Climate Sensitivity

* Concept
* Estimates
* Applications



Indicators of the human influence on the atmosphere
during the Industrial Era
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Radiative forcing (Watts per square metre)

Warming

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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Variations of the Earth's surface temperature for:
(a) the past 140 years

To Project future climates by

using the observed record of i G
climate over the past century, |
we need to know three things
to interpret the temperature
time series:

Departures in temperature (°C)
from the 1861 10 1980 avarage

AT 1
¢ At A
Climate Forcing = AQ (Wm?2)
Heat capacity = C (J °K-! m -2)

Climate sensitivity = A (°K per Wm)



Energy Equation:

AT 1
AN = C—— + = \]
¢ At A
Climate=  Heat + Heat
Forcing Storage Loss

In Equilibrium, temperature is constant with time and so,

A 1s a measure of climate sensitivity;
K per Wm of climate forcing



Heat Storage: Mostly the Oceans

1955-1996:; Levitus et al. 2001: Science

World Ocean = 18.2 x1022 Joules
Atmosphere = 0.7 x1022 Joules
Land Ice = 0.8 x10%2 Joules
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Model includes forcing from Greenhouse Gases, Sulfate Aerosols  Model minus solar irradiance changes
Solar irradiance changes, and volcanic aerosols. and volcanic aerosols.



Heat uptake:
The ocean matters

Energy (2J)
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(c) All forcings
1.0

we model
— observations

Top-Down Approach:

o
()

Determine sensitivity of climate
from observed record over past
130 years. Use simple model

to extrapolate into future.

Temperature anomalies (“C)
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(c) All forcings

1 .O . -
[ model
— observations
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Top-Down Approach:

Determine sensitivity of climate
from observed record over past
130 years. Use simple model
to extrapolate into future.

--------

Temperature anomalies ("C)
o
o

1850 1900 1950 2000

Problems: Need to know:

 Climate forcing - uncertain, especially solar and aerosol forcing.

» Heat storage - somewhat uncertain.

 Climate sensitivity - also uncertain.

No two of these are known with enough precision to usefully constrain

uncertainty in the third, with the data available, although it is possible
to fit the observations with fair precision using even a simple model.



Global Energy Balance

Incoming Solar Outgoing Terrestrial
Radiation Radiation

Sy nr2 - (1-a) oT4 - 4nr?

/] \ [/ N\

solar cross-sectional absorbed emitted surface area
irradiance  area of Earth fraction infrared flux of Earth

T =[S—°(l—a))4 = 255K
4o



Energy balance model: Concepts of climate

(1 —a)STR* = 4rR*eoT"

- \Z/(l—a)s

deo

\

shadow area wR?

incoming energy from the Sun  outgoing energy from the Earth \

Heat capacity of the climate system

Fast rotation

Lohmann, 2020
doi:10.5194/esd-11-1195-2020



A Simple Question

* |f we alter Earth’s radiation balance by 1
W m= and allow the climate system to fully
adjust, how much will the global average

temperature change?

 This is a fundamental question in climate
dynamics, and is relevant to both past and
future climate change.



Effect of long wave radiation. S,

Differentiating with respect to T

dSnet _ 4O'T3
dT

Rewriting in terms of d7/dS, ..

net*

dT 1

ds,. 4o’



Expressing as finite differences and
assuming that all perturbations to the
global energy balance are equivalent:

AT 1
— G() = 3
AQ 40T

In this simple model, G, is the gain of
the climate system. For T = 255K,

1

-1 2
= o +=0266KW "m
(4)(5.67x107")(255)

Gy




Schematic Diagram of
Zero-Dimensional Climate Model

Radiative Thermal
Forcing Response

AT




Radiative Feedbacks

« Some properties of the climate system
affect the global radiation balance.

* |f these properties change as Earth warms
or cools, they can lead to further changes
In climate.

» Such changes are called radiative
feedbacks.



Snow-Ice-Albedo Feedback

In a warmer climate, snow cover and sea ice
extent are reduced.

Reduced snow cover and sea ice extent
decrease the surface albedo of the earth,
allowing more solar radiation to be absorbed.

Increased absorption of solar radiation leads to
a further increase in temperature.

This is a positive feedback.



Ice-Albedo Feedback

* |ce reflects more solar radiation than other surfaces
 As the Earth warms, ice melts in high latitudes and altitudes

* This lowers the albedo of Earth and leads to further warming.

Albedo (Clear Sky)
DJF 1985-1986




Water Vapor Feedback

In a warmer climate, increases in saturation
vapor pressure allow water vapor to increase.

Increased water vapor increases the infrared
opacity of the atmosphere.

The reduction in outgoing longwave radiation
leads to a further increase in temperature.

This is a positive feedback.
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Water Vapor Feedback

Effect on long-term response to doubled CO,
AT = A1-AQ

A 1s a measure of climate sensitivity;
°K per Wm of climate forcing

A, = for fixed absolute humidity = 0.25 °K/(Wm)
Ay = for fixed relative humidity = 0.50 °K/(Wm)

/11—{1}[ =20 i 05 Wm —2 K_] (NRC, 1979, still good?)

AO,.co, = 4Wm>  gives
16C< AT <2.7C



Zero-Dimensional Climate Model
With Feedbacks

AT =G,J = G,(AQ+ FAT)



AT = G,(AQ+ FAT)

Solving for AT:

G
AT =—8 AQ | =GyF
-7
This can also be written as
G
—E (o =1

Larger positive F — larger G, — larger AT



Climate sensitivity is sometimes expressed
in terms of the equilibrium warming that would
result from a doubling of atmospheric CO,:

AT, =G,AQ,,
AQ, ~4Wm™



Simulated Climate Sensitivity

» The equilibrium global
warming to a doubling
of CO, (ATyco2)
simulated by current
climate models varies
over a relatively wide
range.

« |PCC: 66% chance
that AT, oo, lies within
2.0-4.5 K; 95% chance
thatitis >1.5 K.




Forcings vs. Feedbacks

* When considering the real climate system,
the distinction between forcings and
feedbacks can sometimes be unclear.

« Example: CO, is regarded as an external
forcing of future climate change, but
natural, climate-dependent CO, variations
have occurred in Earth’s past.



Forcings vs. Feedbacks

» Distinction depends on the definition of the
climate system.

* In a model framework, forcings and
feedbacks can be distinguished more
readily.

* Forcing — process external to the system

* Feedback — process internal to the
system



Fast vs. Slow Processes

* When using paleoclimate information to
evaluate climate sensitivity for application
to decadal-to-centennial scale climate
change, it is useful to distnguish between
“fast” and “slow” processes.

« Fast — time scales of years to decades
» Slow — time scales of centuries or longer



All of these processes are fast




Learning from the Past

Last Glacial Maximum 18,000 years ago.
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Radiative Feedbacks Involving
Slow Processes
« Growth and decay of large continental ice
sheets (albedo)

 Climate-dependent changes in vegetation
(albedo)

» Biogeochemical changes in carbon cycle
(atmospheric CO,, CH,)

 Tectonics (many indirect effects)
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Evaluating Climate Sensitivity
Using “Paleocalibration”

» Determine AQ and AT from paleodata.
« Compute G; (a.k.a. 1) from AQ and AT.

» Compare the “paleocalibrated” G; value
with model-derived or empirically derived
estimates.



Evaluating Climate Sensitivity

* For evaluating climate ot B o
sensitivity resulting orial j —
parameters
from fast feedback N a

processes (i.e., those
most relevant to dec-
cen climate change),
external forcings and
results of slow

processes can be (emperature
taken as inputs.
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Evaluating Climate Sensitivity
Using “Paleocalibration”

» Determine AQ and AT from paleodata.
« Compute G; (a.k.a. 1) from AQ and AT.

» Compare the “paleocalibrated” G; value
with model-derived or empirically derived
estimates.



Evaluating Climate Sensitivity
Using Paleoclimate Modeling

» Determine required forcings (including
those resulting from slow feedback
Processes).

» Apply these forcings to climate model.

« Compare resulting changes in temperature

to those reconstructed from geological
data.



Advantages and Disadvantages

“Paleocalibration”

+ Results are independent of

climate models.

+ Results can easily be revised

when new estimates of forcing
or response become available.

Global mean temperature
estimates are required.

Paleoclimate Modeling

-i-

-

Global mean temperature
estimates are not required.
(More effective with good data
coverage, though.)

Does not require the forcing-
response relationship to be
linear.

Provides additional insights
beyond climate sensitivity.

Requires extensive computation
with a climate model.



Estimating Forcings: Orbital Parameters

» Orbital parameters can be calculated
accurately for millions of years based on
orbital mechanics.

» Results of such calculations are widely
available.
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Example

Insolation (6k minus present)
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Marine temperature trends (last 6000 years)

Annual mean sea surface temperature trends
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Estimating Forcings:
Ice Sheets and Sea Level

* |ce sheet extent can
be estimated from
terminal moraines.

 Evidence of ice sheet
thickness may be
available.

» Geophysical modeling
(e.g., Peltier) of 3-D
iIce sheet distribution.




Estimating Forcings:
Atmospheric Composition

 Fossil air can be
recovered from ice
cores.

« Chemical analysis of
the air can yield
concentrations of
atmospheric
constituents.




Estimating Temperature: Methods

Mountain snowlines

Isotopes in ice cores

Distributions of marine microorganisms
Alkenone molecules in marine flora
Sr/Ca in corals

Mg/Ca in planktonic foraminifera
Pollen evidence of past vegetation
Noble gases in aquifers



Mountain Snowlines




Mountain Snowlines

» Changes in the equilibrium lines of
mountain glaciers, which can be inferred
from moraines, can be interpreted in terms
of temperature changes. (Ex: 200 m
change x 0.6 K/100 m lapse rate = 1.2 K)

» Other factors, including moisture
avallability, also affect glacier growth and
retreat.



Isotopes in Ice Cores

* |sotopes in
precipitation have
been empirically

correlated with mean

annual air
temperature.

Fractionation
processes are
responsible.
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Distributions of Marine
Microorganisms

« Determine where
different species live
iIn the modern ocean
and their relationship
to sea surface
temperature.




Distributions of Marine
Microorganisms

W
o

« Reconstruct past sea
surface temperatures
from shells recovered
from deep sea
sediment cores.
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Alkenone Molecules In
Marine Flora

A strong empirical relationship has been
found between the ratio of two different
molecules (each with 37 C atoms) and the
temperature at which the macroscopic
marine plants grew.

* These alkenone molecules are preserved
IN marine sediments.



Alkenone Molecules Iin
Marine Flora
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Sr/Ca in Corals
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Mg/Ca in Planktonic Foraminifera

 The ratio of

magnesium to = ot
calcium in planktonic | 2 |
foraminifera has been Mo =028 55557 ;

Ry = 0.96

found to be a strong
function of

Mg/Ca (mmol/mol)
W
=
|

temperature. B IR T gl
« Mg/Ca and ¥0 can :
be determined from | S’ S it Sl

the same shells. B



Pollen Evidence of
Past Vegetation

» Different plant species have different
growth requirements that partly depend on
climate.

» Pollen grains are distinctive and well-
preserved in lake and wetland sediments.

» Changes in frequencies of pollen grains in
a sediment core can be used to infer
variations in climate.



Noble Gases in Aquifers

 Solubility of noble
gases depends on
temperature.

« Temperature
dependence differs
for each gas.

» Ratios can yield :
temperature N

0.0
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Noble Gases in Aquifers
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Deglacial temperatures and
CO2



EOF Analysis: temperature pattern & time series

EOF1: Normalized MgCa+UK37 SST 6.5-30 kyr (Explained Variance = 70.93%)
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3°C
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CS=3.5 K (includes water vapor, cloud feedbacks etc.):

3.5 K x 1/In(2) In(265/190) = 3.5 K x 0.48 = 1.68 K (CO2 effect)

Global change of 3-5 K (or more)

Effects of orography, albedo, dust, other trace gases, etc. = 1-3

Consistent with modeling exercises
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Figure 5: Surface temperature anomaly of 4xCO,-PI for MAM (a), JJA (b), SON (c), DJF (d) and Annual (¢).There are
no insignificant anomalies here based on a t-test with 95% confidence interval. The unit is °C.
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Figure 7: Meridional range of zonal mean surface air temperature (SAT) of PI, 4xCO, and 4xCO,_O; simulations for
MAM (a), JJA (b), SON (c), DJF (d) and Annualmean (e).
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Climate sensitivity.

Estimates from models.

1 = A
‘% Colman (2003)
O Soden & Held (2006)

AT

_ AR
“T=DF

Individual feedbacks
uncorrelated among
models, so can be

x
g " simply combined:
& 05 lg ‘
- % )
8 a 8 Soden & Held (2006):
9 . 'g f=0.62;0,=0.13
L
. : ' 4 g Colman (2003):
j . f=0.70;0, =0.14
y
-05 : . |
Water Lapse WV+LR  Albedo Cloud

vapor rate
Feedback type

« How does this uncertainty in physics translate to uncertainty in

climate sensitivity?



Climate sensitivity.

Estimates from models.
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Climate sensitivity.

Estimates from models.
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Climate sensitivity.

Estimates from models.
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-  Climateprediction.net

= = = [it to climateprediction.net

« GCMs produce climate sensitivity consistent with the
compounding effect of essentially-linear feedbacks.




An aside: nonlinearity of feedbacks

dR

From basic analysis: AR = = AT + O(AT?)
But can take dR 1 d°R
- AR = —AT+——AT2+O
quadratic terms... dT > dT? N
giving... G= 1
1_f_ AT df
2 dT

ar
ar

Taking ~12 different studies: —0.04K™' < — < +40.04K™*



Climate sensitivity.
Models and observations.
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« All look pretty similar.

* How to do better?



Climate sensitivity.
How to do better?

1. Combine different estimates?
Very hard to establish the degree of independence of individual
estimates.

2. Use other observations?
(e.g., NH vs. SH; pole-to-eq. AT; seasonality, trop. water vapor)
Structural errors among models highly uncertain (see nuts et al, 2010).

3. Transient climate response?
Clim. Sens. is an equilibrium property, short observations only
have limited resolving power.



Bottom-up approach

Understand and model key
physical processes that affect
climate sensitivity.

1.e. Feedback Processes

S Ay, » Water vapor feedback
R Bl * Cloud feedback
| « Ice-albedo feedback

* Many more




