Lecture: May 23 (Monday), 14:00 Prof. Dr. Gerrit Lohmann
Tutorial: May 23 (Monday), 16-17; Smit Doshi, Dr. Qiyun Ma
trailer Cellules de Bénard (1min),
Rayleigh–Bénard convection made with mix of cooking oil and small aluminium particles (5 min),
Was haben Benard-Zellen mit Kochen zu tun? (3 min, German)
Rayleigh Benard Thermal Convection with LBM (5 min),
Rayleigh Benard Thermal Convection 3D Simulation (2 min)
Sketch,
Clouds,
Cartoon
Bifurcation youtube (20 min)
Bifurcation Khan academy (13 min) Reading Bifurcation theory
Content in the script: Rayleigh-Bénard convection, Lorenz system, nonlinear dynamics, bifurcations, multiple equilibria
r=24
s=10
b=8/3
dt=0.01
x=0.1
y=0.1
z=0.1
vx<-c(0)
vy<-c(0)
vz<-c(0)
for(i in 1:10000){
x1=x+s*(y-x)*dt
y1=y+(r*x-y-x*z)*dt
z1=z+(x*y-b*z)*dt
vx[i]=x1
vy[i]=y1
vz[i]=z1
x=x1
y=y1
z=z1
}
plot(vx,vy,type="l",xlab="x",ylab="y",main="LORENZ ATTRACTOR")
r=5000/150000
#r=1/10
Bev=85000000
K=1
dt=0.01
N=150000/Bev
vN=c(0); vNp=c(0); vt=c(0)
vN[1]=N; vNp[1]=0; vt[1]=0
for(i in 2:100000){
N1=N+r*N*(1-N/K)*dt
vNp[i]=r*N*(1-N/K)
vN[i]=N1
vt[i]=i*dt
N=N1
}
plot(vt,vN,type="l",xlab="time [days]",ylab=" ",main="Logistic growth Corona: N(t)", lwd=2, lty="solid", cex.main=3, cex.lab=3, cex.axis=3,cex.lab=3)
plot(vt,vNp*Bev/100,type="l",xlab="time [days]",ylab=" ",main="New infections/100: intensive care medicine",cex.main=3, cex.lab=3,cex.axis=3,cex.lab=3)
max(vNp[]*Bev/100)
## [1] 7083.333