# Climate System II (Winter 2022/2023)

# **1st lecture: Challenges of climate change**

(Introduction to past and present climate change, course content)

#### Gerrit Lohmann, Martin Werner

#### Tuesday, 10:00-11:45

(sometimes shorter, but then with some exercises)

https://paleodyn.uni-bremen.de/study/climate2022\_23.html

## **Climate II**

Today (October 18th 2022)

- Introduction and overview (45min)
- Formalities etc. (20min)
- Expectations and wishes from your side

#### **Climate change - the last 140 years**



#### **Human Population: 7 billions**











#### **Human Population: 7 billions**





 $CO_2$  Increase: Land cover: 22%  $CO_2$ -Emissions: 78%



#### **Climate change - the last 140 years**

![](_page_5_Figure_1.jpeg)

## **Climate change - the last 140 years**

![](_page_6_Picture_1.jpeg)

[https://svs.gsfc.nasa.gov/4787]

#### **Global warming and CO<sub>2</sub> increase since 1880**

![](_page_7_Figure_1.jpeg)

[https://www.climatecentral.org/gallery/graphics/global-temperatures-and-co2-concentrations-2020]

## CO<sub>2</sub> emissions in the last 60 years

![](_page_8_Figure_1.jpeg)

[https://www.globalcarbonproject.org/carbonbudget/21/presentation.htm; https://robbieandrew.github.io/GCB2021/]

## **Global temperatures and CO<sub>2</sub> of the future?**

![](_page_9_Figure_1.jpeg)

#### **Global temperatures and CO<sub>2</sub> of the past**

![](_page_10_Figure_1.jpeg)

## The "climate dilemma"

- The records of direct temperature measurements are short and already fall in the phase of strong human influence.
- Instrumental data are sparce

![](_page_11_Figure_3.jpeg)

• For the time before instrumental records, one has to rely on information from proxy data and modeling.

## **Climate change - archives of the past**

![](_page_12_Picture_1.jpeg)

#### **Climate change - archives of the past**

![](_page_13_Picture_1.jpeg)

- information beyond the instrumental record
- long continuous time series from archives
- indirect data, often quantitative
- problem of (absolute) dating

![](_page_13_Picture_6.jpeg)

ma

![](_page_13_Picture_7.jpeg)

#### Past climate changes - linking different proxy records

![](_page_14_Picture_1.jpeg)

Ice drilling camp, 2009

![](_page_14_Picture_3.jpeg)

Polarstern, marine sediments

![](_page_14_Picture_5.jpeg)

Lake/permafrost sediments

![](_page_14_Picture_7.jpeg)

#### Past climate changes - the last 1000 years

![](_page_15_Figure_1.jpeg)

https://de.wikipedia.org/wiki/Hockeyschläger-Diagramm Jahr

relativ zum Mittel 1961–1990 Daten: Mann et al. (1999)

#### Past climate changes - the last 800,000 years

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

https://www.researchgate.net/figure/Ice-Core-Data-from-the-EPICA-Dome-C-Antarctica-Ice-Core-Showing-Concentrationsof\_fig3\_310329375

#### Past climate changes - the last 800,000 years

![](_page_17_Figure_1.jpeg)

https://www.researchgate.net/figure/Ice-Core-Data-from-the-EPICA-Dome-C-Antarctica-Ice-Core-Showing-Concentrationsof\_fig3\_310329375

## **Changes of orbital parameters**

![](_page_18_Figure_1.jpeg)

<sup>[</sup>Ruddiman, Earth's Climate, 2008]

#### **Climate changes on orbital time scales**

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

https://www.researchgate.net/figure/Ice-Core-Data-from-the-EPICA-Dome-C-Antarctica-Ice-Core-Showing-Concentrationsof\_fig3\_310329375 Ice sheet growth and decay on orbital time scales

# Supplementary Video V1.

Simulated ice sheet change for the last 400 kyr with IcIES-MIROC model

#### **Climate changes on orbital time scales**

LGM

21

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

Figure 9. Components of the total freshwater flux (in  $Sv = 10^6 \text{ m}^3 \text{ s}^{-1}$ ) originating from the Northern Hemisphere ice sheets at the end of the last ice age based on Zweck and Huybrechts (2005).

- large freshwater fluxes into the North Atlantic due to melting of ice sheets at the end of each glacial period
  - how did these freshwater fluxes changed the global climate?

### **Climate changes on orbital time scales**

- ice core and marine records from the Arctic show strong climate variability on shorter time scales
  - Dansgaard-Oescher (D/O) events: abrupt warming + gradual cooling
  - Heinrich events (H-events): cooling in the North Atlantic, reduction of NA deep water formation
- the forcing mechanisms of these events are still unclear....

![](_page_22_Figure_5.jpeg)

### **Abrupt events: Linking atmosphere + ocean + sea ice**

![](_page_23_Figure_1.jpeg)

**Figure 16.** (a) Winter Fram Strait sea ice export time series (normalized): model simulation (solid line) and observations ((b) Atmospheric blocking frequency composite maps with respect to the simulated Fram Strait sea ice export: Maps for above and below 75% standard deviation indicating different regimes of blocking in the North Atlantic realm. (c) The 3 yr running mean winter sea surface salinity in the central Labrador Sea with three major freshwater events, based on Ionita et al. (2016).

## Linking climate changes and biogeochemistry

#### • Earth system has four parts

- atmosphere
- hydrosphere
- lithosphere
- biosphere

#### Biogeochemical cycles

- The chemical interactions (cycles) that exist between the atmosphere, hydrosphere, lithosphere, and biosphere
- Abiotic (physio-chemical) and biotic processes drive these cycles

![](_page_24_Figure_9.jpeg)

#### Linking climate changes and biogeochemistry

![](_page_25_Picture_1.jpeg)

**Animation 1.** Aerosol optical thickness of black and organic carbon (green), dust (red-orange), sulfates (white), and sea salt (blue) from a 10 km resolution GEOS-5 "nature run" using the GOCART model. The animation shows the emission and transport of key tropospheric aerosols from August 17, 2006 to April 10, 2007.

#### Climate and dust changes on glacial-interglacial time scales

## Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core

F. Lambert<sup>1,2</sup>, B. Delmonte<sup>3</sup>, J. R. Petit<sup>4</sup>, M. Bigler<sup>1,5</sup>, P. R. Kaufmann<sup>1,2</sup>, M. A. Hutterli<sup>6</sup>, T. F. Stocker<sup>1,2</sup>, U. Ruth<sup>7</sup>, J. P. Steffensen<sup>5</sup> & V. Maggi<sup>3</sup>

Vol 452|3 April 2008|doi:10.1038/nature06763

![](_page_26_Figure_4.jpeg)

![](_page_26_Figure_5.jpeg)

Marine Isotopic Stages. Note that the vertical extent of the scales of **b** and **c** is larger than for the other records. **d**, EDC dust size data expressed as FPP (see Methods). The orange and grey curves represent measurements by Coulter counter (2-kyr mean) and laser (1-kyr mean), respectively. **e**, Marine sediment  $\delta^{18}$ O stack<sup>18</sup>, giving the pattern of global ice volume. **f**, Magnetic susceptibility stack record for Chinese loess<sup>17</sup> (normalized).

#### **Global temperatures and CO<sub>2</sub> of the past**

![](_page_27_Figure_1.jpeg)

## **Climate II - Content**

- Oct 18: Challenges of climate change (MW)
- Oct 25: The global water cycle (MW)
- Nov 1: Ice Ages and Astronomical theory (GL) + exercise
- Nov 8: Ice Ages and Astronomical theory (GL) + exercise
- Nov 15: The Last Glacial Maximum (MW) + exercise
- Nov 22: Biogeochemical cycles (MW)
- Nov 29: Climate variability and data analysis (GL) + exercise
- Dec 6: Vegetation and dust (MW)
- Dec 13: Climate variability and extremes (GL)
- Dec 20: Climate teleconnectivity and Feedback analysis (GL)
- Jan 10: The last 100 million years (GL) + exercise
- Jan 17: Regional and global changes (MW) + exercise
- Jan 24: Permafrost and further archives of climate change (MW)
- Jan 31: The current debate (GL)
- Oral exam on XXX

# Climate System II (Winter 2022/2023)

# **1st lecture: Challenges of climate change**

(Introduction to past and present climate change, course content)

End of lecture.

Slides available at:

https://paleodyn.uni-bremen.de/study/climate2022\_23.html