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To proceed further with our discussion of
the circulation of the atmosphere, and later
the ocean, we must develop some of the
underlying theory governing the motion of a
fluid on the spinning Earth. A differentially
heated, stratified fluid on a rotating planet
cannot move in arbitrary paths. Indeed,
there are strong constraints on its motion
imparted by the angular momentum of the
spinning Earth. These constraints are pro-
foundly important in shaping the pattern of
atmosphere and ocean circulation and their

ability to transport properties around the
globe. The laws governing the evolution
of both fluids are the same and so our
theoretical discussion will not be specific to
either atmosphere or ocean, but can and will
be applied to both. Because the properties
of rotating fluids are often counterintuitive
and sometimes difficult to grasp, along-
side our theoretical development we will
describe and carry out laboratory experi-
ments with a tank of water on a rotating
table (Fig. 6.1). Many of the laboratory
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82 6. THE EQUATIONS OF FLUID MOTION

FIGURE 6.1. Throughout our text, running in parallel with a theoretical development of the subject, we study
the constraints on a differentially heated, stratified fluid on a rotating planet (left), by using laboratory analogues
to illustrate the fundamental processes at work (right). A complete list of the laboratory experiments can be found
in Appendix A.4.

experiments we use are simplified versions
of ‘‘classics’’ of geophysical fluid dynamics.
They are listed in Appendix A.4. Further-
more we have chosen relatively simple
experiments that, in the main, do not require
sophisticated apparatus. We encourage you
to ‘‘have a go’’ or view the attendant movie
loops that record the experiments carried
out in preparation of our text.

We now begin a more formal devel-
opment of the equations that govern the
evolution of a fluid. A brief summary of
the associated mathematical concepts, def-
initions, and notation we employ can be
found in Appendix A.2.

6.1. DIFFERENTIATION
FOLLOWING THE MOTION

When we apply the laws of motion and
thermodynamics to a fluid to derive the
equations that govern its motion, we must
remember that these laws apply to material
elements of fluid that are usually mobile.
We must learn, therefore, how to express

the rate of change of a property of a fluid
element, following that element as it moves
along, rather than at a fixed point in space.
It is useful to consider the following simple
example.

Consider again the situation sketched in
Fig. 4.13 in which a wind blows over a
hill. The hill produces a pattern of waves
in its lee. If the air is sufficiently saturated
in water vapor, the vapor often condenses
out to form a cloud at the ‘‘ridges’’ of the
waves as described in Section 4.4 and seen
in Figs. 4.14 and 4.15.

Let us suppose that a steady state is set up
so the pattern of cloud does not change in
time. If C = C(x, y, z, t) is the cloud amount,
where (x, y) are horizontal coordinates, z is
the vertical coordinate, and t is time, then

(
∂C
∂t

)
fixed point

in space

= 0,

in which we keep at a fixed point in space,
but at which, because the air is moving, there
are constantly changing fluid parcels. The
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derivative
(
∂
∂t

)
fixed point

is called the Eulerian

derivative after Euler.1

But C is not constant following along a par-
ticular parcel; as the parcel moves upwards
into the ridges of the wave, it cools, water
condenses out, a cloud forms, and so C
increases (recall GFD Lab 1, Section 1.3.3);
as the parcel moves down into the troughs
it warms, the water goes back in to the
gaseous phase, the cloud disappears and C
decreases. Thus

(
∂C
∂t

)
fixed

particle

�= 0,

even though the wave-pattern is fixed in
space and constant in time.

So, how do we mathematically express
‘‘differentiation following the motion’’? To
follow particles in a continuum, a special
type of differentiation is required. Arbitrar-
ily small variations of C(x, y, z, t), a function
of position and time, are given to the first
order by

δC =
∂C
∂t

δt +
∂C
∂x

δx +
∂C
∂y

δy +
∂C
∂z

δz,

where the partial derivatives ∂/∂t etc. are
understood to imply that the other variables
are kept fixed during the differentiation. The
fluid velocity is the rate of change of position
of the fluid element, following that element
along. The variation of a property C following
an element of fluid is thus derived by setting
δx = uδt, δy = vδt, δz = wδt, where u is the
speed in the x-direction, v is the speed in

the y-direction, and w is the speed in the
z-direction, thus

(δC)
fixed

particle

=

(
∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

)
δt,

where (u, v, w) is the velocity of the material
element, which by definition is the fluid
velocity. Dividing by δt and in the limit of
small variations we see that

(
∂C
∂t

)
fixed

particle

=
∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

=
DC
Dt

,

in which we use the symbol D
Dt to identify

the rate of change following the motion

D
Dt

≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
≡ ∂

∂t
+ u.∇.

(6-1)

Here u = (u, v, w) is the velocity vector, and

∇ ≡
(
∂
∂x

, ∂
∂y

, ∂
∂z

)
is the gradient operator.

D/Dt is called the Lagrangian derivative
(after Lagrange; 1736–1813) (it is also called
variously the substantial, the total, or the
material derivative). Its physical meaning is
time rate of change of some characteristic of a
particular element of fluid (which in general is
changing its position). By contrast, as intro-
duced above, the Eulerian derivative ∂/∂t
expresses the rate of change of some char-
acteristic at a fixed point in space (but with
constantly changing fluid element because
the fluid is moving).

1 Leonhard Euler (1707–1783). Euler made vast contributions to mathematics in the areas of
analytic geometry, trigonometry, calculus and number theory. He also studied continuum
mechanics, lunar theory, elasticity, acoustics, the wave theory of light, and hydraulics, and
laid the foundation of analytical mechanics. In the 1750s Euler published a number of major
works setting up the main formulas of fluid mechanics, the continuity equation, and the
Euler equations for the motion of an inviscid, incompressible fluid.
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Some writers use the symbol d/dt for
the Lagrangian derivative, but this is bet-
ter reserved for the ordinary derivative of
a function of one variable, the sense it is
usually used in mathematics. Thus for exam-
ple the rate of change of the radius of a rain
drop would be written dr/dt, with the iden-
tity of the drop understood to be fixed. In the
same context D/Dt could refer to the motion
of individual particles of water circulating
within the drop itself. Another example is
the vertical velocity, defined as w = Dz/Dt;
if one sits in an air parcel and follows it
around, w is the rate at which one’s height
changes.2

The term u.∇ in Eq. 6-1 represents advec-
tion and is the mathematical representation
of the ability of a fluid to carry its proper-
ties with it as it moves. For example, the
effects of advection are evident to us every
day. In the northern hemisphere, southerly
winds (from the south) tend to be warm and
moist because the air carries with it prop-
erties typical of tropical latitudes; northerly

winds tend to be cold and dry because they
advect properties typical of polar latitudes.

We will now use the Lagrangian deriva-
tive to help us apply the laws of mechanics
and thermodynamics to a fluid.

6.2. EQUATION OF MOTION FOR A
NONROTATING FLUID

The state of the atmosphere or ocean at
any time is defined by five key variables:

u = (u, v, w); p and T,

(six if we include specific humidity in the
atmosphere, or salinity in the ocean). Note
that by using the equation of state, Eq. 1-1,
we can infer ρ from p and T. To ‘‘tie’’ these
variables down we need five independent
equations. They are:

1. the laws of motion applied to a fluid
parcel, yielding three independent
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FIGURE 6.2. An elementary fluid parcel, conveniently chosen to be a cube of sides δx, δy, δz, centered on (x, y, z).
The parcel is moving with velocity u.

2Meteorologists like working in pressure coordinates in which p is used as a vertical coordinate rather than z. In this
coordinate an equivalent definition of ‘‘vertical velocity’’ is:

ω =
Dp
Dt

,

the rate at which pressure changes as the air parcel moves around. Since pressure varies much more quickly in
the vertical than in the horizontal, this is still, for all practical purposes, a measure of vertical velocity, but expressed in
units of hPa s−1. Note also that upward motion has negative ω.
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equations in each of the three
orthogonal directions

2. conservation of mass

3. the law of thermodynamics, a statement
of the thermodynamic state in which the
motion takes place.

These equations, five in all, together with
appropriate boundary conditions, are suffi-
cient to determine the evolution of the fluid.

6.2.1. Forces on a fluid parcel

We will now consider the forces on
an elementary fluid parcel, of infinitesimal
dimensions (δx, δy, δz) in the three coor-
dinate directions, centered on (x, y, z) (see
Fig. 6.2).

Since the mass of the parcel is δM =
ρ δx δy δz, then, when subjected to a net
force F, Newton’s Law of Motion for the
parcel is

ρ δx δy δz
Du

Dt
= F, (6-2)

where u is the parcel’s velocity. As discussed
earlier we must apply Eq. 6-2 to the same
material mass of fluid, which means we
must follow the same parcel around. There-
fore, the time derivative in Eq. 6-2 is the total
derivative, defined in Eq. 6-1, which in this
case is

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

=
∂u

∂t
+ (u · ∇) u.

Gravity

The effect of gravity acting on the parcel in
Fig. 6.2 is straightforward: the gravitational
force is g δM, and is directed downward,

Fgravity = −gρẑ δx δy δz, (6-3)

where ẑ is the unit vector in the upward
direction and g is assumed constant.

Pressure gradient

Another force acting on a fluid par-
cel is the pressure force within the fluid.
Consider Fig. 6.3. On each face of our par-
cel there is a force (directed inward) acting
on the parcel equal to the pressure on that
face multiplied by the area of the face. On
face A, for example, the force is

F(A) = p(x − δx
2

, y, z) δy δz,

directed in the positive x-direction. Note
that we have used the value of p at the
midpoint of the face, which is valid for small
δy, δz. On face B, there is an x-directed force
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FIGURE 6.3. Pressure gradient forces acting on the fluid parcel. The pressure of the surrounding fluid applies a
force to the right on face A and to the left on face B.
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F(B) = −p(x +
δx
2

, y, z) δy δz,

which is negative (toward the left). Since
these are the only pressure forces acting in
the x-direction, the net x-component of the
pressure force is

Fx =

[
p(x − δx

2
, y, z) − p(x +

δx
2

, y, z)
]

δy δz.

If we perform a Taylor expansion (see
Appendix A.2.1) about the midpoint of the
parcel, we have

p(x +
δx
2

, y, z) = p(x, y, z) +
δx
2

(
∂p
∂x

)
,

p(x − δx
2

, y, z) = p(x, y, z) − δx
2

(
∂p
∂x

)
,

where the pressure gradient is evaluated at
the midpoint of the parcel, and where we
have neglected the small terms of O(δx2)
and higher. Therefore the x-component of
the pressure force is

Fx = −
∂p
∂x

δx δy δz.

It is straightforward to apply the same
procedure to the faces perpendicular to
the y- and z-directions, to show that these
components are

Fy = −
∂p
∂y

δx δy δz,

Fz = −
∂p
∂z

δx δy δz.

In total, therefore, the net pressure force is
given by the vector

Fpressure =
(
Fx, Fy, Fz

)
= −

(
∂p
∂x

,
∂p
∂y

,
∂p
∂z

)
δx δy δz

= −∇p δx δy δz. (6-4)

Note that the net force depends only on the
gradient of pressure, ∇p; clearly, a uniform
pressure applied to all faces of the parcel
would not introduce any net force.

Friction

For typical atmospheric and oceanic
flows, frictional effects are negligible except
close to boundaries where the fluid rubs
over the Earth’s surface. The atmospheric
boundary layer—which is typically a few
hundred meters to 1 km or so deep—is
exceedingly complicated. For one thing, the
surface is not smooth; there are mountains,
trees, and other irregularities that increase
the exchange of momentum between the air
and the ground. (This is the main reason
why frictional effects are greater over land
than over ocean.) For another, the bound-
ary layer is usually turbulent, containing
many small-scale and often vigorous eddies;
these eddies can act somewhat like mobile
molecules and diffuse momentum more
effectively than molecular viscosity. The
same can be said of oceanic boundary layers,
which are subject, for example, to the stir-
ring by turbulence generated by the action of
the wind, as will be discussed in Section 10.1.
At this stage, we will not attempt to describe
such effects quantitatively but instead write
the consequent frictional force on a fluid
parcel as

Ffric = ρ F δx δy δz, (6-5)

where, for convenience, F is the frictional
force per unit mass. For the moment we will
not need a detailed theory of this term.
Explicit forms for F will be discussed and
employed in Sections 7.4.2 and 10.1.

6.2.2. The equations of motion

Putting all this together, Eq. 6-2 gives us

ρ δx δy δz
Du

Dt
= Fgravity + Fpressure + Ffric.

Substituting from Eqs. 6-3, 6-4, and 6-5, and
rearranging slightly, we obtain

Du

Dt
+

1
ρ
∇p + gẑ = F . (6-6)

This is our equation of motion for a fluid
parcel.
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Note that because of our use of vector
notation, Eq. 6-6 seems rather simple. How-
ever, when written out in component form,
as below, it becomes somewhat intimidat-
ing, even in Cartesian coordinates:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

+
1
ρ

∂p
∂x

= Fx (a)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

+
1
ρ

∂p
∂y

= Fy (b)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

+
1
ρ

∂p
∂z

+ g = Fz . (c)

(6-7)

Fortunately we will often be able to make
a number of simplifications. One such sim-
plification, for example, is that, as discussed
in Section 3.2, large-scale flow in the atmo-
sphere and ocean is almost always close to
hydrostatic balance, allowing Eq. 6-7c to be
radically simplified as follows.

6.2.3. Hydrostatic balance

From the vertical equation of motion,
Eq. 6-7c, we can see that if friction and the

vertical acceleration Dw/Dt are negligible,
we obtain

∂p
∂z

= −ρg, (6-8)

thus recovering the equation of hydrostatic
balance, Eq. 3-3. For large-scale atmospheric
and oceanic systems in which the vertical
motions are weak, the hydrostatic equation
is almost always accurate, though it may
break down in vigorous systems of smaller
horizontal scale such as convection.3

6.3. CONSERVATION OF MASS

In addition to Newton’s laws there is
a further constraint on the fluid motion:
conservation of mass. Consider a fixed fluid
volume as illustrated in Fig. 6.4. The volume
has dimensions

(
δx, δy, δz

)
. The mass of the

fluid occupying this volume, ρ δx δy δz, may
change with time if ρ does so. However,
mass continuity tells us that this can only
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FIGURE 6.4. The mass of fluid contained in the fixed volume, ρδx δy δz, can be changed by fluxes of mass out
of and into the volume, as marked by the arrows.

3It might appear from Eq. 6-7c that |Dw/Dt| << g is a sufficient condition for the neglect of the acceleration term. This
indeed is almost always satisfied. However, for hydrostatic balance to hold to sufficient accuracy to be useful, the
condition is actually |Dw/Dt| << g�ρ/ρ, where �ρ is a typical density variation on a pressure surface. Even in quite
extreme conditions this more restrictive condition turns out to be very well satisfied.
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occur if there is a flux of mass into (or out
of) the volume, meaning that

∂

∂t
(
ρ δx δy δz

)
=

∂ρ

∂t
δx δy δz

=
(
net mass flux into the volume

)
.

Now the volume flux in the x-direction
per unit time into the left face in Fig. 6.4 is
u
(
x − 1/2 δ x, y, z

)
δy δz, so the correspond-

ing mass flux is [ρu]
(
x − 1/2 δx, y, z

)
δy δz,

where [ρu] is evaluated at the left face.
The flux out through the right face is
[ρu]

(
x + 1/2 δx, y, z

)
δy δz; therefore the net

mass import in the x-direction into the
volume is (again employing a Taylor
expansion)

− ∂

∂x
(ρu) δx δy δz.

Similarly the rate of net import of mass in
the y-direction is

− ∂

∂y
(ρv) δx δy δz,

and in the z-direction is

− ∂

∂z
(ρw) δx δy δz.

Therefore the net mass flux into the vol-
ume is −∇ · (ρu) δx δy δz. Thus our equation
of continuity becomes

∂ρ

∂t
+ ∇ · (ρu) = 0. (6-9)

This has the general form of a physical
conservation law:

∂ Concentration
∂t

+ ∇ ·
(
flux

)
= 0

in the absence of sources and sinks.
Using the total derivative D/Dt, Eq. 6-1,

and noting that ∇ · (ρu) = ρ∇ · u + u·∇ρ

(see the vector identities listed in
Appendix A.2.2) we may therefore rewrite
Eq. 6-9 in the alternative, and often very
useful, form:

Dρ

Dt
+ ρ∇ · u = 0. (6-10)

6.3.1. Incompressible flow

For incompressible flow (e.g., for a liquid
such as water in our laboratory tank or in
the ocean), the following simplified approxi-
mate form of the continuity equation almost
always suffices:

∇ · u =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0. (6-11)

Indeed this is the definition of incompress-
ible flow: it is nondivergent—no bubbles
allowed! Note that in any real fluid, Eq. 6-11
is never exactly obeyed. Moreover, despite
Eq. 6-10, use of the incompressibility condi-
tion should not be understood as implying
that Dρ

Dt = 0. On the contrary, the density
of a parcel of water can be changed by
internal heating and/or conduction (see, for
example, Section 11.1). Although these den-
sity changes may be large enough to affect
the buoyancy of the fluid parcel, they are
too small to affect the mass budget. For
example, the thermal expansion coefficient
of water is typically 2 × 10−4 K−1, and so the
volume of a parcel of water changes by only
0.02% per degree of temperature change.

6.3.2. Compressible flow

A compressible fluid, such as air, is
nowhere close to being nondivergent—ρ

changes markedly as fluid parcels expand
and contract. This is inconvenient in the
analysis of atmospheric dynamics. However
it turns out that, provided the hydrostatic
assumption is valid (as it nearly always is),
one can get around this inconvenience by
adopting pressure coordinates. In pressure
coordinates,

(
x, y, p

)
, the elemental fixed

‘‘volume’’ is δx δy δp. Since z = z
(
x, y, p

)
,

the vertical dimension of the elemental
volume (in geometric coordinates) is δz =
∂z/∂p δp, and so its mass is δM given by

δM = ρ δx δy δz

= ρ

(
∂p
∂z

)−1

δx δy δp

=−1
g
δx δy δp,



6.5. INTEGRATION, BOUNDARY CONDITIONS, AND RESTRICTIONS IN APPLICATION 89

where we have used hydrostatic balance,
Eq. 3-3. So the mass of an elemental
fixed volume in pressure coordinates cannot
change! In effect, comparing the top
and bottom line of the previous equa-
tion, the equivalent of ‘‘density’’ in
pressure coordinates—the mass per unit
‘‘volume’’—is 1/g, a constant. Hence, in the
pressure-coordinate version of the continu-
ity equation, there is no term representing
rate of change of density; it is simply

∇p · up =
∂u
∂x

+
∂v
∂y

+
∂ω

∂p
= 0, (6-12)

where the subscript p reminds us that we are
in pressure coordinates. The greater simplic-
ity of this form of the continuity equation,
as compared to Eqs. 6-9 or 6-10, is one of
the reasons why pressure coordinates are
favored in meteorology.

6.4. THERMODYNAMIC
EQUATION

The equation governing the evolution of
temperature can be derived from the first
law of thermodynamics applied to a moving
parcel of fluid. Dividing Eq. 4-12 by δt and
letting δt −→ 0 we find:

DQ
Dt

= cp
DT
Dt

− 1
ρ

Dp
Dt

. (6-13)

DQ/Dt is known as the diabatic heating
rate per unit mass. In the atmosphere, this
is mostly due to latent heating and cool-
ing (from condensation and evaporation
of H2O) and radiative heating and cool-
ing (due to absorption and emission of
radiation). If the heating rate is zero then
DT/Dt = 1

ρcp
Dp/Dt, and, as discussed in

Section 4.3.1, the temperature of a par-
cel will decrease in ascent (as it moves to
lower pressure) and increase in descent (as
it moves to higher pressure). Of course this
is why we introduced potential tempera-
ture in Section 4.3.2; in adiabatic motion, θ

is conserved. Written in terms of θ, Eq. 6-13
becomes

Dθ

Dt
=

(
p
p0

)−κ ·
Q
cp

, (6-14)

where
·

Q (with a dot over the top) is a short-
hand for DQ

Dt . Here θ is given by Eq. 4-17,

the factor
(

p
p0

)−κ
converts from T to θ,

and
·

Q
cp

is the diabatic heating in units

of K s−1. The analogous equations that
govern the evolution of temperature and
salinity in the ocean will be discussed in
Chapter 11.

6.5. INTEGRATION, BOUNDARY
CONDITIONS, AND

RESTRICTIONS IN APPLICATION

The three equations in 6–7, together with
6–11 or 6–12, and 6–14 are our five equations
in five unknowns. Together with initial con-
ditions and boundary conditions, they are
sufficient to determine the evolution of the
flow.

Before going on, we make some remarks
about restrictions in the application of our
governing equations. The equations them-
selves apply very accurately to the detailed
motion. In practice, however, variables are
always averages over large volumes. We
can only tentatively suppose that the equa-
tions are applicable to the average motion,
such as the wind integrated over a 100-km
square box. Indeed, the assumption that the
equations do apply to average motion is
often incorrect. This fact is associated with
the representation of turbulent scales, both
small scale and large scale. The treatment of
turbulent motions remains one of the major
challenges in dynamical meteorology and
oceanography. Finally, our governing equa-
tions have been derived relative to a ‘fixed’
coordinate system. As we now go on to dis-
cuss, this is not really a restriction, but is
usually an inconvenience.
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