Lecture: May 23 (Monday), 14:00 Prof. Dr. Gerrit Lohmann

Tutorial: May 23 (Monday), 16-17; Smit Doshi, Dr. Qiyun Ma

 
 

Preparation

 

Lecture

 

Content in the script: Rayleigh-Bénard convection, Lorenz system, nonlinear dynamics, bifurcations, multiple equilibria

 

Exercise 4 introduced, questions to the exercise (15 min)


 

Homework 1: Solve Exercise 4

 


 

Lorenz model

r=24
s=10
b=8/3
dt=0.01
x=0.1
y=0.1
z=0.1
vx<-c(0)
vy<-c(0)
vz<-c(0)
for(i in 1:10000){
x1=x+s*(y-x)*dt
y1=y+(r*x-y-x*z)*dt
z1=z+(x*y-b*z)*dt
vx[i]=x1
vy[i]=y1
vz[i]=z1
x=x1
y=y1
z=z1
}
plot(vx,vy,type="l",xlab="x",ylab="y",main="LORENZ ATTRACTOR")

r=5000/150000
#r=1/10
Bev=85000000
K=1
dt=0.01

N=150000/Bev

vN=c(0); vNp=c(0); vt=c(0)
vN[1]=N; vNp[1]=0; vt[1]=0

for(i in 2:100000){
N1=N+r*N*(1-N/K)*dt
vNp[i]=r*N*(1-N/K)
vN[i]=N1
vt[i]=i*dt
N=N1
}

plot(vt,vN,type="l",xlab="time [days]",ylab=" ",main="Logistic growth Corona: N(t)", lwd=2, lty="solid", cex.main=3, cex.lab=3, cex.axis=3,cex.lab=3)

plot(vt,vNp*Bev/100,type="l",xlab="time [days]",ylab=" ",main="New infections/100: intensive care medicine",cex.main=3, cex.lab=3,cex.axis=3,cex.lab=3)

max(vNp[]*Bev/100)
## [1] 7083.333