
Chapter 3

Atmosphere and Ocean Dynamics

3.1 Pseudo forces and the Coriolis effect

A pseudo force on an object arises when the frame of reference used to describe the object’s

motion is accelerating compared to a non-accelerating frame. It acts on all masses whose motion

is described using a non-inertial frame of reference, such as a rotating reference frame. The inertial

frame is the Sun and not the Earth.1 Assuming Newton’s second law in the form F = ma, pseudo

forces are always proportional to the mass m. The surface of the Earth is a rotating reference

frame. To solve classical mechanics problems exactly in an Earth-bound reference frame, three

pseudo forces must be introduced, the Coriolis force, the centrifugal force (described below) and

the Euler force. The Euler force is typically ignored because the variations in the angular velocity

1Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames. Galileo
Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the
example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer doing experiments
below the deck would not be able to tell whether the ship was moving or stationary. Galilean relativity can be shown
as follows. Consider two inertial frames S and S’ . A physical event in S will have position coordinates r = (x, y, z)
and time t; similarly for S’ . By the second axiom above, one can synchronize the clock in the two frames and assume
t = t0. Suppose S’ is in relative uniform motion to S with velocity v. Consider a point object whose position is
given by r0(t) = r(t) in S. We see that r0(t) = r(t) � vt. and acceleration is identical in the two frames
a0(t) = d2

dt2
r0(t) = d2

dt2
r(t) = a(t). A side remark: All approximations of the dynamical equations shall be

Galilean invariant. In numerical examples, the lack of invariance for unresolved solutions is because the truncation
error is not Galilean invariant. While advanced methods reduce the truncation error, none of them eliminate it entirely,
and therefore formally solutions will still violate Galilean invariance at the level of the truncation error.
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of the rotating Earth surface are usually insignificant. Both of the other pseudo forces are weak

compared to most typical forces in everyday life, but they can be detected under careful conditions.

For example, Foucault was able to show the Coriolis force that results from the Earth’s rotation

using the Foucault pendulum (see Exercise 20). If the Earth were to rotate a thousand times faster

(making each day only ⇡ 86 seconds long), people could easily get the impression that such

fictitious forces are pulling on them, as on a spinning carousel.

In the rotating framework, we have the Coriolis and centrifugal forces which stem from the

rotating framework. We derive from the simple relation for the time derivative in the inertial

system (i) to the Earth system (e)

(dtA)i = (dtA)e + ⌦⇥ A (3.1)

where the ⇥ symbol represents the cross product operator. For the case A = r, it follows for the

velocity

vi = ve + ⌦⇥ r (3.2)

and the relation for the acceleration (case A = vi)

ai = (dtvi)e + ⌦⇥ vi (3.3)

= dtve + ⌦⇥ ve + ⌦⇥ (ve + ⌦⇥ r) = ae + 2⌦⇥ ve + ⌦⇥ ⌦⇥ r

At a given rate of rotation of the observer, the magnitude of the Coriolis acceleration of the

object is proportional to the velocity of the object and also to the sine of the angle between the

direction of movement of the object and the axis of rotation. In the following the subscript e is

dropped, since we are only interested in the dynamics in the rotating Earth system. The forces

in the rotating system are thus the forces in the inertial system plus the Coriolis and centrifugal
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forces:

F = Fi + FC + Fcf (3.4)

where
FC = �2m⌦⇥ v. (3.5)

⌦ is the angular velocity vector which has magnitude equal to the rotation rate ! and is directed

along the axis of rotation of the rotating reference frame. The formula implies that the Coriolis

acceleration is perpendicular both to the direction of the velocity of the moving mass and to the

frame’s rotation axis.

The centrifugal term is equal to

Fcf = �⌦⇥ (⌦⇥ r) = �!2R, (3.6)

where r is the space vector and R the component of r perpenticular to the axis of rotation. This

term can be absorbed into the gravitation is then called gravity. One can introduce the gravitational

potential

� = gz �
!2R2

2
= gz �

!2(a + z)2 cos2(')

2
' gz �

!2a2 cos2(')

2
. (3.7)

where a is the Earth radius and ' the latitude. The combined vector r� shows only minor modi-

fication with respect to the vertical coordinate defined by the gravitation. In practice, the gravity is

used for the vertical coordinate.

Exercise 19 – Earth’s curvature

1. The highest building on the campus of the University of Bremen is the so-called drop tower

with a hight of h=110 metres (Fig. 3.1 upper panel). How far one can look onto the horizon

under good weather conditions?
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Hint: Denote this distance by d. Remember the Earth’s radius a = 6378km and apply

Pythogoras!

2. Why is the rule-of-thumb

d =
p
2ha

a good approximation? (For h=10m this means d=11 km.) When h is in m, d in km, the

formula can be written as

d = 3.5

r
h

m
km.

3. The town Bremerhaven where the Alfred Wegener Institute is located lies about 60 km north

of Bremen. How big must a tower in Bremen be in order to see the coast in Bremerhaven?

(Fig. 3.1 lower panel).
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Figure 3.1: Upper panel: Drop tower in Bremen. Lower panel: Harbor in Bremerhaven, ca. 60 km
north of Bremen.



98 CHAPTER 3. ATMOSPHERE AND OCEAN DYNAMICS

3.2 Pendulum and Earth rotation

The simple pendulum is another mechanical system that exhibits periodic motion. It consists of a

particle-like bob of mass m suspended by a light string of length L that is fixed at the upper end, as

shown in Fig. 3.2. The motion occurs in the vertical plane and is driven by the force of gravity. We

shall show that, provided the angle⇥ is small (less than about 10�), the motion is that of a simple

harmonic oscillator. The forces acting on the bob are the force T exerted by the string and the

Figure 3.2: When ⇥ is small, a simple pendulum oscillates in simple harmonic motion about the
equilibrium position⇥ = 0. The restoring force is mg sin⇥, the component of the gravitational
force tangent to the arc.

gravitational force mg. The tangential component of the gravitational force, mg sin⇥, always

acts toward⇥ = 0, opposite the displacement. Therefore, the tangential force is a restoring force,
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and we can apply Newton’s second law for motion in the tangential direction:

F = �mg sin⇥ = m
d2s

dt2
(3.8)

where s is the bob’s displacement measured along the arc and the minus sign indicates that the tan-

gential force acts toward the equilibrium (vertical) position. Because s = L⇥ and L is constant,

this equation reduces to the equation of motion for the simple pendulum.

d2⇥

dt2
= �

g

L
sin⇥ (3.9)

If we assume that ⇥ is small, we can use the approximation sin⇥ = ⇥, thus the equation of

motion for the simple pendulum becomes equation of motion for the simple pendulum

d2⇥

dt2
= �

g

L
⇥ (3.10)

with solution

⇥ = ⇥0 cos(!t) (3.11)

where ! =
q

g

L
is the angular frequency.

The period and frequency of a simple pendulum depend only on the length of the string and

the acceleration due to gravity. Because the period is independent of the mass, we conclude that

all simple pendulums that are of equal length and are at the same location (so that g is constant)

oscillate with the same period. The simple pendulum can be used as a timekeeper because its

period depends only on its length and the local value of g. It is also a convenient device for making

precise measurements of the free-fall acceleration. Such measurements are important because

variations in local values of g can provide information on the location of oil and of other valuable

underground resources.
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Rule of thumb for pendulum length

It is useful to have a Rule of thumb for the period of the motion, the time for a complete oscillation

(outward and return) is

T = 2⇡

s
L

g
can be expressed as L =

g

⇡2

T 2

4
. (3.12)

If SI units are used (i.e. measure in metres and seconds), and assuming the measurement is taking

place on the Earth’s surface, then g ⇡ 9.81m/s2, and g/⇡2 ⇡ 1 (0.994 is the approximation to

3 decimal places). Therefore, a relatively reasonable approximation for the length and period are,

L ⇡
T 2

4
,

T ⇡ 2
p
L

(3.13)

where T is the number of seconds between two beats (one beat for each side of the swing), and L

is measured in metres.

Full problem without the approximation

If we consider the full problem without the approximation, the period is modified according to

T = 4

s
L

g
K(k), k = sin

✓0

2
(3.14)

where K is the complete elliptic integral of the first kind defined by

K(k) =

Z ⇡
2

0

1
p
1 � k2 sin2 u

du . (3.15)
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For comparison of the approximation to the full solution, consider the period of a pendulum of

length 1 m on Earth at initial angle 10 degrees is

4

s
1 m
g

K

✓
sin

10�

2

◆
⇡ 2.0102 s. (3.16)

The linear approximation gives

2⇡

s
1 m
g

⇡ 2.0064 s. (3.17)

The difference between the two values, less than 0.2%,is much less than that caused by the varia-

tion of g with geographical location.

Foucault pendulum

Exercise 20 – Foucault pendulum

The Foucault pendulum was the brainchild of the French physicist Leon Foucault. It was intended

to prove that Earth rotates around its axis. Let us denote x, y the pendulum bob coordinates as

seen by an observer on Earth. L is the length of the pendulum string and⇥ is the pendulum angle.

The pendulum moves, according to the restoring force from gravity. The string tension components

can be expressed using small angle approximations, which also considerably simplify the problem,

making it two-dimensional. The string tension due to the gravity force is

Fg = mg

0

BBB@

sin⇥

sin⇥

cos⇥

1

CCCA
⇡ mg

0

BBB@

x/L

y/L

1 � z/L

1

CCCA
.
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Figure 3.3: Foucault’s famous pendulum in the Pantheon, Paris. What keeps it moving? Air
resistance would normally stop the pendulum after a few hours – so an iron collar is installed on
the wire surrounded by an electromagnet that attracts the collar as the bob swings out, then shuts
off automatically as it swings back, thus, keeping pendulum going. The magnet is turned on and
off by a switch which is activated when the support wire interrupts a beam of light shining across
its path. Similar idea is followed by the Bremen Foucault’s pendulum in our department.
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Then, the horizontal dynamics can be described as

ẍ = fẏ �
g

L
x (3.18)

ÿ = �fẋ �
g

L
y (3.19)

where f = 2⌦ sin'.

1. Show the analytic solution to the Foucault pendulum problem introducing the complex num-

ber ⇠ = x + i · y. Furthermore, call ! =
q

g

L
is the angular frequency. Then,

⇠̈ + if ⇠̇ + !2⇠ = 0 (3.20)

With the ansatz

⇠ = H(t) · exp

✓
�
if

2
t

◆
(3.21)

we obtain an equation for H

Ḧ +

✓
!2 +

f2

4

◆
H = 0 (3.22)

H(t) = C exp

2

4±it

s

!2 +
f2

4

3

5 (3.23)

and therefore

⇠ = C exp

2

4it

0

@�
f

2
±

s

!2 +
f2

4

1

A

3

5 ⇡ C exp


it

✓
�
f

2
± !

◆�
(3.24)

where C is a complex integration constant. The pendulum swing has a natural frequency
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(also called pulsation) ! =
p

g/L, which depends on the length of the pendulum string.2

Looking at the last term in (3.29): At either the North Pole or South Pole, the plane of oscil-

lation of a pendulum remains fixed relative to the distant masses of the universe while Earth

rotates underneath it, taking one day to complete a rotation (frequency ⌦ = 2⇡/24h). So,

relative to Earth, the plane of oscillation of a pendulum at the North Pole undergoes a full

clockwise rotation during one day, a pendulum at the South Pole rotates counterclockwise.3

When a Foucault pendulum is suspended at the equator, the plane of oscillation remains fixed

relative to Earth. At other latitudes, the plane of oscillation precesses relative to Earth with

a frequency f/2 = ⌦ sin' proportional to the sine of the latitude, where latitudes north

and south of the equator are defined as positive and negative, respectively. For example, a

Foucault pendulum at 30� S, viewed from above by an earthbound observer, rotates coun-

terclockwise 360� in two days.

2. For Foucault’s famous pendulum in Paris: The plane of the pendulum’s swing rotated clock-

wise 11� per hour, making a full circle in 32.7 hours. What is the time period in Bremen,

Germany?

3. Display the solution and compare it with the numerical solution with the following initial

condition:

g = 9.81 # acceleration of gravity (m/s^2)
L = 67 # pendulum length (m) for the experiment in Paris
initial_x = L/100 # initial x coordinate (m)
initial_y = 0 # initial y coordinate (m)
initial_u = 0 # initial x velocity (m/s)
initial_v = 0 # initial y velocity (m/s)
Omega=2*pi/86400 # Earth’s angular velocity of rotation (rad/s)
phi=49/180*pi # 49 deg latitude in (rad) for Paris 1851

2For Foucault’s famous pendulum: he suspended a 28 kg brass-coated lead bob with a 67 meter long wire from the
dome of the Pantheon in Paris (about 49�N). The natural frequency is

p
g/L = 0.381/s related to a time period of

16 s.
3for the South Pole, there was indeed an experiment [Baker and Blackburn, 2005].
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Figure 3.4: Foucault’s pendulum experiment.
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Exercise 21 – Foucault pendulum 2

The horizontal dynamics of the Foucault pendulum with length L is given by

ẍ = fẏ �
g

L
x (3.25)

ÿ = �fẋ �
g

L
y (3.26)

with f = 2⌦ sin'. The length is typically on the order of 1-10 m.

a) Show that the solution is given by

x = x0 cos!⇤t (3.27)

y = x0 sin!⇤t (3.28)

with !⇤ =

0

@�
f

2
+

s

!2 +
f2

4

1

A (3.29)

where x0 is the initial condition, and ! =
p

g/L.

b) Show that !2 >> f
2

4
and that

!⇤ ⇡ �
f

2
+ ! . (3.30)

c) Explain that the natural frequency (also called pulsation) ! can be used to measure gravity.

d) Show that the precession cycle can be used to determine the latitude! Discuss the special

cases equator and South Pole!
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3.3 Scaling of the dynamical equations

As we will see now, the Coriolis effect is one of the dominating forces for the large-scale dynamics

of the oceans and the atmosphere. It is convenient to work in the rotating frame of reference of the

Earth. The equation can be scaled by a length-scale L, determined by the geometry of the flow,

and by a characteristic velocity U. Starting from (1.9), we can estimate the relative contributions

in units of m/s2 in the horizontal momentum equations:

@v

@t|{z}
U/T⇠10�8

+ v · rv| {z }
U2/L⇠10�8

= �
1

⇢
rp

| {z }
�P/(⇢L)⇠10�5

+ 2⌦⇥ v| {z }
f0U⇠10�5

+ fric| {z }
⌫U/H2⇠10�13

(3.31)

where fric denotes the contributions of friction due to eddy stress divergence (usually ⇠ ⌫r2v).

Typical values are given in Table 3.3. The values have been taken for the ocean. You may repeat

the estimate for the atmosphere using Table 3.3.

It is useful to think about the orders of magnitude: Because of the continuity equation U/L ⇠
W/H and since the horizonatal scales are orders of magnitude larger than the vertical ones, the

vertical velocity is very small relative to the horizontal. For small scale motion (like small-scale

ocean convection or cumuls clouds) the horizontal length scale is of the same order as the vertical

one and therefore the vertical motion is in the same order of magnitude as the horizontal motion.

The timescales are related to T ⇠ L/U ⇠ H/W .

It is already useful to think about the relative importance of the different terms in the momen-

tum balance (3.31). The Rossby number Ro is the ratio of inertial (the left hand side) to Coriolis

(second term on the right hand side) terms

Ro =
(U2/L)

(fU)
=

U

fL
. (3.32)

It is used in the oceans and atmosphere, where it characterizes the importance of Coriolis acceler-

ations arising from planetary rotation. It is also known as the Kibel number. Ro is small when the

flow is in a so-called geostrophic balance. This will be the subject in the next paragraphs.
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Quantity Atmosphere Ocean
horizontal velocity U 10 ms�1 10�1 ms�1

vertical velocity W 10�1 ms�1 10�4 ms�1

horizontal length L 106 m 106 m
vertical length H 104 m 103 m

horizonal Pressure changes �P (horizontal) 103 Pa 104 Pa
mean pressure P0 105 Pa 107 Pa

time scale T 105 s 107 s
gravity (gravitation+centrifugal) g 10ms�2 10ms�2

Earth radius a 107 m 107 m
Coriolis parameter at 45�N f0 = 2⌦ sin'0 10�4 s�1 10�4 s�1

2nd Coriolis parameter at 45�N f1 = 2⌦ cos'0 10�4 s�1 10�4 s�1

density ⇢ 1 kgm�3 103 kgm�3

viscosity (turbulent) ⌫ 10�5 kgm�3 10�6 kgm�3

Table 3.1: Table shows the typical scales in the atmosphere and ocean system. Using these orders
of magnitude, one can derive estimates of the different terms in (3.31).

Exercise 22 – Non-dimensional system

a) Write down the non-dimensional version of (3.31) ! What are the characteristic numbers?

b) Use Table 3.3 to estimate the order of magnitude of the characteristic numbers !

c) Compare the procedure to exercise 8.
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3.4 The coordinate system

The equations have to be solved on a proper coordinate system. Consider a location with latitude

' on a sphere that is rotating around the north-south axis. A local coordinate system is set up with

the x axis horizontally due east, the y axis horizontally due north and the z axis vertically upwards.

The axis of rotation is then expressed by a y-component ⇠ cos' and a z-component ⇠ sin'.

The rotation vector expressed in this local coordinate system is

⌦ = ⌦

0

BBB@

0

cos'

sin'

1

CCCA
. (3.33)

Likewise, the components of the velocity vector are listed in the order East (u), North (v) and

Upward (w):

v =

0

BBB@

u

v

w

1

CCCA
, (3.34)

and Coriolis acceleration is therefore in this coordinate system

aC = �2⌦⇥ v = 2⌦

0

BBB@

v sin'� w cos'

�u sin'

u cos'

1

CCCA
. (3.35)

In the following, f = 2⌦ sin' is called the Coriolis parameter, f (2) = 2⌦ cos' is called the

second Coriolis parameter.

When considering atmospheric or oceanic dynamics, the vertical velocity is small and therefore

the vertical component of the Coriolis acceleration is small compared to gravity (see table 3.3 and

the following paragraph). For such cases, only the horizontal (East and North) components matter.
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ω

y

z x

Ω

φ

Figure 3.5: Coordinate system at a local latitude ' with x-axis east, y-axis north and z-axis
upward (that is, radially outward from center of sphere). (x, y, z) = (a� cos', a', z) where
(�,', z) denote longitude, latitude, hight. a is the Earth radius. ⌦ is the the Earth rotation and
equal to 2⇡/(24h). Note that the axis of rotation has a y- and z-component in this coordinate
system (see text for details).

If we further assume v = 0, it can be seen immediately that (for positive ') a movement to the

east results in an acceleration to south. Similarly, for u = 0, it is seen that a movement due north

results in an acceleration due east. In general, observed horizontally, looking along the direction

of the movement causing the acceleration, the acceleration always is turned 90� to the right on

the Northern Hemisphere (left on the Southern Hemisphere) and of the same size regardless of the

horizontal orientation.
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Exercise 23 – Calculate the Double Vector Product

Examine the double vector product ⌦⇥ (⌦⇥ r) with vectors ⌦ = (0, 0,!), r = (x, y, z).

Solution

⌦⇥ (⌦⇥ r) =

0

BBB@

0

0

!

1

CCCA
⇥

0

BBB@

0

BBB@

0

0

!

1

CCCA
⇥

0

BBB@

x

y

z

1

CCCA

1

CCCA

=

0

BBB@

0

0

!

1

CCCA
⇥

0

BBB@

�!y
!x

0

1

CCCA

=

0

BBB@

�!2y

�!2x

0

1

CCCA
= �k⌦k2R

with R = (x, y, 0)T and k⌦k2 = !2 .

Exercise 24 – Some questions about the stmosphere

1. Consider the heat diffusion-advection equation

@T

@t
= k

@2T

@x2
+ u

@T

@x

and determine the time evolution with initial conditions

a) T (x, 0) = exp(�x2/a) with a = constant.

b) T (x, 0) = T0 for x � 0 and T (x, 0) = 0 elsewhere.

Discuss the special cases k = 0 (no diffusion) and u = 0 (no advection).
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2. A tornado rotates with constant angular velocity !. Show that the surface pressure at the

center of the tornado is given by:

p = p0 exp
�
�!2r0

2/(2RT )
�

where p0 is the surface pressure at the distance r0 from the center and T is the temperature

(assumed constant). [Hint: What are the dominant forces? Pressure gradient and centrifugal

force.]

If temperature is 288K, pressure at 100m from the center is 102 kPa, and wind speed at

100m from the center is 100m/s, what is the central pressure?

3. Suppose a 1kg parcel of dry air is rising at a constant vertical velocity. If the parcel is being

heated by radiation at a rate of 10�1W/kg, what must the speed of rise be in order to

maintain the parcel at a constant temperature. [Hint: Energy equation.]

4. Show that for an atmosphere with an adiabatic lapse rate (i.e. constant potential temperature),

the geopotential Z(z) := �(z)/g0 is given by

Z = H⇥[1 � (p/p0)
a]

where p0 is the pressure at Z = 0 and H⇥ = cp⇥/g0 is the total geopotential in the

atmosphere. a = R/cp.

Exercise 25 – Some simple repetition questions

1. Please write down the equation of state for the ocean and atmosphere!

2. What is the hydrostatic approximation in the momentum equations?

3. Please clarify: On the Northern Hemisphere, particles tend to go to the right or left relative

to the direction of motion due to the Coriolis force?
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3.5 Geostrophy

The momentum equations (3.31) can be also written in the coordinate system (Fig. 3.5) above as

@u

@t
+ v · ru �

uv tan'

a
�

uw

a
= �

1

⇢

@p

@x
+ fv � f (2)w + ⌫r2u (3.36)

@v

@t
+ v · rv �

u2 tan'

a
�

vw

a
= �

1

⇢

@p

@y
� fu + ⌫r2v (3.37)

complemented by the dynamics for the vertical component w :

@w

@t|{z}
W/T⇠10

�11

+ v · rw| {z }
UW/L⇠10�11

�
u2 + v2

a| {z }
U2/a⇠10�9

= �
1

⇢

@p

@z| {z }
P0/(⇢H)⇠10

+ g|{z}
⇠10

+ f (2)u| {z }
⇠10�5

+ ⌫@2

z
w| {z }

⌫W/H2⇠10�16

(3.38)

As boundary conditions, equations (3.36, 3.37) are complemented by the horizontal wind stresses

@z⌧xz and @z⌧yz at the ocean surface, respectively.

@u

@t
+ v · ru + . . . = �

1

⇢

@p

@x
+ fv � f (2)w + ⌫r2u +

1

⇢
@z⌧xz (3.39)

@v

@t
+ v · rv + . . . = �

1

⇢

@p

@y
� fu + ⌫r2v +

1

⇢
@z⌧yz (3.40)

It should be noted that due to sperical coordinates (see Fig. 3.5), one has metric terms, e.g. on the

left hand sides of (3.36,3.37,3.38): �uv tan'

a
� uw

a
, u

2
tan'

a
� vw

a
, and u

2
+v

2

a
, respectively. In

the geostropic approximation, one can drop these terms.4

A small Rossby number signifies a system which is strongly affected by Coriolis forces, and

a large Rossby number signifies a system in which inertial forces dominate. For example, in

tornadoes, the Rossby number is large (⇡ 103), in atmospheric low-pressure systems it is low

(⇡ 0.1 � 1), but depending on the phenomena can range over several orders of magnitude (⇡
10�2 � 102).5 Using the values in table 3.3, Ro in oceanic systems is of the order of 10�3.

4Task: Calculate the order of magnitude of the metric terms in (3.36,3.37) by using table 3.3.
5As a result, in tornadoes the Coriolis force is negligible, and balance is between pressure and centrifugal forces

(called cyclostrophic balance). This balance also occurs at the outer eyewall of a tropical cyclone.
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When the Rossby number is large (either because f is small, such as in the tropics and at lower

latitudes; or because L is small, that is, for small-scale motions such as flow in a bathtub; or for

large speeds), the effects of planetary rotation are unimportant and can be neglected. Repeating:

When the Rossby number is small, then the effects of planetary rotation are large and the net

acceleration is comparably small allowing the use of the so-called geostrophic approximation: The

force balance is largely between the pressure gradient force acting towards the low-pressure area

and the Coriolis force acting away from the center of the low pressure in equation (3.31). By

scaling arguments, one can derive the geostrophic horizontal flow components (ug, vg) as:

ug = �
1

f⇢

@p

@y
(3.41)

vg =
1

f⇢

@p

@x
(3.42)

The validity of this approximation depends on the local Rossby number. It is invalid at the equator,

because f = 2⌦ sin' is equal to zero there, and therefore generally not used in the tropics.

Equations (3.41,3.42) show that large-scale motions in the atmosphere and ocean tend to occur

perpendicular to the pressure gradient, instead of flowing down the gradient. This circulation is

called geostrophic flow. On a non-rotating planet, fluid would flow along the straightest possible

line, quickly eliminating pressure gradients.6

6Task: Think how the geostrophy can be derived in the inertial system with a fixed reference frame, e.g. the Sun.
The final result shall be independent on the reference system used!
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Figure 3.6: Sea level pressure (hPa) field for February (upper) and April (lower) 2015. In February,
the circulation is characterized by a low pressure over the Greenland-Iceland-Norwegian Sea, and a
surrounded high pressure. In April, the circulation was dominated by a high pressure over northern
France and the subtropical Atlantic and Pacific Oceans, a low pressure over Scandianavia and the
Aleutian Islands. Task: Draw the direction of large-scale motions in the atmosphere using the
geostrophic balance (3.41,3.42). Data are from Trenberth and Paolino (1980).
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3.6 Geostrophic Stream Lines and Stream Function

At each instant in time, we can represent a flow field by a vector velocity at each point in space.

The instantaneous curves that are everywhere tangent to the direction of the vectors are called the

stream lines of the flow. If the flow is unsteady, the pattern of stream lines change with time. The

trajectory of a fluid particle, the path followed by a Lagrangian drifter, is called the path line in

fluid mechanics. The path line is the same as the stream line for steady flow, and they are different

for an unsteady flow. We can simplify the description of two-dimensional, incompressible flows

by using the stream function  defined by:

u ⌘
@ 

@y
, v ⌘ �

@ 

@x
, (3.43)

The stream function is often used because it is a scalar from which the vector velocity field can be

calculated. This leads to simpler equations for some flows.

The volume rate of flow between any two stream lines of a steady flow is d , and the volume

rate of flow between two stream lines  1 and  2 is equal to  1 �  2 . To see this, consider

an arbitrary line dx = (dx, dy) between two stream lines (Fig. 3.7). The volume rate of flow

between the stream lines is:

v dx + (�u) dy = �
@ 

@x
dx �

@ 

@y
dy = �d (3.44)

and the volume rate of flow between the two stream lines is numerically equal to the difference in

their values of  .

Now, lets apply the concepts to satellite-altimeter maps of the oceanic topography. One can

show that

us = �
g

f

@⌘

@y
, vs = �

g

f

@⌘

@x
, (3.45)

where g is gravity, f is the Coriolis parameter, and ⌘ is the height of the sea surface above a level
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Figure 3.7: Volume transport between stream lines in a two-dimensional, steady flow. After Kundu
(1990: 68).

surface. Comparing 3.45 with 3.43 it is clear that

 = �
g

f
⌘ (3.46)

and the sea surface is a stream function scaled by g/f . The lines of constant height are stream

lines, and flow is along the lines. The surface geostrophic transport is proportional to the difference

in height, independent of the distance between the stream lines. The transport is relative to transport

at the 1000 decibars surface, which is roughly one kilometer deep.

In addition to the stream function, oceanographers use the mass-transport stream function  

defined by:

Mx ⌘
@ 

@y
, My ⌘ �

@ 

@x
(3.47)
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3.7 Conservation of vorticity

In simple words, vorticity is the rotation of the fluid. The rate of rotation can be defined in various

ways. Consider a bowl of water sitting on a table in a laboratory. The water may be spinning in

the bowl. In addition to the spinning of the water, the bowl and the laboratory are rotating because

they are on a rotating earth. The two processes are separate and lead to two types of vorticity.

Everything on earth, including the ocean, the atmosphere, and bowls of water, rotates with the

earth. This rotation is the planetary vorticity f . It is twice the local rate of rotation of earth:

f ⌘ 2 ⌦ sin'

✓
1

s

◆
= 2 sin'

✓
cycles

day

◆
(3.48)

Planetary vorticity is also called the Coriolis parameter. It is greatest at the poles where it is twice

the rotation rate of earth. Note that the vorticity vanishes at the equator and that the vorticity in the

Southern Hemisphere is negative because ' is negative.

The ocean and atmosphere do not rotate at exactly the same rate as the Earth. They have some

rotation relative to Earth due to currents and winds. Relative vorticity ⇣ is the vorticity due to

currents in the ocean.7 Mathematically it is:

⇣ ⌘
@v

@x
�
@u

@y
(3.49)

where we have assumed that the flow is two-dimensional.

For a rigid body rotating at rate ⌦, ⇣ = 2 ⌦. Of course, the flow does not need to rotate

as a rigid body to have relative vorticity. Vorticity can also result from shear. For example, at a

north/south western boundary in the ocean, u = 0, v = v (x) and ⇣ = @v (x) /@x.

⇣ is usually much smaller than f . To make an estimate for ⇣ : It is greatest at the edge of fast

currents such as the Gulf Stream. To obtain some understanding of the size of ⇣, consider the edge

7⇣ is the vertical component of the threedimensional vorticity vector !, and it is sometimes written !z . ⇣ is
positive for counter-clockwise rotation viewed from above. This is the same sense as Earth’s rotation in the Northern
Hemisphere. One could use !z for relative vorticity, but ! is also commonly used to mean frequency in radians per
second.
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of the Gulf Stream off Cape Hatteras where the velocity decreases by 1ms�1 in 100km at the

boundary. The curl of the current is approximately

⇣ =
@v

@x
=

1ms�1

100 km
= 0.14

cycles

day
= 1

cycle

week
= 1.62 · 10�6

1

s
. (3.50)

Hence even this large relative vorticity is still almost seven times smaller than f (compare 3.48).

A more typical value of relative vorticity, such as the vorticity of eddies, is a cycle per month. The

sum of the planetary and relative vorticity is called absolute vorticity:

Absolute Vorticity ⌘ (⇣ + f) (3.51)

We can obtain an equation for absolute vorticity in the ocean by manipulating the equations of

motion for frictionless flow. We begin with:

Du

Dt
� f v = �

1

⇢

@p

@x
(3.52)

Dv

Dt
+ f u = �

1

⇢

@p

@y
(3.53)

If we expand the substantial derivative, and if we subtract @/@y of (3.52) from @/@x of (3.53) to

eliminate the pressure terms, we obtain

D

Dt
(@xv � @yu) + (@xu@xv + @xv@yv) � (@yu@xu + @yv@yu)

+ f (@xu + @yv) + v @yf = 0 (3.54)

Using D

Dt
f = v @yf :

D

Dt
⇣ + @xv (@xu + @yv) � @yu (@xu + @yv)

+ f (@xu + @yv) +
D

Dt
f = 0 (3.55)
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this yields
D

Dt
(⇣ + f) + (⇣ + f)

✓
@u

@x
+
@v

@y

◆
= 0 . (3.56)

Exercise 26 – Non-dimensional system of the vorticity dynamics

a) For cnstant depth, derive the the non-dimensional version of the vorticity equation

D

Dt
(⇣ + f) = ⌫r2⇣ .

Hint: Repeat exercise 4. b) What are the characteristic numbers?

c) Estimate the order of magnitude of the characteristic numbers for the atmosphere and ocean !

You can use Table 3.3 and other references.

3.7.1 Potential vorticity equation (⇣ + f)/h

3.7.2 Examples for conservation of Vorticity

The rotation rate of a column of fluid changes as the column is expanded or contracted. This

changes the vorticity through changes in ⇣. To see how this happens, consider barotropic, geostrophic

flow in an ocean with depth h (x, y, t), where h is the distance from the sea surface to the bottom.

That is, we allow the surface to have topography (Fig. 3.8). Integrating the continuity equation

from the bottom to the top of the ocean gives:

✓
@u

@x
+
@v

@y

◆Z
b+h

b

dz + w|b+h

b
= 0 (3.57)

where b is the topography of the bottom, and h is the depth of the water. Notice that @u/@x

and @v/@y are independent of z because they are barotropic, and the terms can be taken outside

the integral. The boundary conditions require that flow at the surface and the bottom be along the
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Figure 3.8: Sketch of fluid flow used for deriving conservation of potential vorticity. Here H = h.
After Cushman-Roisin (1994: 55).

surface and the bottom. Thus the vertical velocities at the top and the bottom are:

w|b+h = Dt(b + h) =
@ (b + h)

@t
+ u

@ (b + h)

@x
+ v

@ (b + h)

@y
(3.58)

w|b = Db = u
@b

@x
+ v

@b

@y
(3.59)

where we used @b/@t = 0 because the bottom does not move, and @h/@z = 0. Substituting

(3.58) and (3.59) into (3.57) we obtain

✓
@u

@x
+
@v

@y

◆
+

1

h

Dh

Dt
= 0 (3.60)

Substituting this into (3.56) gives:

D

Dt
(⇣ + f) �

(⇣ + f)

h

Dh

Dt
= 0 (3.61)
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Figure 3.9: Sketch of the production of relative vorticity by change in the height of a fluid column.
As the vertical fluid column moves from left to right, vertical stretching reduces the moment of
inertia of the column, causing it to spin faster.

which can be rewritten as

1

h

D

Dt
(⇣ + f) � (⇣ + f)

Dth

h2
= 0 (3.62)

D

Dt

✓
⇣ + f

h

◆
= 0 . (3.63)

The quantity within the parentheses must be constant. It is called potential vorticity ⇧. Potential

vorticity is conserved along a fluid trajectory:

Potential Vorticity = ⇧ ⌘
⇣ + f

h
(3.64)

The angular momentum of any isolated spinning body is conserved. The spinning body can be an

eddy in the ocean or the earth in space. If the spinning body is not isolated, that is, if it is linked

to another body, then angular momentum can be transferred between the bodies. The conservation

of potential vorticity couples changes in depth, relative vorticity, and changes in latitude. All three

interact:
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Figure 3.10: Angular momentum tends to be conserved as columns of water change latitude. This
changes the relative vorticity of the columns. After von Arx (1962).

• Changes in the depth h of the flow results in change of the relative vorticity. The concept is

analogous with the way figure skaters decrease their spin by extending their arms and legs.

The action increases their moment of inertia and decreases their rate of spin (Fig. 3.9).

• Changes in latitude require a corresponding change in ⇣. As a column of water moves equa-

torward, f decreases, and ⇣ must increase (Fig. 3.10). If this seems somewhat mysterious,

von Arx (1962) suggests we consider a barrel of water at rest at the north pole. If the barrel

is moved southward, the water in it retains the rotation it had at the pole, and it will appear

to rotate counterclockwise at the new latitude where f is smaller.
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3.7.3 Potential vorticity conservation (⇣ + f)/h: Implications

The concept of conservation of potential vorticity has far reaching consequences, and its applica-

tion to fluid flow in the ocean gives a deeper understanding of ocean currents.

Flow Tends to be Zonal

In the ocean f tends to be much larger than ⇣ and thus f/h = constant. This requires that the flow

in an ocean of constant depth be zonal. Of course, depth is not constant, but in general, currents

tend to be east-west rather than north-south. Wind makes small changes in ⇣, leading to a small

meridional component of the flow (see Fig. 3.10).

Topographic Steering

Barotropic flows are diverted by sea floor features. Consider what happens when a flow that extends

from the surface to the bottom encounters a sub-sea ridge (Fig. 3.11). As the depth decreases, ⇣+f

must also decrease, which requires that f decrease, and the flow is turned toward the equator. This

is called topographic steering. If the change in depth is sufficiently large, no change in latitude will

be sufficient to conserve potential vorticity, and the flow will be unable to cross the ridge. This is

called topographic blocking.

Streamfunction f/h

In the ocean, f tends to be much larger than ⇣ and

D

Dt

✓
f

h

◆
= 0 (3.65)



3.7. CONSERVATION OF VORTICITY 125

Figure 3.11: Barotropic flow over a sub-sea ridge is turned equatorward to conserve potential
vorticity. After Dietrich et al. (1980: 333).

implies f/h = constant along the flow. In this case, we have a streamfunction and pressure p

that are functions of f/h:

 =  (f/h) ; p = p(f/h). (3.66)

This requires that the flow in an ocean of constant depth be zonal. Of course, depth is not constant,

but in general, currents tend to be east-west rather than north-south. Wind makes small changes

in ⇣, leading to a small meridional component of the flow (see figure 3.10). The geostrophic

contours f/h turn out to be an interesting combination of latitude circles and bottom topographic

contours. Over small horizontal distances8 and at high latitude topography, h tends to dominate (as

in the example in Fig.3.13), but over longer distances or in the tropics, the latitude-variation of f

dominates.

8Then D
Dt

⇣
f
h

⌘
= 0 can be transformed into D

Dt
h = 0.
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Exercise 27 – Differential operators for the potential vorticity equation

Deriving the vorticity equation

D

Dt

✓
⇣ + f

h

◆
= 0 ,

we need to evaluate the terms @y

D

Dt
u and @x

D

Dt
v. Write down the explicit terms!

Exercise 28 – Calculation of potential vorticity in the atmosphere

An air column at 53�N with ⇣ = 0 initially streches from the surface to a fixed tropopause at

10 km height. If the air column moves until it is over a mountain barrier 2.5 km hight at 30�N,

what is its absolute vorticity and relative vorticity as it passes the mountain top?

Assume: sin 53� = 0.8; sin 30� = 0.5. The angular velocity of the Earth ⌦ = 2⇡/(1day).

Exercise 29 – f/h contours

Geostrophic contours using available topography data. Barotropic flows are diverted by sea

floor features. Consider what happens when a flow that extends from the surface to the bottom

encounters a sub-sea ridge.

1. Show the f/h contours for the North Atlantic Ocean! See Fig. 3.12.

2. Show it for low latitudes regions: region around 20�S to 20�N in the Atlantic and Pacific

Ocean. One problem is that the geostrophic contours bump into continents, so that ocean

currents running along them have a serious difficulty there. Actually all such f/h contours

head toward the Equator as they run up into shallow water (as h ! 0 f ! 0 also, hence

' ! 0). This shows that we need more terms in the vorticity dynamics to describe the

ocean circulation.

3. The examination of tidal rhythmites and theories about the Earth-Moon dynamics suggest

that the length of day 900 million years ago was 18 h instead of 24h. How are the results of

the vorticity dynamics are affected?
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Figure 3.12: Floats in the northwestern NorthAtlantic below 1000m. The trajectories, superim-
posed on the smoothed f/h contours (LaCasce, 2000).

Figure 3.13: f/h countour in the Weddell Sea for 34 Ma (34 · 106 years before present).

4. For the Miocene (about 34 Million years ago), the topography data were provided in the

course. Calculate the f/h-contours! The length of the day was nearly as today. See Fig. ??.
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Baroclinic flow in a continuously stratified fluid

For baroclinic flow in a continuously stratified fluid, the potential vorticity can be written (Ped-

losky, 1987)

⇧ =
⇣ + f

⇢
· r� (3.67)

where � is any conserved quantity for each fluid element. In particular, if � = ⇢ then:

⇧ =
⇣ + f

⇢

@⇢

@z
(3.68)

assuming the horizontal gradients of density are small compared with the vertical gradients, a good

assumption in the thermocline. In most of the interior of the ocean, f � ⇣ and (3.68) is written

(Pedlosky, 1996)

⇧ =
f

⇢

@⇢

@z
(3.69)

This allows the potential vorticity of various layers of the ocean to be determined directly from

hydrographic data without knowledge of the velocity field.
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3.7.4 Taylor-Proudman Theorem

The influence of vorticity due to Earth’s rotation is most striking for geostrophic flow of a fluid

with constant density ⇢0 on a plane with constant rotation f = f0 . The components of the

geostrophic and hydrostatic pressure equations are:

�f v = �
1

⇢0

@p

@x
(3.70)

f u = �
1

⇢0

@p

@y
(3.71)

g = �
1

⇢0

@p

@z
(3.72)

and the continuity equation is:

0 =
@u

@x
+
@v

@y
+
@w

@z
(3.73)

Taking the z derivative of (3.70) and using (3.72) gives:

�f0

@v

@z
= �

1

⇢0

@

@z

✓
@p

@x

◆
=

@

@x

✓
�

1

⇢0

@p

@z

◆
=
@g

@x
= 0 (3.74)

Therefore for f0 6= 0
@v

@z
= 0

Similarly, for the u-component of velocity (3.71). Thus, the vertical derivative of the horizontal

velocity field must be zero.
@u

@z
=
@v

@z
= 0 (3.75)

The flow is two-dimensional and does not vary in the vertical direction. This is the Taylor-

Proudman Theorem, which applies to slowly varying flows in a homogeneous, rotating, inviscid

fluid. The theorem places strong constraints on the flow9. The physical origin of this strangely
9Taylor (1921): If therefore any small motion be communicated to a rotating fluid the resulting motion of the fluid

must be one in which any two particles originally in a line parallel to the axis of rotation must remain so, except for
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constrained flow is in the stiffness endowed to the fluid by rapid rotation of the Earth, which has a

peculiarly strong sense along the axis of rotation. Taylor’s laboratory experiments showed how ho-

mogeneous fluid tends to move in vertical columns. Dye in the water forms curtains, and viewing

the dye from above shows fine twists and whirls that are vertically coherent.

Hence, rotation greatly stiffens the flow! Geostrophic flow cannot go over a seamount, it

must go around it. Taylor [1917] explicitly derived (3.75) and (3.77) below. Proudman [1916]

independently derived the same theorem but not as explicitly.

Laboratory experiments showing the formation of a Taylor column, go to 2:50, other material:

vorticity and circulation, boundary layers, good introduction, Taylor column

Vertical velocity in the the Taylor-Proudman theorem

Further consequences of the theorem can be obtained by eliminating the pressure terms from (3.70,

3.71) to obtain:

@u

@x
+
@v

@y
= �

@

@x

✓
1

f0⇢0

@p

@y

◆
+

@

@y

✓
1

f0⇢0

@p

@x

◆

=
1

f0⇢0

✓
�
@2p

@x@y
+

@2p

@x@y

◆
= 0 (3.76)

Because the fluid is incompressible, the continuity equation (3.73) requires

@w

@z
= 0 (3.77)

Furthermore, because w = 0 at the sea surface and at the sea floor, if the bottom is level, there

can be no vertical velocity on an f -plane.

possible small oscillations about that position.

https://www.youtube.com/watch?v=7GGfsW7gOLI
https://www.youtube.com/watch?v=VsT8OSxu4I8
https://www.youtube.com/watch?v=GcX_CDrQCsI
https://www.youtube.com/watch?v=khRil3tWYEA
https://www.youtube.com/watch?v=uWdKVpQ94Ns
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Geostrophic flow: Vertical velocity leads to north-south currents

If the Taylor-Proudman theorem in (3.77) is true, the flow cannot expand or contract in the vertical

direction, and it is indeed as rigid as a steel bar. Since we observe gradients of vertical movements,

one of the constraints used in deriving (3.77) must be violated, i.e. our assumption that f = f0

can not be a good approximation.

Going back to (3.56):

D

Dt
(⇣ + f) + (⇣ + f)

✓
@u

@x
+
@v

@y

◆
= 0 . (3.78)

we obtain

� v + f

✓
@u

@x
+
@v

@y

◆
= 0 . (3.79)

Using the continuity equation, we obtain

f
@wg

@z
= � v (3.80)

where we have used the subscript g to emphasize that (3.80) applies to the ocean’s interior,

geostrophic flow. Thus the variation of Coriolis force with latitude allows vertical velocity gradi-

ents in the geostrophic interior of the ocean, and the vertical velocity leads to north-south currents.
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