Climate variability and extremes

Climate System II (Lohmann/Werner)

9th lecture 19.12.2023

Gerrit Lohmann

Instrumental record/period

Temperature of the last **150 years** (instrumental data)

Arctic Sea Ice retreat

Arctic Sea Ice retreat

Missing Information about Sea Ice

The "Climate dilemma"

• Instrumental data are **sparce**

The "Climate dilemma"

• Instrumental data are **sparce**

• The records of direct temperature measurements are **short** and already fall in the phase of strong **human influence**.

The "Climate dilemma"

• Instrumental data are **sparce**

• The records of direct temperature measurements are **short** and already fall in the phase of strong **human influence**.

 For the time before instrumental records, one has to rely on information from proxy data and modeling.

Observational Record

Temperature Anomaly 1930 White areas: not enough data

Nicolaus Kopernikus

Earth System: a polar perspective

Ice drilling camp, 2009

Polarstern, marine sediments

Lake/permafrost sediments

Earth System: Reconstructions

ALI

Shallow ice cores

Lohmann et al. (2020) based on NGRIP, 2004; Berger, 1988; Köhler et al., 2017; Archer and Brovkin, 2008

How quickly will Greenland's ice melt?

WEST ANTARCTIC ICE SHEET

Ice Terminology

Ice sheet: mass of glacial ice on terrain over 50,000 km²

Ice stream: part of ice sheet that moves faster than surrounding

ice divide e dome ice stream onset sediment-filled graben continental groundi deltas shelf CONTINENTAL LITHOSPHERE

Grounding line where ice sheet loses contact with solid ground

Ice shelf: thick, floating platform in ocean that is connected to ice sheet

Moulin: well-like opening in glacier where water can flow into

Ice Terminology

<u>Ice sheet mass balance = accumulation – ablation</u>

Two main ways of losing mass:

- 1. Surface melt
- 2. Ice flow and calving

Jakobshavn glacier

 Ocean

<u>Glacier:</u> Body of ice moving by own weight <u>Mountain glacier</u>: glaciers on slopes of mountains <u>Terminus:</u> end of glacier <u>Calving:</u> ice breakoffs at terminus

Proxy Data

- Indirect data, often qualitative
- Long time series from archives
- Information beyond the instrumental record

Spatio-Temporal Scales

Dissipative Systems (as atmosphere & ocean) cannot maintain large gradients on long time scales

Earth System Analysis: Models

$$\begin{aligned} \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} &= -2\Omega \times \mathbf{v} - \frac{1}{\rho} \nabla p + \mathbf{g} + \mathbf{F} \\ \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} &= 0 \\ \frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T - \frac{p}{\rho^2} \frac{d\rho}{dt} = Q \end{aligned}$$

Attribution (model world)

observed changes are consistent with modeled response to external forcing, inconsistent with alternative explanations

Nobel Price, 2021

Attribution (model world)

observed changes are consistent with modeled response to external forcing, inconsistent with alternative explanations

Critics:

- Time series too short
- Estimates of natural variability based only on models

Global Carbon Project

How realistic is the model?

Ocean velocity

Upscaling concept

Climate variabiliy

Lohmann, 2007

ALI

Shallow ice cores

Statistics

covariance is a measure of how much two random variables change together

Correlation (cross, auto)

$$\rho_{xy} = \frac{\gamma(\Delta)}{\text{normalized}}$$

measures the tendency of x (t) and y (t) to covary, between -1 and 1

 $\frac{\text{Spectrum (cross, auto)}}{(\text{spectral density})}$ $\Gamma(\omega) = \sum_{\Delta = \infty}^{\infty} \gamma (\Delta) e^{-2\pi i \Delta}$ measures variance

SNOW ACCUMULATION ICE CORE

Greenland Traverse AWI (1993-1995)

- Shallow ice core (depths up to 150 m)
- Mean accumulation rates vary between:

 $104 \pm 32 \, mm_{\scriptscriptstyle W.e.} \, a^{-1}$ and:

```
179 \pm 49 \, mm_{w.e.} \, a^{-1}
```

Description: Schwager, AWI report, 2000

Accumulation variability

EOF1- MONOPOLAR STRUCTURE POSSIBLE RELATED TO LARGE-SCALE ATMOSPHERIC CIRCULATION

PC1 – INTERANNUAL AND DECADAL VARIATIONS

Atmospheric Blocking

WATER VAPOR TRANSPORT

ENHANCED MOISTURE TRANSPORT TOWARD GREENLAND DURING HIGH BLOCKING ACTIVITY IN 20°W - 20°E SECTOR Until now: Climate science concentrates on the mean changes ("climate sensitivity")

climate variability and

High-resolution modelling of the jet stream and associated extreme events in Europe

Assessment of resolution impact on the jet stream in the Euro-Atlantic region

Blocking frequency Greenland Ice cores

Decadal-centennial variability

Continous Frost days

Climate Modes from Proxy Data

ARCTIC OSCILLATION SIGNATURE IN A RED SEA CORAL

ARCTIC OSCILLATION SIGNATURE IN A RED SEA CORAL

mechanistic understanding

Natural variability and perturbed climate

LAKE SEDIMENTS AS CLIMATE ARCHIVES

River Ammer floods

catchement 700 km² length 84 km q =18m³/s -river floods (discharge higher than 125 m³/s) are detected as flood layers in lake Ammer sediments

-summer floods are dominant

Flood layer records

-annual resolution -cover instrumental period -go back to mid-Holocene

Czymzik et al., 2010

OBSERVED AND PROXY FLOODS

-5400 -5300 -5200 -5100 -5000 -4900 -4800 -4700 -4600 -4500 -5500 -4400-4300 -4200 -3900 -3800 -3700 -3400 -3300 -4400 -4100 -4000 -3600 -3500 -2900 -3200 -3100 -3000 -2800 -2700 -2600 -2500 -2400 -2300 -2200 -3300 -2100 -2200 -2000 -1900-1800-1700-1600-1500-1400-1300-1200 -1100 -200 -700 -1000 -900 -800 -600 -500 $-\dot{400}$ -300 -100 -1100 0 -1100 -800 -700 -200 -1000 -900 -600 -500 -300 -100 $-\dot{400}$ 0 time(years BP)

annual flood years: pronounced millennial variations last ~5500 y

observed river Ammer flood years: similar distribution

LAKE SEDIMENTS

Wave-train pattern with a pronounced trough over western Europe is associated with flood days

EXTREME PATTERNS ASSOCIATED WITH FLOODS

R20mm FLOOD YEARS

LAKE

SEDIMENTS

Exercise teleconnections using http://climexp.knmi.nl

- 1) Monthly climate indices (temp, precip, ...)
- a) Select one pre-defined index
- b) Correlation with temperature, precipiation, SLP
- c) Explain the teleconnections for different seasons

2) Home town climate

a) Calculate different regions on the world (home town, Bremen has 53° N, 8° E)
b) Correlation with temperature, precipiation, SLP
c) Explain the teleconnections for different seasons
d) Exlain related modes of climate variability (ENSO, PDO, NAO, Monsoon)

1880-now anomalies: ONCDC v3.2.1

i > Monthly CMIP5 scenario runs

