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Fig. 5.19: Changes in the Earth's elliptical orbit from the present configuration to 9,000 years ago.(left)

Changes in the average solar radiation during the year over the northern hemisphere (right). 
The incoming solar energy averaged over the northern hemisphere was ca. 7 % greater in July

and correspondingly less in January.

Urquelle:J.E. Kutzbach in „Climate System Modelling“ (1992).  Quelle:/ Houghton, J.: „ Global Warming“ (1997),  fig 5.19; p.82/

Today:
Perihelion in January

Tilt of the earth‘s axis:
23.5°

9000 years ago::
Perihelion in July

Tilt of the earth‘s axis:
24.0°

Configuration of the Earth‘s orbit 9000 years ago
Repeat



Rough locations of the Intertropical Convergence Zone (ITCZ), the 
Congo Air Boundary (CAB), and the southen margin of the Sahara 
Desert for the present-day, and for the monsoonal maximum.

Precession: Effect on climate



African Humid Period (AHP)



Exercise 1

The obliquity is the angle between an object’s
rotational axis and its orbital axis. Earth’s obliq-
uity oscillates between 22.1 and 24.5 degrees on 
a 41,000-year cycle; the earth’s mean obliquity is
currently 23.4 degrees and decreasing. The Earth 
radius is 6,371 km. How many meters per year is
the movement of the Tropic of Cancer due to
obliquity changes? 



Map of potential policy-relevant tipping elements in the climate system, and overlain on global 
population density. Subsystems indicated could exhibit threshold-type behavior in response to 
anthropogenic climate forcing, where a small perturbation at a critical point qualitatively alters the 
future fate of the system. We exclude from the map systems in which any threshold appears 
inaccessible this century (e.g., East Antarctic Ice Sheet) or the qualitative change would appear 
beyond this millennium (e.g., marine methane hydrates). Question marks indicate systems whose 
status as tipping elements is particularly uncertain. 



Greenland ice core
“temperature‘‘ 

NGRIP members, 2004

Local insolation
60°N June 

Holocene

Difference between stable Holocene and unstable glacial
can not be explained by insolation

8

Abrupt Changes: Millennial variability



Meridional overturning circulation

Atlantic Ocean deep sea circulation

NADW: 18 Sv

AABW: 4 Sv

Sv=106 m3/s



Energy Budget

CHANGE IN STORAGE = IN – OUT

• many papers discuss an 
imbalance in this equation, 
which results in missing 
energy

(Trenberth & Fasullo, 2012)

boring for the hundredth time
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Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).

Energy balance model
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the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus

have only one dependent variable: the Earth’s near-surface air temperature T.

With the development of computer capacities, simpler models have not disappeared;

on the contrary, a stronger emphasis has been given to the concept of a hierarchy of

models’ as the only way to provide a linkage between theoretical understanding and

the complexity of realistic models (von Storch et al., 1999; Claussen et al., 2002). In

contrast, many important scientific debates in recent years have had their origin in the

use of conceptually simple models (Le Treut et al., 2007; Stocker, 2011), also as a way

to analyze data (Köhler et al., 2010) or complex models (Knorr et al., 2011).

Pioneering work has been done by North (North, 1975a,b, North et al., 1981, 1983)

and these models were applied subsequently (e.g., Ghil, 1976; Su and Hsieh, 1976;

Ghil and Childress, 1987; Short et al., 1991; Stocker et al., 1992). Later the EMBs

were equipped by the hydrological cycle (Chen et al., 1995; Lohmann et al., 1996;

Fanning and Weaver, 1996; Lohmann and Gerdes, 1998) to study the feedbacks in

the atmosphere-ocean-sea ice system. One of the most useful examples of a simple,

but powerful, model is the one-/zero-dimensional energy balance model. As a starting

point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced

(Fig. 1)

(1� ↵)S⇡R2 = 4⇡R2
✏�T

4 (1)

where the left hand side represents the incoming energy from the Sun (size of the disk=

shadow area ⇡R
2) while the right hand side represents the outgoing energy from the

Earth (Fig. 1). T is calculated from the Stefan-Boltzmann law assuming a constant

radiative temperature, S is the solar constant - the incoming solar radiation per unit

area– about 1367Wm
�2, ↵ is the Earth’s average planetary albedo, measured to be

0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8JK�4m�2s�1, and ✏ is the e↵ective emissivity of Earth (about 0.612) (e.g.,

Archer, 2010). The geometrical constant ⇡R2 can be factored out, giving

(1� ↵)S = 4✏�T 4 (2)

Solving for the temperature,

T =
4

s
(1� ↵)S

4✏�
(3)

Since the use of the e↵ective emissivity ✏ in (1) already accounts for the greenhouse

e↵ect we gain an average Earth temperature of 288 K (15�C), very close to the global

temperature observations/reconstructions (Hansen et al., 2011) at 14�C for 1951-1980.

Interestingly, (3) does not contain parameters like the heat capacity of the planet. We

will explore that this is essential for the temperature of the Earth’s climate system.

2. A closer look onto the spatial distribution

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

✏�T
4 = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4)

boring for the hundredth time, but …



Northward Heat Transport

Ocean

Atmosphere



Global meridional heat transport divides roughly equally into 3 modes: 
1. atmosphere (dry static energy) 
2. ocean (sensible heat)
3. water vapor/latent heat transport 

The three modes of poleward transport are comparable in amplitude, and distinct in character 
(sensible heat flux divergence focused in tropics, latent heat flux divergence focus in the 
subtropics) 

(residual method, 
TOA radiation 
1985-89 and 
ECMWF/NMC 
atmos obs)

90S 90N
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Figure 4. Equilibrium temperature of (15) using di↵erent di↵usion coe�cients. The
blue lines use 1.5 · 106m2/s with no tilt (solid line), a tilt of 23.5� (dotted line), and
as the dashed line a tilt of 23.5� and ice-albedo feedback using the respresentation of
Sellers (1969). Except for the dashed line, the global mean values are identical to the
value calculated in (12). Units are �C.

less at the equator (formally it could be associated to an enhanced meridional heat transport HT). The resulting temperature is

shown as the dotted blue line in Fig. 4. A spatially constant temperature in (1) can be formally seen as a system with infinite

diffusion coefficient k !1 (black line in Fig. 4).

The global mean temperatures are not affected by the tilt and the values are identical to the one calculated in (12). This

is true even if we calculate the seasonal cycle (Berger and Loutre 1991; 1997; Laepple and Lohmann 2009). However, if we5

include non-linearities such as the ice-albedo feedback (↵ as a function of T), the global mean value is changing (Budyko,

1969; Sellers, 1969; North et al., 1975a, b), cf. the dashed blue line in Fig. 4. Such model can be improved by including an

explicit spatial pattern with a seasonal cycle to study the long-term effects of climate to external forcing (Adem, 1981; North et

al., 1983) or by adding noise mimicking the effect of short-term features on the long-term climate (Hasselmann, 1976; Lemke,

1977; Lohmann, 2018).10

As a logical next step, let us now include an explicit seasonal cycle into the EBM:

Cp @tT = r ·HT + (1�↵)S(', t)� ✏�T 4 . (16)

with S(', t) being calculated daily (Berger and Loutre, 1991; 1997). Eq. (16) is calculated numerically for fixed diffusion

coefficient k = 1.5 · 106m2/s under present orbital conditions. Fig. 5 indicates that the temperature gradient is getting flatter

for large heat capacities. Furthermore, the mean temperature is affected by the choice of Cp. In the case of large heat capacity15

at high latitudes (for latitudes polewards of '= 50�) and moderate elsewhere, we observe strong warming at high latitudes

with moderate warming at low latitudes (dashed curve). This again indicates that we cannot neglect the time-dependent left

hand side in the energy balance equations, both for the diurnal (9) as well as the seasonal (16) cycle for the temperature

budget. In both considered cases, at strong diurnal/seasonal amplitude lowers the annual mean temperature. Fig. 6 shows

the seasonal amplitude for the Cp-scenarios as indicated by the blue and dashed black lines, respectively. A change in the20

seasonal/diurnal cycle of T1 �T2 = 50�C is equivalent to about 10Wm�2 when applying the long wave radiation change

✏� · 0.5(T 4
1 +T 4

2 )� ✏� · (0.5 · (T1 +T2))4 for typical temperatures on the Earth. Please note that the number 10Wm�2 is

equivalent to a greenhouse gas forcing of more than quadrupling the CO2 concentration in the atmosphere.

5 Meridional temperature gradient in a complex model

Energy balance models have been used to diagose the temperatures on the Earth when applying complex circulation models25

(e.g., Knorr et al. 2011) or data (e.g., Köhler et al., 2010; van der Heydt et al., 2016; Stap et al., 2018). For the past, a strong

warming at high latitudes is reconstructed for the Pliocene, Miocene, Eocene periods (Markwick, 1994; Wolfe, 1994; Sloan

and Rea, 1996; Huber et al., 2000; Shellito et al., 2003; Tripati et al., 2003; Mosbrugger et al., 2005; Utescher and Mosbrugger,

2007). In the following this period is called Paleogene/Neogene, which covers the period 3 ·106�65 ·106 years ago. Until now,

it is a conundrum that the modelled high latitudes are not as warm as the reconstructions (e.g., Sloan and Rea, 1996; Huber et30

al., 2000; Mosbrugger et al., 2005; Knorr et al., 2011; Dowset et al., 2013). Inspired by Fig. 5, we may think of a climate system

having a higher net heat capacity Cp producing flat temperature gradients. Another argument comes from data. La Riviere et

al. (2012) showed that the oceanic state in the Paleogene/Neogene had a deeper thermocline, high sea surface temperatures,

6

In the exercise, long-wave radiation as A + BT

furthermore a pronounced temperature drop during night for low values of heat capacities and for long days (e.g. 240 h

instead of 24 h) affecting the zonal temperatures (4.5 K colder at the equator). It is an interesting thought experiment what

would happen if the length of the daylight/night would change. The analysis shows that the effective heat capacity is of

great importance for the temperature, this depends on the atmospheric planetary boundary layer (how well-mixed with small

gradients in the vertical) and the depth of the mixed layer in the ocean. To make a rough estimate of the involved mixed layer,5

one can see that the effective heat capacity of the ocean is time-scale dependent. A diffusive heat flux goes down the gradient

of temperature and the convergence of this heat flux drives a ocean temperature tendency:

Co
p@tT =�@z(k

o@zT ) (13)

where kv = ko/Co
p is the oceanic vertical eddy diffusivity in m2 s�1 , and Co

p the oceanic heat capacity relevant on the specific

time scale. The vertical eddy diffusivity kv can be estimated from climatological hydrographic data (Olbers et al., 1985; Munk10

and Wunsch, 1998) and varies roughly between 10�5 and 10�4m2 s�1 depending on depth and region. A scale analysis of

(13) yields a characteristic depth scale hT through

�T

�t
= kv

�T

h2
T

�! hT =
p

kv �t (14)

For the diurnal cycle hT is less that half a meter and the heat capacity generally less than that of the atmosphere. As pointed

out by Schwartz (2007), the effective heat capacity that reflects only that portion of the global heat capacity that is coupled to15

the perturbation on the timescale of the perturbation. We discuss the sensitivity of the system with respect to kv later in the

context of a full circulation model.

4 Meridional temperature gradients

Equation (10) shall be the starting point for further investigations. One can easily include the meriodional heat transport by

diffusion which has been previously used in one-dimensional EBMs (e.g. Adem, 1965; Sellers, 1969; Budyko, 1969; North,20

1975a,b). In the following we will drop the tilde sign. Using a diffusion coefficient k, the meridional heat transport across a

latitude is HT =�krT . One can solve the EBM

Cp @tT = r ·HT + (1�↵)
S

⇡
cos' � ✏�T 4 . (15)

numerically. The boundary condition is that the HT at the poles vanish. The values of k are in the range of earlier studies (North,

1975a,b; Stocker et al., 1992; Chen et al., 1995; Lohmann et al., 1996). Fig. 4 shows the equilibrium solutions of (15) using25

different values of k (solid lines). The global mean temperature is not affected by the transport term because of the boundary

condition with zero heat transport at the poles. The same is true if we introduce zonal transports because of the cyclic boundary

condition in ✓�direction.

Until now, we assumed that the Earth’s axis of rotation were vertical with respect to the path of its orbit around the Sun.

Instead Earth’s axis is tilted off vertical by about 23.5 degrees. As the Earth orbits the Sun, the tilt causes one hemisphere to30

receive more direct sunlight and to have longer days. This is a redistribution of heat with more solar insolation at the poles and

5



practical

Exercise 1

EBM analysis
• https://1drv.ms/u/s!AnZSDMNwdkDMgbx6sr

3gVubSIqlYVw?e=MacPeK

https://1drv.ms/u/s!AnZSDMNwdkDMgbx6sr3gVubSIqlYVw?e=MacPeK
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Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).

Energy balance model

Simple models are helpful for understanding of
• Critical parameters
• Concepts of climate

Temperatures from EBMs: the e↵ective heat capacity matters 2

the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus

have only one dependent variable: the Earth’s near-surface air temperature T.

With the development of computer capacities, simpler models have not disappeared;

on the contrary, a stronger emphasis has been given to the concept of a hierarchy of

models’ as the only way to provide a linkage between theoretical understanding and

the complexity of realistic models (von Storch et al., 1999; Claussen et al., 2002). In

contrast, many important scientific debates in recent years have had their origin in the

use of conceptually simple models (Le Treut et al., 2007; Stocker, 2011), also as a way

to analyze data (Köhler et al., 2010) or complex models (Knorr et al., 2011).

Pioneering work has been done by North (North, 1975a,b, North et al., 1981, 1983)

and these models were applied subsequently (e.g., Ghil, 1976; Su and Hsieh, 1976;

Ghil and Childress, 1987; Short et al., 1991; Stocker et al., 1992). Later the EMBs

were equipped by the hydrological cycle (Chen et al., 1995; Lohmann et al., 1996;

Fanning and Weaver, 1996; Lohmann and Gerdes, 1998) to study the feedbacks in

the atmosphere-ocean-sea ice system. One of the most useful examples of a simple,

but powerful, model is the one-/zero-dimensional energy balance model. As a starting

point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced

(Fig. 1)

(1� ↵)S⇡R2 = 4⇡R2
✏�T

4 (1)

where the left hand side represents the incoming energy from the Sun (size of the disk=

shadow area ⇡R
2) while the right hand side represents the outgoing energy from the

Earth (Fig. 1). T is calculated from the Stefan-Boltzmann law assuming a constant

radiative temperature, S is the solar constant - the incoming solar radiation per unit

area– about 1367Wm
�2, ↵ is the Earth’s average planetary albedo, measured to be

0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8JK�4m�2s�1, and ✏ is the e↵ective emissivity of Earth (about 0.612) (e.g.,

Archer, 2010). The geometrical constant ⇡R2 can be factored out, giving

(1� ↵)S = 4✏�T 4 (2)

Solving for the temperature,

T =
4

s
(1� ↵)S

4✏�
(3)

Since the use of the e↵ective emissivity ✏ in (1) already accounts for the greenhouse

e↵ect we gain an average Earth temperature of 288 K (15�C), very close to the global

temperature observations/reconstructions (Hansen et al., 2011) at 14�C for 1951-1980.

Interestingly, (3) does not contain parameters like the heat capacity of the planet. We

will explore that this is essential for the temperature of the Earth’s climate system.

2. A closer look onto the spatial distribution

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

✏�T
4 = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4)



Incoming radiation
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where ' and ⇥ are the latitude and longitute, respectively. Integration over the Earth

surface is
⇡/2Z

�⇡/2

0

@
2⇡Z

0

✏�T
4
R cos'd⇥

1

ARd' = (1� ↵)S

⇡/2Z

�⇡/2

R cos2 'd' ·
⇡/2Z

�⇡/2

R cos⇥d⇥

✏�R
24⇡

4⇡

⇡/2Z

�⇡/2

0

@
2⇡Z

0

T
4 cos'd⇥

1

A d' = (1� ↵)SR2

⇡/2Z

�⇡/2

cos2 ' d'

| {z }
⇡
2

·
⇡/2Z

�⇡/2

cos⇥ d⇥

| {z }
2

✏�4⇡T 4 = (1� ↵)S ⇡ (5)

giving a similar formula as (3) with the definition for the average T 4.

What we really want is the mean of the temperature T . Therefore, we take the

fourth root of (4):

T =
4

s
(1� ↵)S cos' cos⇥

✏�
⇥ 1[�⇡/2<⇥<⇡/2](⇥) . (6)

If we calculate the zonal mean of (6) by integration at the latitudinal cycles we have

T (') =
1

2⇡

�⇡/2Z

�⇡/2

4

s
(1� ↵)S cos' cos⇥

✏�
d⇥

=

p
2

2⇡

⇡/2Z

�⇡/2

(cos⇥)1/4d⇥

| {z }
2.700

4

s
(1� ↵)S

4✏�
(cos')1/4

= 0.608 · 4

s
(1� ↵)S

4✏�
(cos')1/4 (7)

as a function on latitude (Fig. 2). When we integrate this over the latitudes, we obtain

T =
1

2

⇡/2Z

�⇡/2

T (') cos' d'

=
0.608

2
· 4

s
(1� ↵)S

4✏�

⇡/2Z

�⇡/2

(cos')5/4d'

| {z }
1.862

= 0.4
p
2

4

s
(1� ↵)S

4✏�
= 0.566

4

s
(1� ↵)S

4✏�
(8)

Therefore, T = 163K is a factor 0.566 lower than 288 K as stated at (1). The standard

EBM in Fig. 1 has imprinted into our thoughts and lectures. We should therefore be

careful and pinpoint the reasons for the failure.

What happens here is that the heat capacity of the Earth is neglected. During

night, the temperature is very low and there is a strong non-linearity of the outgoing
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where ' and ⇥ are the latitude and longitute, respectively. Integration over the Earth

surface is
⇡/2Z

�⇡/2

0

@
2⇡Z

0

✏�T
4
R cos'd⇥

1

ARd' = (1� ↵)S
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R cos⇥d⇥

✏�R
24⇡

4⇡

⇡/2Z

�⇡/2

0

@
2⇡Z

0

T
4 cos'd⇥

1

A d' = (1� ↵)SR2

⇡/2Z

�⇡/2

cos2 ' d'

| {z }
⇡
2

·
⇡/2Z

�⇡/2

cos⇥ d⇥

| {z }
2

✏�4⇡T 4 = (1� ↵)S ⇡ (5)

giving a similar formula as (3) with the definition for the average T 4.

What we really want is the mean of the temperature T . Therefore, we take the

fourth root of (4):

T =
4

s
(1� ↵)S cos' cos⇥

✏�
⇥ 1[�⇡/2<⇥<⇡/2](⇥) . (6)

If we calculate the zonal mean of (6) by integration at the latitudinal cycles we have

T (') =
1

2⇡

�⇡/2Z

�⇡/2

4

s
(1� ↵)S cos' cos⇥

✏�
d⇥

=
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(cos⇥)1/4d⇥
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(1� ↵)S

4✏�
(cos')1/4

= 0.608 · 4

s
(1� ↵)S

4✏�
(cos')1/4 (7)

as a function on latitude (Fig. 2). When we integrate this over the latitudes, we obtain

T =
1

2

⇡/2Z

�⇡/2

T (') cos' d'

=
0.608

2
· 4

s
(1� ↵)S

4✏�

⇡/2Z

�⇡/2

(cos')5/4d'

| {z }
1.862

= 0.4
p
2

4

s
(1� ↵)S

4✏�
= 0.566

4

s
(1� ↵)S

4✏�
(8)

Therefore, T = 163K is a factor 0.566 lower than 288 K as stated at (1). The standard

EBM in Fig. 1 has imprinted into our thoughts and lectures. We should therefore be

careful and pinpoint the reasons for the failure.

What happens here is that the heat capacity of the Earth is neglected. During

night, the temperature is very low and there is a strong non-linearity of the outgoing
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Figure 2. Latitudinal temperatures of the EBM with zero heat capacity (7) in cyan
(its mean as a dashed line), the global approach (3) as solid black line, and the zonal
and time averaging (11) in red. The dashed brownish curve shows the numerical
solution by taking the zonal mean of (9).
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where ' and ⇥ are the latitude and longitute, respectively. Integration over the Earth

surface is
⇡/2Z
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giving a similar formula as (3) with the definition for the average T 4.

What we really want is the mean of the temperature T . Therefore, we take the

fourth root of (4):

T =
4

s
(1� ↵)S cos' cos⇥

✏�
⇥ 1[�⇡/2<⇥<⇡/2](⇥) . (6)

If we calculate the zonal mean of (6) by integration at the latitudinal cycles we have
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= 0.608 · 4
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as a function on latitude (Fig. 2). When we integrate this over the latitudes, we obtain

T =
1

2
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T (') cos' d'

=
0.608

2
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Therefore, T = 163K is a factor 0.566 lower than 288 K as stated at (1). The standard

EBM in Fig. 1 has imprinted into our thoughts and lectures. We should therefore be

careful and pinpoint the reasons for the failure.

What happens here is that the heat capacity of the Earth is neglected. During

night, the temperature is very low and there is a strong non-linearity of the outgoing

https://esd.copernicus.org/articles/11/1195/2020/esd-11-1195-2020.pdf



Heat capacity term
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radiation. Furthermore, the Earth is a rapidly rotating object. Equation (6) can be

better used for objects like the Moon or Mercury (Vasavada et al., 1999) as slowly

rotating bodies without significant heat capacity.

3. The heat capacity and fast rotating body

The energy balance shall take the heat capacity into account:

Cp @tT = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) � ✏�T
4 (9)

with Cp representing the heat capacity multiplied with the depth of the atmosphere-

ocean layer (Cp is in the order of 107 � 108JK�1
m

�2). If we consider the zonal mean
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Figure 2. Latitudinal temperatures of the EBM with zero heat capacity (7) in cyan
(its mean as a dashed line), the global approach (3) as solid black line, and the zonal
and time averaging (11) in red. The dashed brownish curve shows the numerical
solution by taking the zonal mean of (9).
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Therefore, T̃ = 285 ⇡ 288 K, very similar as in (1). A numerical solution of (9) is

shown as the brownish dashed line in Fig. 2 where the diurnal cycle has been taken into

account and Cp = C
a
p has been chosen as the atmospheric heat capacity

C
a
p = cpps/g = 1004 JK�1

kg
�1 · 105Pa/(9.81ms

�2) = 1.02 · 107JK�1
m

�2

which is the specific heat at constant pressure cp times the total mass ps/g. ps is the

surface pressure and g the gravity. The temperature T is 286 K, again close to 288 K.

The e↵ect of heat capacity is systematically analyzed in Fig. 3. The temperatures

are relative insensitive for a wide range of Cp. We find a severe drop in temperatures for

heat capacities below 0.01 of the atmospheric heat capacity C
a
p . We find furthermore

a pronounced temperature drop during night for low values of heat capacities and for

long days (e.g. 240 h instead of 24 h) a↵ecting the zonal temperatures (4.5 K colder at

the equator). It is an interesting thought experiment what would happen if the length

of the daylight/night would change. The analysis shows that the e↵ective heat capacity

is of great importance for the temperature, this depends on the atmospheric planetary

boundary layer (how well-mixed with small gradients in the vertical) and the depth of

the mixed layer in the ocean. To make a rough estimate of the involved mixed layer, one

can see that the e↵ective heat capacity of the ocean is time-scale dependent. A di↵usive

heat flux goes down the gradient of temperature and the convergence of this heat flux

drives a ocean temperature tendency:

C
o
p@tT = �@z(k

o
@zT ) (13)

where kv = k
o
/C

o
p is the oceanic vertical eddy di↵usivity in m

2
s
�1 , and C

o
p the oceanic

heat capacity relevant on the specific time scale. The vertical eddy di↵usivity kv can

be estimated from climatological hydrographic data (Olbers et al., 1985; Munk and

Wunsch, 1998) and varies roughly between 10�5 and 10�4
m

2
s
�1 depending on depth

and region. A scale analysis of (13) yields a characteristic depth scale hT through

�T

�t
= kv

�T

hT
�! hT =

q
kv �t (14)

For the diurnal cycle hT is less that half a meter and the heat capacity generally less

than that of the atmosphere. As pointed out by Schwartz (2007), the e↵ective heat

capacity that reflects only that portion of the global heat capacity that is coupled to

the perturbation on the timescale of the perturbation. We discuss the sensitivity of the

system with respect to kv later in the context of a full circulation model.

4. Meridional temperature gradients

Equation (10) shall be the starting point for further investigations. One can easily

include the meriodional heat transport by di↵usion which has been previously used in

one-dimensional EBMs (e.g. Adem, 1965; Sellers, 1969; Budyko, 1969; North, 1975a,b).

In the following we will drop the tilde sign. Using a di↵usion coe�cient k, the meridional
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Figure 3. Temperature depending on Cp when solving (9) numerically. The reference
heat capacity is the atmospheric heat capacity Ca

p = 1.02 · 107JK�1m�2. The climate
is insensitive to changes in heat capacity Cp 2 [0.05 · Ca

p , 2.0 · Ca
p ].
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