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EBM & Sea ice




Sea ice

Sea 1ce 1s frozen seawater that floats on the ocean surface. It forms
in both the Arctic and the Antarctic in each hemisphere’s winter; it
retreats in the summer, but does not completely disappear. This
floating 1ce has a profound influence on the polar environment,
influencing ocean circulation, weather, and regional climate.



Sea ice begins as thin sheets of smooth nilas in calm water (top) or disks of pancake ice in
choppy water (top right).

Individual pieces pile up to form rafts and eventually solidify (lower left). Over time, large
sheets of ice collide, forming thick pressure ridges along the margins (lower right).
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Seasonal cycle
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Sea ice dynamics

https://fesom.de/media/video/


https://youtu.be/Im-v6w5_NFw

Energy balance model
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What we really want to know

What we really want is the mean of the temperature 7. Therefore, we take the
fourth root of (4):
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If we calculate the zonal mean of (6) by integration at the latitudinal cycles we have
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as a function on latitude (Fig. 2).
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When we integrate this over the latitudes, we obtain
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What is the difference ?

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

eoT* = (1 —a)Scospcos® X 1_rjacocn/2(O) (4)

where ¢ and © are the latitude and longitute, respectively. Integration over the Earth

surface is
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giving a similar formula as (3) with the definition for the average T4.



Heat capacity term

The energy balance shall take the heat capacity into account:

CoOT = (1 —a)Scospcos® X 1[_rj9cocn2(0) — eaT?

The energy balance (9) is integrated over the
longitude and over the day

27 27
=1 : g ] 4
() = 5 / T(t)de with T~ / T 4O
0 0
and therefore
1 /2
C,0T = (1—a)Scosy o / cos© dO —eaT?
7T—7r/2
2
) 4
= (1—a)—cosp — edT (10)
T

giving the equilibrium solution
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shown in Fig. 2 as the read line



The new solution
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and time averaging (11) in red. The dashed bIOWIllSh curve shows the numerical
solution by taking the zonal mean of (9).
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Therefore, T = 285 ~ 288 K, very similar as in (1). A numerical solution of (9) is
shown as the brownish dashed line in Fig. 2 where the diurnal cycle has been taken into
account and C, = C7 has been chosen as the atmospheric heat capacity

Co = ¢yps/g = 1004 JK kg™ - 10°Pa/(9.81ms™?) = 1.02-10"JK ~'m™?

which is the specific heat at constant pressure ¢, times the total mass ps/g. ps is the
surface pressure and ¢ the gravity. The temperature T is 286 K, again close to 288 K.



Heat capacity

The effect of heat capacity is systematically analyzed in Fig. 3. The temperatures

Cp/C2

are relative insensitive for a wide range of C,. We find a severe drop in temperatures for

heat capacities below 0.01 of the atmospheric heat capacity Cy.
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Figure 3. Temperature depending on Cj, when solving (9) numerically. The reference
heat capacity is the atmospheric heat capacity Cj = 1.02- 107"JK~'m~2. The climate
is insensitive to changes in heat capacity C), € [0.05- Cy,2.0- Cp].
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is insensitive to changes in heat capacity C), € [0.05- Cy,2.0- Cp].

Additionally: rotation
rate -> 4.5° colder for
240 h

Planetary boundary
layer

Mixed layer depth



A diffusive heat flux goes down the gradient of
temperature and the convergence of this heat flux drives a ocean temperature

tendency:
CpooT = —0.(k°0.T) (13)

where k, = k°/Cf is the oceanic vertical eddy diffusivity in m*s~", and CJ
the oceanic heat capacity relevant on the specific time scale. The vertical eddy

diffusivity k,  107°  1074m?2 s~ ! depending on depth and region.

A scale analysis of (13) yields a
characteristic depth scale hp through

AT AT
At n2 v

For the diurnal cycle hr is less that half a meter and the heat capacity generally
less than that of the atmosphere.



Ti*C)

heat transport across a latitude is HT' = —kVT. One can solve the EBM

S
C,0T = V-HT + (1—a)=cosp — eaT* . (15)
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Figure 4. Equilibrium temperature of (15) using different diffusion coefficients. The
blue lines use 1.5 - 10°m? /s with no tilt (solid line), a tilt of 23.5° (dotted line), and
as the dashed line a tilt of 23.5° and ice-albedo feedback using the respresentation of
Sellers (1969). Except for the dashed line, the global mean values are identical to the
value calculated in (12). Units are °C.



EBM revisited

EBMs crucial tool in climate research, especially because they
describe the processes essential for the genesis of the global
climate (confirmed by complex climate models)

EBMs conceptual tools, due to the essentials “’scientific
understanding” : radiation balance on the ground and the
absorption 1n the atmosphere are the essential factors,
independent of the size of the Earth and the thermal
characteristics, but depends on the albedo, emissivity and solar
constant.

Here: length of the day, effective heat capacity

Ironically, the global mean 1n the revised EBM 1s very close to
the original proposed value
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Black dots show €oT#. The blue line shows the linear fit for the range of
temperatures 0 to 407 K. The thin red line shows the linear fit for temperatures
between —-50 to 30 °C (range is shown as vertical dotted lines). The thick red line
shows Budyko's (1969) linearization with A=203.3 W m=—2 and B=2.09 W m=2°C-1,

The regression coefficients for the blue line
are A=321.4W m=—2 and B=1.88 Wm=2°C-1, whereas for the thin red line they

are A=199.5Wm=—=2 and B=2.56 Wm=2°C1,



EBM with sea ice

A+B(T-T,)
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FIG. 1. Schematic of the global model of climate and sea ice described in section 2, showing the
fluxes included in the model: insolation (yellow), OLR (red), horizontal heat transport (green),
ocean heating (dark blue), and vertical heat flux through the ice (blue). The temperature of the ice
is given by T at the surface and 7, at the base.

How Climate Model Complexity Influences Sea Ice Stability
TILL J. W. WAGNER AND IAN EISENMAN
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VOLUME 28



The equations

oE
== o8 = L + DV’T + F, + F
N N — ~— v
solar OLR transport ocean forcing
heating
e —Lh, E<0 (seaice),
B c,(I'-T,), E=0 (open water),

S(t,x) =S, — S, x coswt — S, x*

a,—a,x*, E>0 (open water),
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EBM with sea ice
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FIG. 1. Schematic of the global model of climate and sea ice described in section 2, showing the
fluxes included in the model: insolation (yellow), OLR (red), horizontal heat transport (green),
ocean heating (dark blue), and vertical heat flux through the ice (blue). The temperature of the ice
is given by T at the surface and 7, at the base.

k(T, — T)))h=—aS+A+B(T,—T,)— DV*T—F

T +Ec, E>0 (open water),
T=<T,, E<0, T,>T, (melting ice),

. E<0, T,<T, (freezingice).
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FIG. 2. Simulated climate in the default parameter regime. Contour plot of the seasonal cycle of (a) surface enthalpy E(x, t), (b) surface
temperature 7(x, t), and (c) sea ice thickness /(x, £). The black curve in (a)—(c) indicates the ice edge. (d) Surface temperature 7' in summer
and winter, corresponding to dashed and solid vertical lines in (c). (¢) Ice thickness /# in summer and winter where x > 0.7. (f) Seasonal
cycle of ice thickness at the pole 4,. (g) Seasonal cycle of the latitude of the sea ice edge 6;.



Exercise 1: EBM

D+=Wm—2K—1 Diffusivity for heat transport: 0.6
A=Wm—2 OLR:193

B=Wm—2K—1 OLR temperature dependence: 2.1
cw=Wyrm—2K—1 Ocean mixed layer heat capacity: 9.8
SO=Wm-—2 Insolation at equator: 420

S2=Wm—2 Insolation spatial dependence: 240

A0 Ice-free coalbedo at equator: 0.7

A2 Ice-free coalbedo spatial dependence: 0.1

Ai Coalbedo when there is sea ice: 0.4

Wm—2 Radiative forcing: 0

vy Gamma: 1

1) What will happen if the CO, content in the atmosphere is doubled? Radiative forcing= 4 Wm-2

2) What will happen if the factor y is 1% higher/lower in the long-wave radiation?

3) Describe the effect if the diffusivity is enhanced by a factor of 2!

4) The coalbedo of sea ice can vary between 0.3 and 0.4. Describe the effect when varying the value!
5) Write down the numerical scheme (time stepping etc. from the source code) !

6) Show the evolution at one specific latitude and discuss it!

Upper model


https://paleodyn.uni-bremen.de/study/ebm/

Exercise 2: Aquaplanet EBM with
seasonal cycle

1) What will happen if the CO, content in the atmosphere is doubled? Radiative forcing= 4 W/m?=
lowering of A

2) Discuss the sea ice evolution during the year !

3) Reduce and enhance the sea ice thermal conductivity by 20% mimiking more /less snow on top of sea
ice !

4) Write down the numerical scheme (time stepping) !

Lower model


https://paleodyn.uni-bremen.de/study/ebm/

