
Variability and Extremes 



How to model extremes? 
•  Normal distribution not applicable to describe extremes 
•  Distributions often „heavy-tailed“: strong, rare outliers 
•  Example: Daily Rainfall in Venezuela 

Source: Coles, Pericchi, Sisson: A Fully Probabilistic 
              Approach to Extreme Rainfall Modeling (2003) 



The block-maxima approach 
•  group data into blocks of the same size, take for each 

block maximum value  

•  the resulting block maxima can be described with a 
Generalized Extreme Value (GEV) distribution 



The GEV distribution 
•  Task: The GEV distribution has three parameters. Find out 

their meanings! 
•  Simulate and plot GEV distribution data using the following 

code: 

         library(EnvStats)   
         plot(rgevd(500, x, y, z))



The GEV distribution 
•  The three GEV distribution parameters are: 

•  location  (µ)      
•  scale   (σ > 0) 
•  shape  (ξ) 

•  µ is a location (or shift) parameter: 
          if X ~ GEV(µ, σ, ξ), then X+a ~ GEV(µ+a, σ, ξ) 
•  σ describes the variability of the distribution: 
              if X ~ GEV(µ, σ, ξ), then b·X ~ GEV(b·µ, b·σ, ξ) 
•  ξ describes the heavy-tailedness of the distribution: 

   ξ > 0: negative extremes    ;    ξ < 0: positive extremes 
•  the larger the absolute value of ξ, the stronger the extremes are 
 
(Remark: In the literature, a different parametrization is also sometimes used. It replaces ξ with –ξ so that 
under that parametrization, positive values of ξ correspond to positive extremes) 

 



When to apply the GEV distribution 
•  The GEV distribution can be used to describe the 

distribution of block maxima if: 
•  the block size is sufficiently large 
•  the underlying (not block-maximized) data are independent 
•  the distribution of the underlying data stays the same over time 

•  It can be used (almost) regardless of how the underlying 
data are distributed 

•  The GEV distribution is also often applicable in case of 
cyclic seasonality and if one season has a dominant effect 
on the maxima 

•  Example: annual maxima of daily data 



Decluserization 
•  How to deal with climate data that are not independent? 
•  Declustering algorithm: If the maxima from two adjacent 

blocks are very near to each other, it is assumed that they 
are due to the same climatological event 

•  In that case, the smaller of the two block maxima is 
discarded, and instead of it, the highest value of the block 
that is sufficiently far away from the other block is used 



Example Data 
•  Open the file „retreat.R“ and change the path in the first 

line to load „retreat_data.Rdata“ 
•  Data set: monthly temperature from AWI-ESM-1-1-LR, 

historical run (1850-2000):   temperature_monthly
•  Dimensions:       lon, lat, t_m

•  Run lines 1 through 38 and test the plotting function: 
# January 1850:
plot_map(temperature_monthly[,,1],lo=-50,hi=50)

 # July 1850:
plot_map(temperature_monthly[,,7],lo=-50,hi=50)

•  Plot a time series using get_timeseries(data, lat, lon): 
plot(t_m, get_timeseries(temperature_monthly, 

00, 000), type=„l“)



Example Data 
•  Follow lines 42 through 97: The functions block_maximize 

and block_maximize_declustered are defined and used 
to group the data into blocks 

•  Check for autocorrelation: 
 acf(get_timeseries(temperature_threeyearly, 0, 0))

Autocorrelation (decadal trends?)                   No significant autocorrelation 



Fitting a GEV distribution 
•  Follow lines 100 through 106: The function egevd from 

the R package „EnvStats“ is used to fit GEV distributions 
to the block-maximized data 

•  Different estimation methods exist. For small sample 
sizes, the PWME method (Probability Weighted Moments 
Estimator) is better suited than the default Maximum 
Likelihood method 

•  Inspect the geographical distribution of the GEV 
parameters using plot_map 



Fitted GEV parameters 



Goodness-of-Fit Test 
•  We can use a Kolmogorov-Smirnov Test (KS-Test) to test 

the goodness of fit 
•  Null hypothesis: The data are GEV distributed with given 

parameters 
•  Use a KS-Test on a time series and with the estimated 

GEV parameters (Lines 108 through 114) 



Non-stationary GEV distributions 
•  To investigate a changing climate, a non-stationary GEV 

distribution must be used 
•  The parameters are allowed to change over time: 

     X(t) ~ GEV(µ(t),σ(t),ξ(t)) 

•  Time-dependent GEV distributions can be fitted using 
Maximum Likelihood, numerical optimization is necessary 



A simple non-stationary model 
•  We use the following model: 

   µ(t) = µstart + µchange ·(t-tstart)/(tend-tstart) 
   σ  constant over time 
   ξ  constant over time 

 
•  four parameters: µstart, µchange, σ, ξ 
•  Fit model to data using the function      

MLE_est(time_series, print=F, plot=F)



The function MLE_est 
•  The non-stationary model for each GEV parameter is 

contained as subfunction in MLE_est 

•  For each parameter to be estimated, upper and lower 
bounds must be prescribed 

•  For the numerical optimization, the function optim is used 
•  optim is run several times with different starting values, to 

ensure that a global maximum is found 
•  use print=T to check the results of the iterations. If they 

are too different, use more iterations or narrower 
parameter bounds 



The function MLE_est 
•  use the option plot=T to see a plot of the time series 

together with the median and 95% quantiles of the fitted 
model  

MLE_est(get_timeseries(temperature_threeyearly, 
00, 000), plot=T)



Results 



Task: Adapt MLE_est 
•  Task: Adapt the function MLE_est to the following model: 

   µ(t) = µstart + µchange ·(t-tstart)/(tend-tstart) 
   σ(t) = σstart + (σend-σstart)·(t-tstart)/(tend-tstart) 
   ξ  constant over time 



Solution 
parnames <- c(„loc_start“, „loc_change“, 

 „scale_start“, „scale_end“, „shape)

t_start = tm[1] ; t_end = tm[length(tm)]
loc_model <- function(par) {
  return(par[1] + par[2]*(tm-t_start)/(t_end-t_start)
}
sc_model <- function(par) {
  return(par[3] + (par[4]-par[3])*(tm-t_start)/(t_end-
t_start)
}
sha_model <- function(par) {
  return(rep(par[5], length(tm))
}
parameters_lower_bound <- c(min(ts)-1, -3, 0.01, 0.01, -1)
parameters_upper_bound <- c(max(ts)+1,  3,    5,    5,  1)


