Fluid dynamical equations

Momentum equations:

$$u_t + Adv(u) - \left(f + \frac{u \tan \phi}{a}\right)v = -\frac{1}{a \cos \phi} \left(\frac{p}{\rho_0}\right)_{\lambda} + F^{\lambda}$$
$$v_t + Adv(v) + \left(f + \frac{u \tan \phi}{a}\right)u = -\frac{1}{a} \left(\frac{p}{\rho_0}\right)_{\phi} + F^{\phi}$$
$$0 = -\left(\frac{p}{\rho_0}\right)_z - g\rho$$

Continuity equation:

$$\frac{1}{a\cos\phi}\left[(u)_{\lambda} + (v\cos\phi)_{\phi}\right] + (w)_{z} = 0$$

Equation for tracers χ , temperature T, salinity (humidity) S:

$$\chi_t + Adv(\chi) = A_{HH} \nabla^2 \chi + A_{HV} \chi_{zz}$$

,

Equation of state:

$$\rho = \rho(\Theta, S, z)$$

The equations are "coarse grained" in space and time.

Subgrid scale processes are **parameterized** by diffusive mixing.

Grid resolution

Ocean circulation models and boundary conditions

• Model Setup:

- mesh with high resolution at deep water mass formation areas
- min. resolution ~ 6.5 km
- 41 depth level
- $\sim 6.000.000$ 3D tetrahedral elements,
 - ~ 1.000.000 3D nodes

Dynamics of the Ocean System

Momentum equation

Dynamics of the Ocean System

Momentum equation

Scaling (non-dimensionalized)

Schematic of the surface flow driven by a north-south density gradient in an ocean basin. The primary north-south gradient – as a result of the surface forcing – is in balance with an eastward geostrophic current which generates a secondary high and low pressure system.

Depth integrated flow

Figure 2.8: Depth-integrated Sverdrup transport applied globally using the wind stress from Hellerman and Rosenstein (1983). Contour interval is 10 Sverdrups. After Tomczak and Godfrey (1994: 46).

Deep water

Vertical structure of the ocean

Warm, salty, stratified

Cold, fresh, well mixed

High latitudes: Schematic of the flow of important water masses

60°W 50°W 40°W 30°W 20°W 10°W 0

Meridional overturning circulation

Atlantic Ocean deep sea circulation

Symmetric solution

Figure 2.15: Atlantic circulation model according to (von Lenz, 1847a, b), figure after (Merz and Wüst, 1922)

Von Lenz, 1847

Types of models

Modified from Claussen et al.

Idealized model of the ocean circulation

Different modes of operation: salinity matters

Stommel (1961)

Conceptual Model of MOC

Box Models

- Stommel 's model almost completey ignored (25 years)
- Rooth, 1982: Two hemisphere counterpart,
- Unaware of Stommel (1961) model
- Rooth suggested to F. Bryan: test with a GCM

Mixing

- without mixing heavy water with lighter water in rising areas or in the surface layers of MOC, the circulation system cannot be closed.
- Since mixing consumes turbulent mechanical energy generated by wind in the surface layer and/or by tides and breaking of internal waves in the interior, the overturning can only work on the basis of mechanical driving.

MOC and mixing

the upwelling can be wind-induced (Ekman pumping), isopycnals must outcrop at the surface as in the Southern Ocean.

What drives the AMOC?

Windstress and breaking surface waves drive the MOC -> mixing

Lessons from Paleoclimate Data

GISP2: Grootes et al. 2000 M35003-4: Hüls and Zahn 2000)

The complex Earth System requires a multi-disciplinary approach

Water masses in the Atlantic Ocean

Kroopnick 1985

Glacial-Interglacial changes: Atlantic meridional overturning (AMOC)

<u>LGM:</u> AMOC is shallower AMOC is slightly weaker

Hesse et al. 2011; Butzin et al. 2005, 2012

Glacial-Interglacial changes: δ^{13} C as proxy for water mass structure

Data (Wuellersdorfii) and Model (best glacial)

Hesse et al. 2011

Goal of Paleo-modeling

- Past climate variations help us to understand the climate system as a whole
- To elaborate processes (first and second order)
- Test hypotheses by different model scenarios and comparing model results to data
- Models need to be validated by present and past variability

General approaches to paleoclimates

