
Chapter 2

Fluid-dynamical Examples and Stability

Theory

2.1 Potential flow

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function:

the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field,

which is a valid approximation for several applications. The irrotationality of a potential flow is

due to the curl of a gradient always being equal to zero. In the case of an incompressible flow

the velocity potential satisfies Laplace’s equation. However, potential flows also have been used to

describe compressible flows. The potential flow approach occurs in the modeling of both stationary

as well as nonstationary flows.

A potential flow is described by means of a velocity potential, being a function of space and

time. The flow velocity v is a vector field equal to the gradient of the velocity potential �

v = r�. (2.1)
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From vector calculus it is known, that the curl of a gradient is equal to zero:

r ⇥ r� = 0, (2.2)

and consequently the vorticity, the curl of the velocity field v, is zero:

r ⇥ v = 0. (2.3)

This implies that a potential flow is an irrotational flow. This has direct consequences for the

applicability of potential flow. In flow regions where vorticity is known to be important, such as

wakes and boundary layers, potential flow theory is not able to provide reasonable predictions of

the flow. Fortunately, there are often large regions of a flow where the assumption of irrotationality

is valid, which is why potential flow is used for various applications.1

In case of an incompressible flow2 the velocity v has zero divergence:

r · v = 0, (2.4)

with the dot denoting the inner product. As a result, the velocity potential satisfies Laplace’s

equation

r2� = 0 . (2.5)

In this case the flow can be determined completely from its kinematics: the assumptions of ir-

rotationality and zero divergence of the flow. Dynamics only have to be applied afterwards, if

one is interested in computing pressures: for instance for flow around airfoils through the use of

Bernoulli’s principle. In two dimensions, potential flow reduces to a very simple system that is

analyzed using complex analysis (section 2.3).

1For instance in: flow around aircraft, groundwater flow, acoustics and water waves.
2for instance of a liquid, or a gas at low Mach numbers; but not for sound waves
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2.1.1 Kelvin’s circulation theorem

In fluid mechanics, Kelvin’s circulation theorem states In a barotropic ideal fluid with conservative

body forces, the circulation around a closed curve (which encloses the same fluid elements) moving

with the fluid remains constant with time.

D�

Dt
= 0 (2.6)

where the circulation � is the circulation around a material contour

� =

I
(~v · ~et)ds (2.7)

The circulation is the line integral of the tangential component of velocity taken about a closed

curve in the flow field. The integral is taken in a counterclockwise direction about the contour C

and ds is a differential length along the contour. No singularities can lie directly on the contour.

The origin (center) of the potential vortex is considered as a singularity point in the flow since the

velocity goes to infinity at this point. If the contour encircles the potential vortex origin, the circu-

lation will be non-zero. If the contour does not encircle any singularities, however, the circulation

will be zero. Stated more simply this theorem says that if one observes a closed contour at one

instant, and follows the contour over time (by following the motion of all of its fluid elements), the

circulation over the two locations of this contour are equal. This theorem does not hold in cases

with viscous stresses, nonconservative body forces (for example Coriolis force) or non-barotropic

pressure-density relations.

In the case of a potential flow, the vorticity is zero (2.3), Kelvin’s theorem can be derived using

� =

ZZ
(r ⇥ ~v ) · ~nd2A = 0 (2.8)
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Exercise 7 – Circulation theorem

Show (2.6) using that the governing equation for an inviscid fluid with a conservative body

force is
Du

Dt
= �

1

⇢
rp + r�

where � is the potential for the body force.

Hint: Potential flow, Kelvin’s theorem

2.1.2 Streamlines

For a 2-dimensional flow a flow function (x, y) can be defined: u = @ /@y, v = �@ /@x.

With AB the amount of liquid flowing through a curve s between the points A and B:

 AB =

BZ

A

(~v · ~n )ds =

BZ

A

(udy � vdx) (2.9)

=

BZ

A

d =  (B) �  (A) . (2.10)

The lines of constant � = 0 are called potential lines of the flow.

d� =
@�

@x
dx +

@�

@y
dy = udx + vdy (2.11)

Since d� = 0 along a potential line, we have

dy

dx
= �

u

v
(2.12)

Recall that streamlines are lines everywhere tangent to the velocity,

dy

dx
=

u

v
(2.13)

https://en.wikipedia.org/wiki/Kelvin%27s_circulation_theorem
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so potential lines are perpendicular to the streamlines. For inviscid and irrotational flow is indeed

quite pleasant to use potential function to represent the velocity field. As a point to note here, many

texts use stream function instead of potential function as it is slightly more intuitive to consider a

line that is everywhere tangent to the velocity.

2.2 Convection in the Rayleigh-Bénard system

Here, we shall introduce a system of three ordinary differential equations whose solutions afford

the simplest example of deterministic flow that we are aware of. The system is a simplification of

the one derived by Saltzman [1962], to study finite-amplitude convection. Although our present

interest is in the non-periodic nature of its solutions rather than in its contributions to the convection

problem, we shall describe its physical background briefly.

Benard−Cell

(high temperature)

(low temperature)

H/a

H

T0 +�Tx

y

z
T0

g

Figure 2.1: Geometry of the Rayleigh-Bénard system (see text for details).

Rayleigh [1916] studied the flow occurring in a layer of fluid of uniform depth H , when the

temperature difference between the upper- and lower-surfaces is maintained at a constant value
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�T .

T (x, y, z = H) = T0

T (x, y, z = 0) = T0 +�T (2.14)

The Boussinesq approximation is used, which results in a buoyancy force term which couples the

thermal and fluid velocity fields. Therefore

⇢ ⇡ ⇢0 = const. (2.15)

except in the buoyancy term, where:

% = %0(1 � ↵(T � T0)) with ↵ > 0 . (2.16)

⇢0 is the fluid density in the reference state. This assumption reflects a common feature of geo-

physical flows, where the density fluctuations caused by temperature variations are small, yet they

are the ones driving the overall flow. We have the following relations. Furthermore, we assume

that the density depends linearly on temperature T .

For some experiments go to the trailer 1, trailer 2, trailer in German, KIT trailer: Rayleigh

Benard Thermal Convection 3D Simulation.

This system possesses a steady-state solution in which there is no motion, and the temperature

varies linearly with depth:

u = w = 0

Teq = T0 +

✓
1 �

z

H

◆
�T (2.17)

When this solution becomes unstable, convection should develop.

https://www.youtube.com/watch?v=6BoEKUqDdLc
https://www.youtube.com/watch?v=mAOlORNCVcc
https://www.youtube.com/watch?v=n75sfdFZnWA
https://www.youtube.com/watch?v=buskqZlPdvI
https://www.youtube.com/watch?v=buskqZlPdvI
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2.2.1 Elimination of pressure and vorticity dynamics

In the case where all motions are parallel to the x � z-plane, and no variations in the direction of

the y-axis occur, the governing equations may be written (see Saltzman [1962]) as:

Dtu = �
1

⇢0

@xp + ⌫r2u (2.18)

Dtw = �
1

⇢0

@zp + ⌫r2w + g(1 � ↵(T � T0)) (2.19)

DtT = r2T (2.20)

@xu + @zw = 0 (2.21)

where w and u are the vertical and horizontal components of the velocity3, respectively. Further-

more, ⌫ = ⌘/⇢0,  = �/(⇢0Cv) the momentum diffusivity (kinematic viscosity) and thermal

diffusivity, respectively.

Now, compare the procedure with the elimination of the pressure term in section 1.3 where we

derive the vorticity equation Dt (r2 ) = ⌫r4 . Here, it is useful to define the stream function

 for the two-dimensional motion, i.e.

@ 

@x
= w (2.22)

@ 

@z
= �u . (2.23)

We take the

@

@x
(2.19) �

@

@z
(2.18) =

@

@x
Dtw �

@

@z
Dtu = Dt

@w

@x
� Dt

@u

@z
(2.24)

= = Dt

@2 

@x2
� Dt

@2 

@z2
= Dtr2 . (2.25)

3Note that Dtu = @tu+u@xu+w@zu, Dtw = @tw+u@xw+w@zw, and DtT = .@tT+u@xT+w@zT
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Note that Dtr2 does not contain u,w anymore:

Dt

�
r2 

�
= @tr2 �

@ 

@z

@r2 

@x
+
@ 

@x

@r2 

@z
.

Furthermore, we introduce the function ⇥ as the departure of temperature from that occurring in

the state of no convection (2.17):

T = Teq +⇥ (2.26)

In the temperature term in @

@x
(2.19) on the right hand side:

@

@x
g(1 � ↵(Teq +⇥� T0)) = �g↵

@

@x
⇥

The left hand side of (2.20) reads

DtT = DtTeq + Dt⇥ = w ·
��T

H
+ Dt⇥ = �

�T

H

@ 

@x
+ Dt⇥

Then, the dynamics can be formulated as

Dt

�
r2 

�
= ⌫r4 � g↵

@⇥

@x
(2.27)

Dt⇥ =
�T

H

@ 

@x
+ r2⇥ . (2.28)

Non-dimensionalization of the problem yields equations including the dimensionless Prandtl

number4 � and the Rayleigh number Ra which are the control parameters of the problem. One can

4The Prandtl number is a dimensionless number; the ratio of momentum diffusivity (kinematic viscosity) to thermal
diffusivity. It is named after the German physicist Ludwig Prandtl. Note that whereas the Reynolds number and
Grashof number are subscripted with a length scale variable, the Prandtl number contains no such length scale in its
definition and is dependent only on the fluid and the fluid state. As such, the Prandtl number is often found in property
tables alongside other properties such as viscosity and thermal conductivity. Typical values for are:
1) Low - thermal diffusivity dominant: 13.4 and 7.2 for seawater at 0� and 20� Celsius respectively.
2) High - momentum diffusivity dominant: For mercury, heat conduction is very effective compared to convection:
thermal diffusivity is dominant. For engine oil, convection is very effective in transferring energy from an area,
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take the layer thickness H as the length of unit, the time T = H2/ of vertical diffusion of heat

as the unit of time, and the temperature difference�T as the unit of temperature. See exercise 8

for the non-dimensionalization procedure.

Exercise 8 – Non-dimensional Rayleigh-Bénard system

Write down the non-dimensional version of the Rayleigh-Bénard. Non-dimensionalization

yields equations including the dimensionless Prandtl number � and the Rayleigh number Ra

which is also the control parameter. One can take the layer thickness H as the length of unit,

the time T = H2/ of vertical diffusion of heat as the unit of time, U = H/T = /H the unit

of velocity, and the temperature difference �T as the unit of temperature. Rayleigh and Prandtl

numbers are

Ra =
g↵H3�T

⌫
, (2.29)

� =
⌫


. (2.30)

The Prandtl number is a dimensionless number describing the ratio of momentum diffusivity (kine-

matic viscosity) to thermal diffusivity.

Solution of exercise 8

compared to pure conduction: momentum diffusivity is dominant.
In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal boundary
layers. When � is small, it means that the heat diffuses very quickly compared to the velocity (momentum). This
means that for liquid metals the thickness of the thermal boundary layer is much bigger than the velocity boundary
layer. The Rayleigh number is named after Lord Rayleigh and is defined as the product of the Grashof number, which
describes the relationship between buoyancy and viscosity within a fluid, and the Prandtl number, which describes the
relationship between momentum diffusivity and thermal diffusivity. Hence the Rayleigh number itself may also be
viewed as the ratio of buoyancy and viscosity forces times the ratio of momentum and thermal diffusivities.
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For an elegant solution we use the (2.27, 2.28) system.

1

T

1

L2

L2

T
Dt,d

�
r2

d
 d

�
= ⌫

1

L4

L2

T
r4

d
 d � g↵

�T

L

@⇥d

@xd

(2.31)

�T

T
Dt,d⇥d =

�T

H

L2

TL

@ d

@xd

+ 
�T

L2
r2

d
⇥d . (2.32)

This yields (remember L = H)

Dt,d
�
r2

d
 d

�
= ⌫

T

H2
r4

d
 d � g↵

T 2�T

H

@⇥d

@xd

(2.33)

Dt,d⇥d =
@ d

@xd

+ 
T

H2
r2

d
⇥d . (2.34)

Inserting T = H2/, gives

Dt,d
�
r2

d
 d

�
=
⌫


r4

d
 d � g↵

H3�T

2

@⇥d

@xd

(2.35)

Dt,d⇥d =
@ d

@xd

+ r2
d
⇥d . (2.36)

Finally, inserting the Rayleigh Ra = g↵H
3�T

⌫
and Prandtl � = ⌫


numbers:

Dt,d
�
r2

d
 d

�
= �r4

d
 d � Ra�

@⇥d

@xd

2.2.2 Boundary conditions

We shall now discuss the boundary conditions: ⇥ = 0 at z = 0,H . As further boundary

condition, the normal component could be set to zero straightaway and we have vnormal = w =

0 at z = 0,H .

In many applications, one may assume no-slip boundary condition as the appropriate condi-

tions for velocity components at the wall. In general, while the tangential component is set to the
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velocity of the wall:

vtangential = vwall . (2.37)

The fluid velocity at all fluid-solid boundaries is equal to that of the solid boundary. Conceptually,

one can think of the outermost molecules of fluid as stuck to the surfaces past which it flows.

Because the solution is prescribed at given locations, this is an example of a Dirichlet boundary

condition. Particles close to a surface do not move along with a flow when adhesion is stronger

than cohesion. At the fluid-solid interface, the force of attraction between the fluid particles and

solid particles (adhesive forces) is greater than that between the fluid particles (cohesive forces).

This force imbalance brings down the fluid velocity to zero. In our case: since the wall is not

moving u = 0 at z = 0,H .

Another boundary condition is called free boundary condition. All the normal velocities

normal to the wall should be zero, and furthermore the gradient of velocity parallel to wall should

be zero:

@

@z
vtangential = 0 (2.38)

Here, we assume a free surface both the upper- and the lower-boundaries because then the problem

is most analytically tractable.5 In our case this means no tangential stress is for @u
@z

= @
2
 

@z2 = 0

One can show that in which case  and r2 vanish at both boundaries. The basis functions can

be chosen as sinus and cosinus as orthogonal set of base functions. In chapter 9.4, the dynamics

is solved numerically using the Lattice Boltzmann approach. Other techniques and experimental

approaches are summarized in Tritton [1988].

2.2.3 Galerkin approximation: Obtaining a low-order model

Saltzman [1962] derived a set of ordinary differential equations by expanding and⇥ in double
5In practical applications, the boundaries are not free and there is friction.
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Fourier series in x and z, with functions of t alone for coefficients, and substituting these series

into (2.27) and (2.28) A complete Galerkin approximation

 (x, z, t) =
1X

k=1

1X

l=1

 k,l(t) sin

✓
k⇡a

H
x

◆
⇥ sin

✓
l⇡

H
z

◆
(2.39)

⇥(x, z, t) =
1X

k=1

1X

l=1

⇥k,l(t) cos

✓
k⇡a

H
x

◆
⇥ sin

✓
l⇡

H
z

◆
(2.40)

yields an infinite set of ordinary differential equations for the time coefficients. He arranged the

right-hand sides of the resulting equations in double Fourier-series form, by replacing products of

trigonometric functions of x (or z) by sums of trigonometric functions, and then equated coef-

ficients of similar functions of x and z. He then reduced the resulting infinite system to a finite

system by omitting reference to all but a specified finite set of functions of t. He then obtained

time-dependent solutions by numerical integration. In certain cases all, except three of the depen-

dent variables, eventually tended to zero, and these three variables underwent irregular, apparently

non-periodic fluctuations. These same solutions would have been obtained if the series had been

at the start truncated to include a total of three terms. Accordingly, in this study we shall let

a

1 + a2
  = X

p
2 sin

✓
⇡a

H
x

◆
sin

✓
⇡

H
z

◆
(2.41)

⇡
Ra

Rc

1

�T
⇥ = Y

p
2 cos

✓
⇡a

H
x

◆
sin

✓
⇡

H
z

◆
� Z sin

✓
2
⇡

H
z

◆
(2.42)

where X(t), Y (t), and Z(t) are functions of time alone.

It is found that fields of motion of this form would develop if the Rayleigh number

Ra =
g↵H3�T

⌫
, (2.43)

exceeds a critical value

Rc = ⇡4a�2(1 + a2)3 . (2.44)
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The minimum value of Rc, namely 27⇡4/4 = 657.51, occurs when a2 = 1/2. In fluid

mechanics, the Rayleigh number for a fluid is a dimensionless number associated with the relation

of buoyancy and viscosity in a flow. When the Rayleigh number is below the critical value for that

fluid, heat transfer is primarily in the form of conduction; when it exceeds the critical value, heat

transfer is primarily in the form of convection.

When the above truncation (2.41,2.42) is substituted into the dynamics, we obtain the equations

Ẋ = ��X + �Y (2.45)

Ẏ = rX � Y � XZ (2.46)

Ż = �bZ + XY (2.47)

Here a dot denotes a derivative with respect to the dimensionless time td = ⇡2H�2(1 + a2)t,

while � = ⌫�1 is the Prandtl number, r = Ra/Rc, and b = 4(1 + a2)�1.

Except for multiplicative constants, our variables X,Y, Z are the same as Saltzman’s variables

A, D, and G. These equations are the convection equations whose solutions we shall study. In

these equations X is proportional to the intensity of the convective motion, while Y is proportional

to the temperature difference between the ascending and descending currents, identical signs of

X and Y denoting that warm fluid is rising and cold fluid is descending. The variable Z is

proportional to the distortion of the vertical temperature-profile from linearity, a positive value

indicating that the strongest gradients occur near the boundaries.

2.3 Bernoulli flow*

Starting with the momentum equation one can find for a non-viscous medium for stationary flows,

with

(~v · r)~v = 1
2
r(v2) + (rot~v ) ⇥ ~v
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R
r

✓

V1

z

Z

Figure 2.2: Streamlines for the incompressible potential flow around a circular cylinder in a uni-
form onflow.

and the potential equation ~g = �r(gh) that:

1
2
v2 + gh +

Z
dp

%
= constant along a streamline

For compressible flows holds: 1
2
v2 + gh + p/% =constant along a line of flow. If also holds

rot~v = 0 and the entropy is equal on each streamline holds 1
2
v2 + gh +

R
dp/% =constant

everywhere. For incompressible flows this becomes:

1
2
v2 + gh + p/% = constant everywhere. (2.48)

For ideal gases with constant Cp and CV holds, with � = Cp/CV :

1
2
v2 +

�

� � 1

p

%
= 1

2
v2 +

c2

� � 1
= constant

With a velocity potential defined by ~v = grad� holds for instationary flows:

@�

@t
+ 1

2
v2 + gh +

Z
dp

%
= constant everywhere
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The solution for � is obtained in polar coordinates r and ✓, related to conventional Cartesian

coordinates by x = r cos ✓ and y = r sin ✓. In polar coordinates, Laplace’s equation is:

1

r

@

@r

✓
r
@�

@r

◆
+

1

r2

@2�

@✓2
= 0 (2.49)

The solution that satisfies the boundary conditions is

�(r, ✓) = U

✓
r +

R2

r

◆
cos ✓. (2.50)

The velocity components in polar coordinates are obtained from the components of r� in polar

coordinates:

Vr =
@�

@r
= U

✓
1 �

R2

r2

◆
cos ✓ (2.51)

and

V✓ =
1

r

@�

@✓
= �U

✓
1 +

R2

r2

◆
sin ✓. (2.52)

Being invisicid and irrotational, Bernoulli’s equation (2.48) allows the solution for pressure field

to be obtained directly from the velocity field:

p =
1

2
⇢
�
U2 � V 2

�
+ p1, (2.53)

where the constants U and p1 appear so that p ! p1 far from the cylinder, where V = U .

Using

V 2 = V 2
r
+ V 2

✓
, (2.54)
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p =
1

2
⇢U2

✓
2
R2

r2
cos(2✓) �

R4

r4

◆
+ p1. (2.55)

In Fig. 2.3, the colorized field referred to as "pressure" is a plot of

2
p � p1

⇢U2
= 2

R2

r2
cos(2✓) �

R4

r4
. (2.56)

On the surface of the cylinder, or r = R, pressure varies from a maximum of 1 (red color) at the

stagnation points at ✓ = 0 and ✓ = ⇡ to a minimum of -3 (purple) on the sides of the cylinder, at

✓ = 1
2
⇡ and ✓ = 3

2
⇡. Likewise, V varies from V = 0 at the stagnation points to V = 2U on

the sides, in the low pressure.

The flow being incompressible, a stream function can be found such that ~V = r ⇥ bk. It

follows from this definition, using vector identities, ~V · r = 0. Therefore a contour of a con-

stant value of  will also be a stream line, a line tangent to ~V . For the flow past a cylinder, we

find:

 = U

✓
r �

R2

r

◆
sin ✓. (2.57)

Physical interpretation

Laplace’s equation is linear, and is one of the most elementary partial differential equations. The

dynamic pressure at the upstream stagnation point has value of ⇢U2/2, a value needed to deceler-

ate the free stream flow of speed U. This same value appears at the downstream stagnation point,

this high pressure is again need to decelerate the flow to zero speed. This symmetry arises only

because the flow is completely frictionless. The low pressure on sides on the cylinder is needed to

provide the centripetal acceleration of the flow:

@p

@r
=
⇢V 2

L
, (2.58)
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Figure 2.3: Pressure field (colors), stream function (black) with contour interval of 0.2Ur from
bottom to top, velocity potential (white) with contour interval 0.2Ur from left to right.
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where L is the radius of curvature of the flow. But L ⇡ R, and V ⇡ U. The integral of the

equation for centripetal acceleration, which will over a distance�r ⇡ R will thus yield

p � p1 ⇡ �⇢U2. (2.59)

The exact solution has, for the lowest pressure,

p � p1 = �
3

2
⇢U2. (2.60)

The low pressure, which must be present to provide the centripetal acceleration, will also increase

the flow speed as the fluid travels from higher to lower values of pressure. Thus we find the

maximum speed in the flow, V = 2U, in the low pressure on the sides of the cylinder. A value of

V > U is consistent with conservation of the volume of fluid. With the cylinder blocking some

of the flow, V must be greater than U somewhere in the plane through the center of the cylinder

and transverse to the flow.

Comparison with flow of a real fluid past a cylinder*

This symmetry of this ideal solution has the peculiar property of having zero net drag on the

cylinder, a property known as d’Alembert’s paradox. Unlike an ideal inviscid fluid, a viscous

flow past a cylinder, no matter how small the viscosity, will acquire vorticity in a thin boundary

layer adjacent to the cylinder. Boundary layer separation can occur, and a trailing wake will occur

behind the cylinder. The pressure will be lower on the wake side of the cylinder, than on the

upstream side, resulting in a drag force in the downstream direction. A particular aspect are the

Von Karman Vortices.

Fig. 2.4 features a ubiquitous occurrence in the motion of fluids–a vortex street, which is a

linear chain of spiral eddies called von Karman vortices. Von Karman vortices are named after

Theodore von Karman, who first described the phenomenon in the atmosphere. von Karman vor-

tices form nearly everywhere that fluid flow is disturbed by an object and form at all scales of
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Figure 2.4: Von Karman Vortices - As air flows over and around objects in its path, spiraling
eddies, known as Von Karman vortices, may form. The vortices in this image were created when
prevailing winds sweeping east across the northern Pacific Ocean encountered Alaska’s Aleutian
Islands. The image is from the Landsat 7 satellite.



62 CHAPTER 2. FLUID-DYNAMICAL EXAMPLES AND STABILITY THEORY

fluid motion. The "object" that is disturbing the fluid flow is an island or group of islands. As a

prevailing wind encounters the island, the disturbance in the flow propagates downstream of the

island in the form of a double row of vortices which alternate their direction of rotation.

As a fluid particle flows toward the leading edge of a cylinder, the pressure on the particle

rises from the free stream pressure to the stagnation pressure. The high fluid pressure near the

leading edge impels flow about the cylinder as boundary layers develop about both sides. The high

pressure is not sufficient to force the flow about the back of the cylinder at high Reynolds numbers.

Near the widest section of the cylinder, the boundary layers separate from each side of the cylinder

surface and form two shear layers that trail aft in the flow and bound the wake. Since the innermost

portion of the shear layers, which is in contact with the cylinder, moves much more slowly than

the outermost portion of the shear layers, which is in contact with the free flow, the shear layers

roll into the near wake, where they fold on each other and coalesce into discrete swirling vortices.

A regular pattern of vortices, called a vortex street, trails aft in the wake.

Analysis for two-dimensional flow using conformal mapping*

Potential flow does not include all the characteristics of flows that are encountered in the real world.

Potential flow theory cannot be applied for viscous internal flows. Richard Feynman considered

potential flow to be so unphysical that the only fluid to obey the assumptions was "dry water"

(quoting John von Neumann). More precisely, potential flow cannot account for the behaviour of

flows that include a boundary layer. Nevertheless, understanding potential flow is important in

many branches of fluid mechanics. In particular, simple potential flows (called elementary flows)

such as the free vortex and the point source possess ready analytical solutions. These solutions can

be superposed to create more complex flows satisfying a variety of boundary conditions. These

flows correspond closely to real-life flows over the whole of fluid mechanics; in addition, many

valuable insights arise when considering the deviation (often slight) between an observed flow and

the corresponding potential flow. Potential flow finds many applications in fields such as aircraft

design. For instance, in computational fluid dynamics, one technique is to couple a potential
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flow solution outside the boundary layer to a solution of the boundary layer equations inside the

boundary layer.

Potential flow in two dimensions is simple to analyze using conformal mapping, by the use of

transformations of the complex plane. The basic idea is to use a holomorphic (also called analytic)

or meromorphic function f, which maps the physical domain (x,y) to the transformed domain

(�, ). While x, y,�, are all real valued, it is convenient to define the complex quantities

z = x + iy and w = � + i . Now, if we write the mapping f as f(x + iy) = � + i 

or f(z) = w. Then, because f is a holomorphic function, it has to satisfy the Cauchy-Riemann

equations

@'

@x
=
@ 

@y
,

@'

@y
= �

@ 

@x
. (2.61)

The velocity components (u,v), in the (x,y) directions respectively, can be obtained directly from f

by differentiating with respect to z. That is

df

dz
= u � iv (2.62)

So the velocity field (u,v) is specified by

u =
@'

@x
=
@ 

@y
, v =

@'

@y
= �

@ 

@x
. (2.63)

Both ' and  then satisfy Laplace’s equation:

�' =
@2'

@x2
+
@2'

@y2
= 0 and � =

@2 

@x2
+
@2 

@y2
= 0. (2.64)

So ' can be identified as the velocity potential and  is called the stream function. Lines of

constant  are known as streamlines and lines of constant ' are known as equipotential lines.
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Streamlines and equipotential lines are orthogonal to each other, since

r� · r =
@�

@x

@ 

@x
+
@�

@y

@ 

@y
=
@ 

@y

@ 

@x
�
@ 

@x

@ 

@y
= 0. (2.65)

Thus the flow occurs along the lines of constant  and at right angles to the lines of constant '. It

is interesting to note that� = 0 is also satisfied, this relation being equivalent to r ⇥ v = 0.

Exercise 9 – Conformal mapping

We note that the complex velocity potential must be an analytic function respecting the bound-

ary conditions, and once we have it, we can easily obtain the flow field. Let us see how we can use

this fact to solve some basic fluid mechanics problems. In case the following power-law conformal

map is applied, from z = x + iy to w = �+ i :

w = Azn, (2.66)

then, writing z in polar coordinates as z = x + iy = rei⇥, we have

' = Arn cos(n✓) and  = Arn sin(n✓). (2.67)

Study the cases n = 1/2, 2/3, 3/2, 2, 3 and draw the streamlines and equipotential!

Hint: web site for conformal mapping

Solution n = 1: uniform flow

Uniform flow: v = V If w = Az, that is, a power law with n = 1, the streamlines (i.e. lines of

constant  ) are a system of straight lines parallel to the x-axis. This is easiest to see by writing in

terms of real and imaginary components: f(x + iy) = Uz = Ux + iUy thus giving� = Ux

and  = Uy. This flow may be interpreted as uniform flow parallel to the x-axis.

Think on the problem of flow around a corner. What is a consistent flow pattern past a corner

https://en.wikipedia.org/wiki/Potential_flow
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according to the ideal fluid conditions? f(z) = Uz2 Why ? One uses analytic functions to map

a fluids problem (or more generally a Laplace equation problem) from a given domain to a domain

on which the problem is solved.

Another problem where we know the solution from the last section: Flow around a cylinder

with f(z) = U(z + 1/z).

One of the more important potential flow results obtained using conformal mapping begins

with the known solution for the flow past a circular cylinder (with circulation) and maps the circle

into an airfoil shape using waht is called the Joukowski mapping.

2.4 Couette flow*

Couette flow refers to the laminar flow of a viscous fluid in the space between two parallel plates,

one of which is moving relative to the other. The flow is driven by virtue of viscous drag force

acting on the fluid and the applied pressure gradient parallel to the plates. This type of flow is

named in honor of Maurice Marie Alfred Couette, a Professor of Physics at the French university

of Angers in the late 19th century. Couette flow is frequently used in undergraduate physics and

engineering courses to illustrate shear-driven fluid motion. The simplest conceptual configuration

finds two infinite, parallel plates separated by a distance h. One plate, say the top one, translates

with a constant velocity u0 in its own plane. Neglecting pressure gradients, the Navier-Stokes

equations simplify to

d2u

dy2
= 0, (2.68)

where y is a spatial coordinate normal to the plates and u (y) is the velocity distribution. This equa-

tion reflects the assumption that the flow is uni-directional. That is, only one of the three velocity

https://en.wikipedia.org/wiki/Joukowsky_transform
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Figure 2.5: Simple Couette configuration using two infinite flat plates.

components (u,v,w) is non-trivial. If y originates at the lower plate, the boundary conditions are

u(0) = 0 and u(h) = u0. The exact solution

u(y) = u0

y

h
(2.69)

can be found by integrating twice and solving for the constants using the boundary conditions.

A notable aspect of this model is that shear stress is constant throughout the flow domain. In

particular, the first derivative of the velocity, u0/h, is constant. (This is implied by the straight-

line profile in the figure.) According to Newton’s Law of Viscosity (Newtonian fluid), the shear

stress is the product of this expression and the (constant) fluid viscosity.

A more general Couette flow situation arises when a pressure gradient is imposed in a direction
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parallel to the plates. The Navier-Stokes equations, in this case, simplify to

d2u

dy2
=

1

µ

dp

dx
, (2.70)

where dp/dx is the pressure gradient parallel to the plates and µ is fluid viscosity. Integrating the

above equation twice and applying the boundary conditions (same as in the case of Couette flow

without pressure gradient) to yield the following exact solution

u(y) = u0

y

h
+

1

2µ

✓
dp

dx

◆ �
y2 � hy

�
. (2.71)

The shape of the above velocity profile depends on the dimensionless parameter

P = �
h2

2µu0

✓
dp

dx

◆
. (2.72)

The pressure gradient can be positive (adverse pressure gradient) or negative (favorable pressure

gradient). It may be noted that in the limiting case of stationary plates, the flow is referred to

as plane Poiseuille flow with a symmetric (with reference to the horizontal mid-plane) parabolic

velocity profile.

In fluid dynamics, the Taylor-Couette flow consists of a viscous fluid confined in the gap be-

tween two rotating cylinders. For low angular velocities, measured by the Reynolds number Re,

the flow is steady and purely azimuthal. This basic state is known as circular Couette flow, after

Maurice Marie Alfred Couette who used this experimental device as a means to measure viscos-

ity. Sir Geoffrey Ingram Taylor investigated the stability of the Couette flow in a ground-breaking

paper which has been a cornerstone in the development of hydrodynamic stability theory.

https://en.wikipedia.org/wiki/Taylor-Couette_flow
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2.5 Bifurcations

Before we start with some applications of fluid stability, I provide a framework to analyze the sta-

bility of dynamical systems. A bifurcation occurs when a parameter change causes the stability of

an equilibrium (or fixed point) to change [Strogatz, 2000]. In continuous systems, this corresponds

to the real part of an eigenvalue of an equilibrium passing through zero. In discrete systems (those

described by maps rather than ordinary differential equations (ODEs)), this corresponds to a fixed

point having a Floquet multiplier with modulus equal to one. In both cases, the equilibrium is

”non-hyperbolic” at the bifurcation point (for a sketch: Fig. 2.6). The topological changes in the

phase portrait of the system can be confined to arbitrarily small neighbourhoods of the bifurcating

fixed points by moving the bifurcation parameter close to the bifurcation point. We will discuss as

one particular example the Lorenz system (Rayleigh [1916], Saltzman [1962], Lorenz [1976]).

Figure 2.6: Bifurcation sketch. The boys Max and Moritz torment Schneider Böck, a well-liked
tailor who has a fast stream flowing in front of his house. They saw through the planks of his
wooden bridge, making a precarious gap, then taunt him by making goat noises, until he runs
outside. The bridge breaks; the tailor is swept away and nearly drowns (but for two geese, which
he grabs a hold of and which fly high to safety). Source: Busch [1865].
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Linear stability analysis

Consider the continuous dynamical system described by the ODE

ẋ = f(x,�) f : Rn ⇥ R ! Rn. (2.73)

A bifurcation occurs at (x0,�0) if the Jacobian matrix dfx0,�0 has an Eigenvalue with zero real

part. If the eigenvalue is equal to zero, the bifurcation is a steady state bifurcation, but if the

eigenvalue is non-zero but purely imaginary, this is a Hopf bifurcation.

For discrete dynamical systems, consider the system

xn+1 = f(xn,�) . (2.74)

Then a local bifurcation occurs at (x0,�0) if the matrix dfx0,�0 has an eigenvalue with modulus

equal to one. If the eigenvalue is equal to one, the bifurcation is either a saddle-node (often called

fold bifurcation in maps), transcritical or pitchfork bifurcation. If the eigenvalue is equal to �1, it

is a period-doubling (or flip) bifurcation, and otherwise, it is a Hopf bifurcation.

Examples of bifurcations include [Strogatz, 2000]:

• A transcritical bifurcation is one in which a fixed point exists for all values of a parameter

and is never destroyed. However, such a fixed point interchanges its stability with another

fixed point as the parameter is varied. The normal form of a transcritical bifurcation is

dx

dt
= rx � x2. (2.75)

This equation is similar to logistic equation but in this case we allow r and x to be positive or

negative. The two fixed points are at x = 0 and x = r. When the parameter r is negative,

the fixed point at x = 0 is stable and the fixed point x = r is unstable. But for r > 0,

the point at x = 0 is unstable and the point at x = r is stable. So the bifurcation occurs at

r = 0.
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• A ”’saddle-node bifurcation”’ is a bifurcation in which two fixed points collide and anni-

hilate each other. If the phase space is one-dimensional, one of the equilibrium points is

unstable (the saddle), while the other is stable (the node). The normal form of a saddle-node

bifurcation is:

dx

dt
= r + x2 (2.76)

Here x is the state variable and r is the bifurcation parameter. If r < 0 there are two

equilibrium points, a stable equilibrium point at �
p
�r and an unstable one at +

p
�r.

At r = 0 (the bifurcation point) there is exactly one equilibrium point. At this point the

fixed point is no longer hyperbolic. In this case the fixed point is called a saddle-node fixed

point. If r > 0 there are no equilibrium points. Saddle-node bifurcations may be associated

with hysteresis loops. The term ’saddle-node bifurcation’ is most often used in reference to

continuous dynamical systems. In discrete dynamical systems, the same bifurcation is often

instead called a ”’fold bifurcation”’.

• A Hopf is a bifurcation in which a fixed point of a dynamical system loses stability as a pair

of complex conjugate eigenvalues of the linearization around the fixed point cross the imag-

inary axis of the complex plane. In a bifurcation, a small-amplitude limit cycle branching

from the fixed point. The normal form of a Hopf bifurcation is:

dz

dt
= z((�+ i) + b|z|2), (2.77)

where z, b are both complex and � is a parameter. Write b = ↵ + i�. The number ’↵ is

called the first Lyapunov coefficient. If ↵ is negative then there is a stable limit cycle for

� > 0 :

z(t) = rei!t (2.78)
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where

r =
p

��/↵ and ! = 1 + �r2. (2.79)

The bifurcation is then called ”’supercritical.”’ If ↵ is positive then there is an unstable limit

cycle for � < 0. The bifurcation is called ”’subcritical.”’

• Pitchfork bifurcations occur generically in systems with symmetry. Pitchfork bifurcations,

like Hopf bifurcations have two types - supercritical or subcritical. The normal form of the

supercritical pitchfork bifurcation is

dx

dt
= rx � x3. (2.80)

For negative values of r, there is one stable equilibrium at x = 0. For r > 0 there is an

unstable equilibrium at x = 0, and two stable equilibria at x = ±p
r. The normal form

for the subcritical case is dx

dt
= rx + x3. (2.81)

In this case, for r < 0 the equilibrium at x = 0 is stable, and there are two unstable

equilbria at x = ±
p
�r. For r > 0 the equilibrium at x = 0 is unstable.

For computational methods to obtain bifurcations: [Doedel et al., 1997; Kuznetsov, 1998].

Exercise 10 – Graphical method for bifurcations

We introduce a graphical method to obtain stability or instability. Consider the ”’saddle-node

bifurcation”’, one of the equilibrium points is unstable (the saddle), while the other is stable (the

node). In Fig. 2.7, we can plot dx

dt
= f(x) dependent on x (left panel) for

dx

dt
= b + x2 (2.82)

with b < 0 in this particular case (For b > 0 we would have no equilibrium, and we have no
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point xe with f(xe) = 0.). We just consister the slope f 0(xe) and see that the filled circles with

positive slope are unstable, the open circles with negative slopes are stable (right panel in Fig. 2.7).

1. Draw the bifurcations as in Fig. 2.7 for the pitchfork bifurcation.

2. Draw the bifurcations as in Fig. 2.7 for the transcritical bifurcation.

Figure 2.7: Saddle-node bifurcation diagram using the graphical method.

Exercise 11 – Bifurcation of one dimensional differential equations

1. Consider the system

d

dt
x = r0(1 � x)x (2.83)

Calculate the bifurcation with respect to parameter r! Draw the bifurcation diagram!

2. as in 1., but for

d

dt
x = r0 + x2 (2.84)
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3. as in 1., but for

d

dt
x = x

p
(r0 + x)2 (2.85)

Solution of Bifurcation of one dimensional differential equations 11

1. Given the logistic equation

f(x) ⌘
dx

dt
= r0x(1 � x)

=) f 0(x) =r0 � 2r0x

we calculate the corresponding equilibrium points xi:

f(x) =r0x(1 � x) = 0

=) x1 = 0, x2 = 1

Hence, both equilibrium points do not depend on the parameter r0. To check whether we are

dealing with stable or unstable equilibrium points, we need to calculate the second derivative at the

equilibrium points.

f 0(x1) =r0

f 0(x2) =r0 � 2r0 = �r0

That is, the equilibrium points x1 and x2 are independent of r0. x1 is stable for r0 < 0 and

unstable for r0 > 0, x2 is stable for r0 > 0 and unstable for r0 < 0.
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2. Given the equation

f(x) ⌘
dx

dt
= r0 + x2

=) f 0(x) =2x

we calculate the corresponding equilibrium points xi:

f(x) =r0 + x2 = 0

=) x1,2 =

8
><

>:

±
p
�r0 , r0  0

±i
p
r0 , r0 > 0

We just consider real solutions and neglect the imaginary ones. Then the stability conditions for

the equilibrium points are given by

f 0(x1) =2
p
�r0

8
><

>:

< 0 stable

� 0 unstable

f 0(x2) = � 2
p
�r0

8
><

>:

< 0 stable

� 0 unstable

From the condition r0  0 follows that x1 is always unstable and x2 is always stable. For the

special case r0 = 0 there is just one equilibrium point x1 = 0 which is unstable as well.
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3. Given the equation

f(x) ⌘
dx

dt
= x

p
(r0 + x)2 =

8
><

>:

x(r0 + x) , x � �r0

�x(r0 + x) , x < �r0

=) f 0(x) =

8
>>>>><

>>>>>:

r0 + 2x , x > �r0

�r0 � 2x , x < �r0

not defined , x = �r0

we calculate the corresponding equilibrium points xi:

f(x) =x
p
(r0 + x)2 = 0

=) x1 = 0, x2 = �r0

Since for x2 = �r0 the derivative f 0(x) does not exist, we need to treat both cases of a small

deviation � > 0 from the equilibrium point x2 to each side separately. The stability conditions

then yield:

f 0(x1) =

8
><

>:

r0 , x1 = 0 > �r0 ) r0 > 0 ) unstable

�r0 , x1 = 0 < �r0 ) r0 < 0 ) unstable

f 0(x2 + �) = �r0 + � )

8
><

>:

stable , r0 > 0

unstable , r0 < 0

f 0(x2 � �) = r0 � � )

8
><

>:

unstable , r0 > 0

stable , r0 < 0
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Exercise 12 – Bifurcation example rx (1 � x)2

Consider the differential equation

d

dt
x = rx (1 � x)2 (2.86)

a) Calculate the bifurcation with respect to parameter r, consister the slope f 0(xe). Draw the

bifurcation diagram!

b) Discuss the stability in terms of the potential V(x) ! Remember that the potential can be

calculated from the right hand side of equation (2.86): rhs of (2.86)) = �dV (x)
dx

Solution of Bifurcation example Exercise 12

a) Equilibria solutions are xe = 0, 1. f 0(x) = r (1 � x)2 � 2rx (1 � x)

Check f 0(xe) :

f 0(0) = r (stability or instability depending on r)

f 0(1) = 0 (indifferent stability)

b) V (x) = �r/2x2 + 2/3rx3 � 1/4rx4

Plotting of the potential using R:
y=-100:100
x=y/10
x=y/50
r=1
z=-r * x^2/2 +2/3 * x^3 -r/4 * x^4
plot(x,z,type=’lines’)
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2.6 Dynamics of Logistic Equation

It is worth to analyze a one dimensional logistic equation (also known as Malthus-Verhulst model),

which was originally proposed to describe the evolution of a biological population. Let x denote

the number (or density) of individuals of a certain population. This number will change due to

growth, death, and competition. The standard logistic function is the solution of the simple first-

order non-linear ordinary differential equation

d

dx
f(x) = f(x)(1 � f(x)) (2.87)

with boundary condition f(0) = 1/2. The qualitative behavior is easily understood in terms of

the phase line: the derivative is 0 when the function is 1; and the derivative is positive for f between

0 and 1, and negative for f above 1 or less than 0 (though negative populations do not generally

accord with a physical model). This yields an unstable equilibrium at 0, and a stable equilibrium

at 1, and thus for any function value greater than 0 and less than 1, it grows to 1. The logistic

equation is a special case of the Bernoulli differential equation and has the following solution:

f(x) =
ex

ex + C
f(x) (2.88)

Choosing the constant of integration C = 1 gives the other well-known form of the definition of

the logistic curve

f(x) =
ex

ex + 1
=

1

1 + e�x
(2.89)

More quantitatively, as can be seen from the analytical solution, the logistic curve shows early ex-

ponential growth for negative argument, which slows to linear growth of slope 1/4 for an argument

near 0, then approaches 1 with an exponentially decaying gap.

A typical application of the logistic equation is a common model of population growth, where

the rate of reproduction is proportional to both the existing population and the amount of available
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resources, all else being equal. Verhulst derived his logistic equation to describe the self-limiting

growth of a biological population. Letting N represent population size and t represent time, this

model is formalized by the differential equation:

dN

dt
= rN ·

✓
1 �

N

K

◆
(2.90)

where the constant r defines the growth rate and K is the carrying capacity.

In the equation, the early, unimpeded growth rate is modeled by the first term rN. The value

of the rate r represents the proportional increase of the population N in one unit of time. Later,

as the population grows, the modulus of the second term (which multiplied out is �rN2/K)

becomes almost as large as the first, as some members of the population N interfere with each

other by competing for some critical resource, such as food or living space. This antagonistic

effect is called the bottleneck, and is modeled by the value of the parameter K. The competition

diminishes the combined growth rate, until the value of N ceases to grow (this is called maturity of

the population). The solution to the equation (with N0 being the initial population) is

N(t) =
KN0ert

K + N0 (ert � 1)
=

K

K/N0e�rt + 1 � e�rt
(2.91)

where limt!1 N(t) = K. Which is to say that K is the limiting value of N: the highest value

that the population can reach given infinite time (or come close to reaching in finite time). It is

important to stress that the carrying capacity is asymptotically reached independently of the initial

value N(0) > 0, and also in the case that N(0) > K. In ecology, species are sometimes

referred to as r-strategist or K-strategist depending upon the selective processes that have shaped

their life history strategies. Choosing the variable dimensions so that n measures the population in

units of carrying capacity, and ⌧ measures time in units of 1/r, gives the dimensionless differential

equation

d

dt
n(t) = r(1 � n) n (2.92)
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In climate, the logistic equation is also important for Lorenz’s error growth model [Lorenz, 1982]

where n(t) is then the algebraic forecast error at time t and a is the linear growth rate.

The Corona Dynamics

The logistic growth model (2.90) can also be used for the recent coronavirus epidemic. The un-

derlying assumption of the model is that the rate of change in the number of new cases per capita

linearly decreases with the number of cases. So, if N is the number of cases, and t is the time,

then the model is (2.90) where r is infection rate, and K the final epidemic size. We obtain that the

growth rate dN/dt peak occurs when d2N/dt2 = 0 and in time tpmax = ln(K/N0 � 1)/r.

At this time the number of cases and the growth rate are Npmax = K/2 and dN(tpmax)
dt

= rK/4,

respectively.

Exercise 13 – Population Dynamics

Consider population dynamics with population x > 0 and reproduction (birth-death) r:

d

dt
x = r(x) x (2.93)

1. Solve the differential equation for constant r = r0! What happens for t ! 1 when

r0 > 0 or r0 < 0 ?

2. Solve the differential equation for r = r0(1 � x)! (limited growth)! What happens for

t ! 1?

3. Consider the case r = r0(1 � x/K) with K > 0 ! Give a physical interpretation for K!

Solution of Population Dynamics 13
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1. Solve for r(x) = r0 using separation of variables:

dx

dt
=r0x

Z
dx

x
=

Z
r0dt

ln(x) =r0t + A0

=) x =Aer0t with A = eA
0

with lim
t!1

x =

8
><

>:

1 , r0 > 0

0 , r0 < 0

2. Solve for r(x) = r0(1 � x) using separation of variables:

dx

dt
=r0(1 � x)x

dx

x(1 � x)
=r0dt

Z ✓
1

x
+

1

1 � x

◆
dx =

Z
r0dt

ln(x) � ln(1 � x) =r0t + A0

=) x =
Aer0t

1 + Aer0t
with A = eA

0

and the limiting cases lim
t!1

x =

8
><

>:

1 , r0 > 0

0 , r0 < 0

3. Consider r(x) = r0
�
1 � x

K

�
with K > 0. Analogous procedure results then in a similar



2.6. DYNAMICS OF LOGISTIC EQUATION 81

solution with an additional scaling factor K which provides an upper limit for any population.

dx

dt
=r0(1 �

x

K
)x

...

=) x =
KAer0t

1 + Aer0t

with lim
t!1

x =

8
><

>:

K , r0 > 0

0 , r0 < 0
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Exercise 14 – Logistic map and Mandelbrot set

We analyze a discrete version of the logistic equation.

1. Write a function which solves the logistic difference-equation xn+1 = rxn(1 � xn) and

returns the vector xn. Use an initial value x0 2 [0, 1], and a parameter-value r 2 [1, 4].

2. Investigate the sensitivity of the solution on the parameter r (especially using r 2 [3, 4]).

3. Now, investigate the solution dependence on r systematically: write a function which saves

the local extrema of a vector (fixed points) and returns them in a vector.

4. For each value of r, iterate the logistic difference equation 500 times, discard the first 200

times, and plot the fix-points / local extrema against r. What do you observe? Hint: use the

zoom-in function of your plotting software of choice!

5. Think of a climate analogy with x being the temperature. Describe the ice albedo feedback!

6. Calculate the map

zn+1 = z2
n
+ c (2.94)

in the complex plane with c being a complex number. This set is called Mandelbrot set

[Mandelbrot, 1967]. This set is a mathematical set of points whose boundary is a distinc-

tive and easily recognizable two-dimensional fractal shape, and is named after Mandelbrot

[1967]. Images of the Mandelbrot set display an elaborate boundary that reveals progres-

sively ever-finer recursive detail at increasing magnifications.

Solution logistic map, Solution Mandelbrot

https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/logisticmap.r
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/mandelbrot.r
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Figure 2.8: Upper panel: Mandelbrot set. The set’s boundary also incorporates smaller versions of
the main shape, so the fractal property of self-similarity applies to the entire set, and not just to its
parts [Peitgen and Richter, 1986; Mandelbrot, 1983]. Lower panel: Lena Delta. The image is from
the Landsat 7 satellite. Landsat satellites have taken specialized digital photographs of Earth’s
continents and surrounding coastal regions. The coastlines and morphometric subtypes may be
characterized by a statistical self-similarity Mandelbrot [1967].
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Figure 2.9: Bifurcation diagram for the Logistic map by using r as the order parameter. The
logistic map is an iterative function able to give chaotic dynamics in some of its parameter space.
The parameter r is the responsible to cause the bifurcation scenario characterized by one of the
most well-known route to chaos: the period doubling. The chaotic domain leaves a cloud of points
in parameter space with a fractional dimensionality (Cantor set).

Exercise 15 – Bifurcation of the logistic map

1. Write a function which solves the logistic difference equation xn+1 = axn(1 � xn) and

returns the vector x(n). Use an initial value x0 2 [0, 1], and a parameter value a 2 [1, 4]

2. Investigate the sensitivity of solution on the parameter a (especially using a 2 [3, 4])

3. Now investigate the solutions dependent on r systematically: write a function which saves

the local extrema of a vector (fixed points) and returns them in a vector.

4. For each value of a, iterate the logistic difference equation 500 times, discard the first 200

times, and plot the fix-points/local extrema against a. What do you see? Zoom into the plot!

Solution: Bifurcation of the logistic map, The Feigenbaum Constant (4.669)

https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/biflogmap.r
https://www.youtube.com/watch?v=ETrYE4MdoLQ
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2.7 Lorenz system

This system is an idealization of the Rayleigh-Bénard problem (section 2.2) and provides an ex-

ample for chaotic behavior in a dissipative system.

Ẋ = ��X + �Y (2.95)

Ẏ = rX � Y � XZ (2.96)

Ż = �bZ + XY (2.97)

Equations (2.95, 2.96, 2.97) are called Lorenz model in the literature [Lorenz, 1960, 1963, 1984;

Maas, 1994; Olbers, 2001]. As we will see later in section 2.2, the system may give realistic

results when the Rayleigh number is slightly supercritical, but their solutions cannot be expected

to resemble those of the complete dynamics when strong convection occurs, in view of the extreme

truncation. Figure 2.10 shows the numerical solution in the phase-space with the parameters r =

28, � = 10, and b = 8/3.

As see in Fig. 2.11, the Lorenz system can exhibit chaotic behavior after a series of bifurcations.

This concept is known as the Feigenbaum cascade Feigenbaum [1980]. In this scenario the solution

undergoes a series of period-doublings, until the bifurcation parameter reaches a critical value

where the system has an accumulation point of period-doublings. Feigenbaum also found the

convergence behavior of the bifurcation points to the critical value. When the bifurcation parameter

passes this point, chaos appears.

For some experiments go to the Lorenz model, Lorenz model 2

The same equations as (2.95, 2.96, 2.97) appear in studies of lasers, batteries, and in a simple

chaotic waterwheel that can be easily built. Lorenz found that the trajectories of this system,

for certain settings, never settle down to a fixed point, never approach a stable limit cycle, yet

never diverge to infinity. What Lorenz discovered was at the time unheard of in the mathematical

community, and was largely ignored for many years. Now this beautiful attractor is the most

well-known strange attractor that chaos has to offer.

https://www.youtube.com/watch?v=CeCePH_HL0g
https://www.youtube.com/watch?v=6i57udsPKms
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Figure 2.10: Numerical solution of the Lorenz model, in the X � Y phase-space with the param-
eters r = 28, � = 10, and b = 8/3. For the numerics, see Exercise 18.

Properties of the Lorenz equations

• Symmetry: The Lorenz equations have the following symmetry of ordinary differential equa-

tions: (X,Y, Z) ! (�X,�Y, Z). This symmetry is present for all parameter-values of

the Lorenz system.

• Invariance: The Z-axis is invariant, meaning that a solution that starts on the Z-axis (i.e.

X = Y = 0) will remain on the z-axis. In addition, the solution will tend toward the

origin if the initial conditions are on the z-axis.

• Equilibrium points: To solve for the equilibrium points we let |fi (X,Y, Z) = 0, where

we used the ket-notation to denote the vector |fi = (Ẋ, Ẏ , Ż)T . It is easy to notice that

(X,Y, Z) = (0, 0, 0) is a trivial equilibrium-point. The other equilibrium-points, when

X 6= 0, are also easy to determine analytically. We leave this task as an exercise to the
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reader.

• Solutions stay close to the origin: If �, b, a > 0, then all solutions of the Lorenz system

will enter an ellipsoid in finite time. In addition, the solution will remain inside the ellipsoid

once it has entered. It follows that the ellipsoid is an attracting set. To quantify this, we

define an ellipsoid centered at (0, 0, 2r) in finite time, and the solution will remain inside

the ellipsoid once it has entered. To observe this, we define a Lyapunov function

V (X,Y, Z) = ⌧X2 + �Y 2 + �(Z � 2r)2 .

It then follows that

V̇ = 2rXẊ + 2�Y Ẏ + 2�(Z � 2r)Ż

= 2rX�(Y � X) + 2�Y (X(r � Z) � Y ) + 2�(Z � 2r)(XY � bZ)

= �2�(rX2 + Y 2 + b(Z � r)2 � br2).

We then choose an ellipsoid which all solutions will enter and remain inside. This is done

by choosing a constant C > 0 such that the ellipsoid

rX2 + Y 2 + b(Z � r)2 = br2

is strictly contained in the ellipsoid

rX2 + �Y 2 + �(Z � 2r)2 = C .

Therefore all solutions will eventually enter and remain inside the above ellipsoid since

V̇ < 0 when a solution is located at the exterior of the ellipsoid.

• The Lorenz system exhibit bifurcations. If r < 1 then there is only one equilibrium point,

which is at the origin. This point corresponds to no convection. A saddle-node bifurcation



88 CHAPTER 2. FLUID-DYNAMICAL EXAMPLES AND STABILITY THEORY

occurs at r = 1, and for r > 1 two additional critical points appear at

⇣
±
p

b(r � 1),±
p
b(r � 1), r � 1

⌘
. (2.98)

These correspond to steady convection. This pair of equilibrium points is stable only if

r < rc = �
� + b + 3

� � b � 1
(⇡ 24.74) , (2.99)

which can hold only for positive rif � > b+1. At the critical value, both equilibrium points

lose stability through a (inverse) Hopf bifurcation. One normally assumes that the parameters

�, r, and b are positive. Lorenz used the values � = 10, b = 8/3 and r = 28. At such

large r the three mode approximation for the Rayleigh-Bénard system describing thermal

convection has of course ceased to be physically realistic, but mathematically the model

now starts to show its most fascinating properties, because the aperiodic strange attractor

behavior becomes dominant for r > rc. The system exhibits chaotic behavior6 for these

values (Fig. 2.10) and the state variables that can be represented in phase space7. Repeating,

X is proportional to the circulatory fluid velocity, Y characterizes the temperature difference

between ascending and descending fluid elements, and Z is proportional to the distortion

of the vertical temperature profile from its equilibrium (which is linear with height). The

Lorenz system has either stable or unstable fixed points, a globally attracting periodic or

nonperiodic solutions, bistability and hysteresis, and a variety of cascading bifurcations (see

Fig. 2.11).

6Lorenz’s conclusions about weather forescasting stated: "When our results concerning the instability of non-
periodic flow are applied to the atmosphere, which is ostensibly nonperiodic, they indicate that prediction of the
sufficiently distant future is impossible by any method, unless the present conditions are known exactly. In view of the
inevitable inaccuracy and incompleteness of weather observations, precise very-long-range forecasting would seem to
be non-existent".

7The set of chaotic solutions make up the Lorenz attractor with a Hausdorff dimension which is estimated to be
2.06 ± 0.01 and the correlation dimension estimated to be 2.05 ± 0.01. For other values of r, the system displays
knotted periodic orbits. For example, with r = 99.96 it becomes a ”T”(3,2) torus knot (Grassberger and Procaccia
[1983]).
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Figure 2.11: Bifurcation diagram for the Lorenz system by using r as the order parameter.

Exercise 16 – Bifurcation Lorenz and map

1. Following Fig. 2.11, show the bifurcation diagram for the intervals 45 < � < 55 and

8.0 < � < 9.5. Notice, that except for their different scales the pictures are much like

mirror images of each other.

2. Show that in both cases the scenarios coincide in many aspects (though not completely) with

the bifurcation scheme of the antisymmetric cubic map

xn+1 = (1 � c)xn + cx3
n

,�1  x  1, (2.100)

in the ranges 3.2  c  3.4 and 0.25  x  0.8.

3. Show that the reason for the good correspondence seems to be that (2.100) is the simplest

polynomial 1-dim map that shares with the Lorenz model a reflection symmetry.
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Exercise 17 – Lorenz equations

Consider the Lorenz equations (which were derived from the Rayleigh-Bernard system)

ẋ = �(y � x) (2.101)

ẏ = rx � xz � y (2.102)

ż = xy � bz (2.103)

with �, r, b > 0. � is the Prandtl number. Furthermore, Rayleigh number Ra ⇠ �T , critical

Rayleigh number Rc, and r = Ra/Rc.

1. Evaluate the equilibrium points.

2. Determine the stability of the (0, 0, 0)�equilibrium through linearization! Control param-

eter is r.

3. Show the symmetry: The Lorenz equation has the following symmetry (x, y, z) ! (�x,�y, z)

independent on the parameters �, r, b.

4. Show the invariance: The z-axis is invariant, meaning that a solution that starts on the z-axis

(i.e. x = y = 0) will remain on the z-axis. In addition the solution will tend toward the

origin if the initial condition are on the z-axis.

5. Lorenz system has bounded solutions: Show that all solutions of the Lorenz equation will

enter an ellipsoid centered at (0, 0, 2r) in finite time, and the solution will remain inside the

ellipsoid once it has entered. To observe this, define a Lyapunov function

V (x, y, z) = rx2 + �y2 + �(z � 2r)2 (2.104)
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Exercise 18 – Numerical solution of the Lorenz system

1. Write the numerical solution for the Lorenz system.

2. Use an initial value x0 2 [0, 1], and a parameter value r 2 [0, 1]

3. Investigate the sensitivity of the solution on the parameter r (especially using r = 13, 14

and r 2 [20, 30])

4. Display the function in the phase-space and time-dependence.

5. Now investigate the solution dependence on r systematically: write a function which saves

the local extrema of a vector (fixed points) and returns them in a vector. This vector shall be

displayed (use the experience you gained from exercise 14).

6. Nonlinear systems are often sensitive to initial conditions, and an error in the restart-file

would lead the model to evolve on a completely different phase-space trajectory on the long

term. Such a (seemingly trivial) technical problem was encountered by Lorenz himself (see

e.g. Kambe [2007]), which led him to the notion of deterministic chaos in the first place.

Please document the sensitivity with respect to the initial conditions.

Here is the most simple way to get the Lorenz system (using R): Solution 1 of the Lorenz

Problem. The more sophisticated implementation Solution 2 of the Lorenz Problem can be also

used for Fig. 2.10.

Here is the method how to obtain the bifurcation diagram. Try to understand the method and

modify the code. For entertainment: An Introduction to Chaos Theory with the Lorenz Attractor.

https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/Lorenz1.r
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/Lorenz1.r
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/Lorenz1.r
https://paleodyn.uni-bremen.de/study/Dyn2/Rfiles/bifLorenz.r
https://www.youtube.com/watch?v=EF5Wvi_Iiy4
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