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Sea ice
Sea ice is frozen seawater that floats on the ocean surface. It forms
in both the Arctic and the Antarctic in each hemisphere’s winter; it

retreats in the summer, but does not completely disappear. This 
floating ice has a profound influence on the polar environment, 

influencing ocean circulation, weather, and regional climate.



Sea ice begins as thin sheets of smooth nilas in calm water (top) or disks of pancake ice in 
choppy water (top right). 
Individual pieces pile up to form rafts and eventually solidify (lower left). Over time, large 
sheets of ice collide, forming thick pressure ridges along the margins (lower right).
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Arctic sea ice



Seasonal cycle



Sea ice dynamics

• https://youtu.be/Im-v6w5_NFw

https://fesom.de/media/video/

https://youtu.be/Im-v6w5_NFw
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Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).

Energy balance model

Simple models are helpful for understanding of
• Critical parameters
• Concepts of climate
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the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus

have only one dependent variable: the Earth’s near-surface air temperature T.

With the development of computer capacities, simpler models have not disappeared;

on the contrary, a stronger emphasis has been given to the concept of a hierarchy of

models’ as the only way to provide a linkage between theoretical understanding and

the complexity of realistic models (von Storch et al., 1999; Claussen et al., 2002). In

contrast, many important scientific debates in recent years have had their origin in the

use of conceptually simple models (Le Treut et al., 2007; Stocker, 2011), also as a way

to analyze data (Köhler et al., 2010) or complex models (Knorr et al., 2011).

Pioneering work has been done by North (North, 1975a,b, North et al., 1981, 1983)

and these models were applied subsequently (e.g., Ghil, 1976; Su and Hsieh, 1976;

Ghil and Childress, 1987; Short et al., 1991; Stocker et al., 1992). Later the EMBs

were equipped by the hydrological cycle (Chen et al., 1995; Lohmann et al., 1996;

Fanning and Weaver, 1996; Lohmann and Gerdes, 1998) to study the feedbacks in

the atmosphere-ocean-sea ice system. One of the most useful examples of a simple,

but powerful, model is the one-/zero-dimensional energy balance model. As a starting

point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced

(Fig. 1)

(1� ↵)S⇡R2 = 4⇡R2
✏�T

4 (1)

where the left hand side represents the incoming energy from the Sun (size of the disk=

shadow area ⇡R
2) while the right hand side represents the outgoing energy from the

Earth (Fig. 1). T is calculated from the Stefan-Boltzmann law assuming a constant

radiative temperature, S is the solar constant - the incoming solar radiation per unit

area– about 1367Wm
�2, ↵ is the Earth’s average planetary albedo, measured to be

0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8JK�4m�2s�1, and ✏ is the e↵ective emissivity of Earth (about 0.612) (e.g.,

Archer, 2010). The geometrical constant ⇡R2 can be factored out, giving

(1� ↵)S = 4✏�T 4 (2)

Solving for the temperature,

T =
4

s
(1� ↵)S

4✏�
(3)

Since the use of the e↵ective emissivity ✏ in (1) already accounts for the greenhouse

e↵ect we gain an average Earth temperature of 288 K (15�C), very close to the global

temperature observations/reconstructions (Hansen et al., 2011) at 14�C for 1951-1980.

Interestingly, (3) does not contain parameters like the heat capacity of the planet. We

will explore that this is essential for the temperature of the Earth’s climate system.

2. A closer look onto the spatial distribution

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

✏�T
4 = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4)
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where ' and ⇥ are the latitude and longitute, respectively. Integration over the Earth
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giving a similar formula as (3) with the definition for the average T 4.

What we really want is the mean of the temperature T . Therefore, we take the

fourth root of (4):

T =
4

s
(1� ↵)S cos' cos⇥

✏�
⇥ 1[�⇡/2<⇥<⇡/2](⇥) . (6)
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as a function on latitude (Fig. 2). When we integrate this over the latitudes, we obtain
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Therefore, T = 163K is a factor 0.566 lower than 288 K as stated at (1). The standard

EBM in Fig. 1 has imprinted into our thoughts and lectures. We should therefore be

careful and pinpoint the reasons for the failure.

What happens here is that the heat capacity of the Earth is neglected. During

night, the temperature is very low and there is a strong non-linearity of the outgoing

What we really want to know ...
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Figure 2. Latitudinal temperatures of the EBM with zero heat capacity (7) in cyan
(its mean as a dashed line), the global approach (3) as solid black line, and the zonal
and time averaging (11) in red. The dashed brownish curve shows the numerical
solution by taking the zonal mean of (9).
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Figure 2. Latitudinal temperatures of the EBM with zero heat capacity (7) in cyan
(its mean as a dashed line), the global approach (3) as solid black line, and the zonal
and time averaging (11) in red. The dashed brownish curve shows the numerical
solution by taking the zonal mean of (9).
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the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus
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point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced
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Therefore, T = 163K is a factor 0.566 lower than 288 K as stated at (1). The standard

EBM in Fig. 1 has imprinted into our thoughts and lectures. We should therefore be

careful and pinpoint the reasons for the failure.

What happens here is that the heat capacity of the Earth is neglected. During

night, the temperature is very low and there is a strong non-linearity of the outgoing

What is the difference ?



Heat capacity term
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radiation. Furthermore, the Earth is a rapidly rotating object. Equation (6) can be

better used for objects like the Moon or Mercury (Vasavada et al., 1999) as slowly

rotating bodies without significant heat capacity.

3. The heat capacity and fast rotating body

The energy balance shall take the heat capacity into account:

Cp @tT = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) � ✏�T
4 (9)

with Cp representing the heat capacity multiplied with the depth of the atmosphere-

ocean layer (Cp is in the order of 107 � 108JK�1
m

�2). If we consider the zonal mean

and averaged over the diurnal cycle, we can assume that the heat capacity is mainly

given by the ocean. Observational evidence is that the diurnal variation of the ocean

surface is in the order of 0.5-3 K with highest values at favorable conditions of high

insolation and low winds (Stommel, 1969; Anderson et al. 1996; Kawai and Kawamura

2002; Stuart-Menteth et al. 2003; Ward 2006). A significant heat capacity damping

the surface temperatures are furthermore found over ice and soil. The atmospheric

circulation provides an e�cient way to propagate heat along latitudes which is ignored

and is a second order e↵ect (not shown). The energy balance (9) is integrated over the

longitude and over the day
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giving the equilibrium solution
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shown in Fig. 2 as the read line with the mean
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The new solution
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Figure 2. Latitudinal temperatures of the EBM with zero heat capacity (7) in cyan
(its mean as a dashed line), the global approach (3) as solid black line, and the zonal
and time averaging (11) in red. The dashed brownish curve shows the numerical
solution by taking the zonal mean of (9).
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Therefore, T̃ = 285 ⇡ 288 K, very similar as in (1). A numerical solution of (9) is

shown as the brownish dashed line in Fig. 2 where the diurnal cycle has been taken into

account and Cp = C
a
p has been chosen as the atmospheric heat capacity

C
a
p = cpps/g = 1004 JK�1

kg
�1 · 105Pa/(9.81ms

�2) = 1.02 · 107JK�1
m

�2

which is the specific heat at constant pressure cp times the total mass ps/g. ps is the

surface pressure and g the gravity. The temperature T is 286 K, again close to 288 K.

The e↵ect of heat capacity is systematically analyzed in Fig. 3. The temperatures

are relative insensitive for a wide range of Cp. We find a severe drop in temperatures for

heat capacities below 0.01 of the atmospheric heat capacity C
a
p . We find furthermore

a pronounced temperature drop during night for low values of heat capacities and for

long days (e.g. 240 h instead of 24 h) a↵ecting the zonal temperatures (4.5 K colder at

the equator). It is an interesting thought experiment what would happen if the length

of the daylight/night would change. The analysis shows that the e↵ective heat capacity

is of great importance for the temperature, this depends on the atmospheric planetary

boundary layer (how well-mixed with small gradients in the vertical) and the depth of

the mixed layer in the ocean. To make a rough estimate of the involved mixed layer, one

can see that the e↵ective heat capacity of the ocean is time-scale dependent. A di↵usive

heat flux goes down the gradient of temperature and the convergence of this heat flux

drives a ocean temperature tendency:

C
o
p@tT = �@z(k

o
@zT ) (13)

where kv = k
o
/C

o
p is the oceanic vertical eddy di↵usivity in m

2
s
�1 , and C

o
p the oceanic

heat capacity relevant on the specific time scale. The vertical eddy di↵usivity kv can

be estimated from climatological hydrographic data (Olbers et al., 1985; Munk and

Wunsch, 1998) and varies roughly between 10�5 and 10�4
m

2
s
�1 depending on depth

and region. A scale analysis of (13) yields a characteristic depth scale hT through

�T

�t
= kv

�T

hT
�! hT =

q
kv �t (14)

For the diurnal cycle hT is less that half a meter and the heat capacity generally less

than that of the atmosphere. As pointed out by Schwartz (2007), the e↵ective heat

capacity that reflects only that portion of the global heat capacity that is coupled to

the perturbation on the timescale of the perturbation. We discuss the sensitivity of the

system with respect to kv later in the context of a full circulation model.

4. Meridional temperature gradients

Equation (10) shall be the starting point for further investigations. One can easily

include the meriodional heat transport by di↵usion which has been previously used in

one-dimensional EBMs (e.g. Adem, 1965; Sellers, 1969; Budyko, 1969; North, 1975a,b).

In the following we will drop the tilde sign. Using a di↵usion coe�cient k, the meridional
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Figure 3. Temperature depending on Cp when solving (9) numerically. The reference
heat capacity is the atmospheric heat capacity Ca

p = 1.02 · 107JK�1m�2. The climate
is insensitive to changes in heat capacity Cp 2 [0.05 · Ca

p , 2.0 · Ca
p ].
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Therefore, T̃ = 285 ⇡ 288 K, very similar as in (1). A numerical solution of
(9) is shown as the brownish dashed line in Fig. 2 where the diurnal cycle has
been taken into account and Cp = C

a
p has been chosen as the atmospheric

heat capacity

C
a
p = cpps/g = 1004 JK�1

kg
�1 · 105Pa/(9.81ms

�2) = 1.02 · 107JK�1
m

�2

which is the specific heat at constant pressure cp times the total mass ps/g. ps
is the surface pressure and g the gravity. The temperature T is 286 K, again
close to 288 K.

The e↵ect of heat capacity is systematically analyzed in Fig. 3. The tem-
peratures are relative insensitive for a wide range of Cp. We find a severe drop
in temperatures for heat capacities below 0.01 of the atmospheric heat ca-
pacity C

a
p . We find furthermore a pronounced temperature drop during night

for low values of heat capacities and for long days (e.g. 240 h instead of 24
h) a↵ecting the zonal temperatures (4.5 K colder at the equator). It is an
interesting thought experiment what would happen if the length of the day-
light/night would change. The analysis shows that the e↵ective heat capacity
is of great importance for the temperature, this depends on the atmospheric
planetary boundary layer (how well-mixed with small gradients in the vertical)
and the depth of the mixed layer in the ocean. To make a rough estimate of
the involved mixed layer, one can see that the e↵ective heat capacity of the
ocean is time-scale dependent. A di↵usive heat flux goes down the gradient of
temperature and the convergence of this heat flux drives a ocean temperature
tendency:

C
o
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o
@zT ) (13)
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p is the oceanic vertical eddy di↵usivity in m
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the oceanic heat capacity relevant on the specific time scale. The vertical eddy
di↵usivity kv can be estimated from climatological hydrographic data (Olbers
et al. 1985; Munk and Wunsch 1998) and varies roughly between 10�5 and
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For the diurnal cycle hT is less that half a meter and the heat capacity generally
less than that of the atmosphere. As pointed out by Schwartz (2007), the
e↵ective heat capacity that reflects only that portion of the global heat capacity
that is coupled to the perturbation on the timescale of the perturbation. We
discuss the sensitivity of the system with respect to kv later in the context of
a full circulation model.

4 Meridional temperature gradients

Equation (10) shall be the starting point for further investigations. One can
easily include the meriodional heat transport by di↵usion which has been
previously used in one-dimensional EBMs (e.g. Adem, 1965; Sellers, 1969;
Budyko, 1969; North, 1975a,b). In the following we will drop the tilde sign.
Using a di↵usion coe�cient k, the meridional heat transport across a latitude
is HT = �krT . One can solve the EBM

Cp @tT = r ·HT + (1� ↵)
S

⇡
cos' � ✏�T

4
. (15)

numerically. The boundary condition is that the HT at the poles vanish. The
values of k are in the range of earlier studies (North, 1975a,b; Stocker et al.,
1992; Chen et al., 1995; Lohmann et al., 1996). Fig. 4 shows the equilibrium
solutions of (15) using di↵erent values of k (solid lines). The global mean tem-
perature is not a↵ected by the transport term because of the boundary con-
dition with zero heat transport at the poles. The same is true if we introduce
zonal transports because of the cyclic boundary condition in ✓�direction.

Until now, we assumed that the Earth’s axis of rotation were vertical with
respect to the path of its orbit around the Sun. Instead Earth’s axis is tilted
o↵ vertical by about 23.5 degrees. As the Earth orbits the Sun, the tilt causes
one hemisphere to receive more direct sunlight and to have longer days. This
is a redistribution of heat with more solar insolation at the poles and less at
the equator (formally it could be associated to an enhanced meridional heat
transport HT). The resulting temperature is shown as the dotted blue line
in Fig. 4. A spatially constant temperature in (1) can be formally seen as a
system with infinite di↵usion coe�cient k ! 1 (black line in Fig. 4).

The global mean temperatures are not a↵ected by the tilt and the values
are identical to the one calculated in (12). This is true even if we calculate the
seasonal cycle (Berger and Loutre 1991; 1997; Laepple and Lohmann 2009).
However, if we include non-linearities such as the ice-albedo feedback (↵ as a
function of T), the global mean value is changing (Budyko 1969; Sellers 1969;
North et al. 1975a, b), cf. the dashed blue line in Fig. 4. Such model can
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The global mean temperatures are not a↵ected by the tilt and the values
are identical to the one calculated in (12). This is true even if we calculate the
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function of T), the global mean value is changing (Budyko 1969; Sellers 1969;
North et al. 1975a, b), cf. the dashed blue line in Fig. 4. Such model can
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Figure 4. Equilibrium temperature of (15) using di↵erent di↵usion coe�cients. The
blue lines use 1.5 · 106m2/s with no tilt (solid line), a tilt of 23.5� (dotted line), and
as the dashed line a tilt of 23.5� and ice-albedo feedback using the respresentation of
Sellers (1969). Except for the dashed line, the global mean values are identical to the
value calculated in (12). Units are �C.
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heat transport across a latitude is HT = �krT . One can solve the EBM

Cp @tT = r ·HT + (1� ↵)
S

⇡
cos' � ✏�T

4
. (15)

numerically. The boundary condition is that the HT at the poles vanish. The values of k

are in the range of earlier studies (North, 1975a,b; Stocker et al., 1992; Chen et al., 1995;

Lohmann et al., 1996). Fig. 4 shows the equilibrium solutions of (15) using di↵erent

values of k (solid lines). The global mean temperature is not a↵ected by the transport

term because of the boundary condition with zero heat transport at the poles. The

same is true if we introduce zonal transports because of the cyclic boundary condition

in ✓�direction.

Until now, we assumed that the Earth’s axis of rotation were vertical with respect

to the path of its orbit around the Sun. Instead Earth’s axis is tilted o↵ vertical by

about 23.5 degrees. As the Earth orbits the Sun, the tilt causes one hemisphere to

receive more direct sunlight and to have longer days. This is a redistribution of heat

with more solar insolation at the poles and less at the equator (formally it could be

associated to an enhanced meridional heat transport HT). The resulting temperature is

shown as the dotted blue line in Fig. 4. A spatially constant temperature in (1) can be

formally seen as a system with infinite di↵usion coe�cient k ! 1 (black line in Fig.

4).

The global mean temperatures are not a↵ected by the tilt and the values are

identical to the one calculated in (12). This is true even if we calculate the seasonal

cycle (Berger and Loutre, 1991; 1997; Laepple and Lohmann, 2009). However, if we

include non-linearities such as the ice-albedo feedback (↵ as a function of T), the global

mean value is changing (Budyko, 1969; Sellers, 1969; North et al., 1975a,b), cf. the

dashed blue line in Fig. 4. Such model can be improved by including an explicit spatial

pattern with a seasonal cycle to study the long-term e↵ects of climate to external forcing

(Adem, 1981; North et al., 1983) or by adding noise mimicking the e↵ect of short-term

features on the long-term climate (Hasselmann, 1976; Lemke, 1977; Lohmann, 2018).

5. Meridional temperature gradient in a complex model

Energy balance models have been used to diagose the temperatures on the Earth when

applying complex circulation models (e.g., Knorr et al., 2011) or data (e.g., Köhler

et al., 2010; Stap et al., 2018). For the past, a strong warming at high latitudes is

reconstructed for the Pliocene, Miocene, Eocene periods (Markwick, 1994; Wolfe, 1994;

Sloan and Rea 1996; Huber et al., 2000; Shellito et al. 2003; Tripati et al., 2003;

Mosbrugger et al. 2005; Utescher and Mosbrugger, 2007). In the following this period is

called Paleogene/Neogene, which covers the period 3·106�65·106 years ago. Until now, it
is a conundrum that the modelled high latitudes are not as warm as the reconstructions

(e.g., Sloan and Rea 1996; Huber et al., 2000; Mosbrugger et al. 2005; Knorr et al.,

2011; Dowset et al., 2013). Inspired by Fig. 3, we may think of a climate system

having a higher net heat capacity Cp producing flat temperature gradients. Another



EBM revisited
EBMs crucial tool in climate research, especially because they
describe the processes essential for the genesis of the global 
climate (confirmed by complex climate models)

EBMs conceptual tools, due to the essentials ”scientific
understanding” : radiation balance on the ground and the
absorption in the atmosphere are the essential factors, 
independent of the size of the Earth and the thermal 
characteristics, but depends on the albedo, emissivity and solar 
constant. 

Here: length of the day, effective heat capacity
Ironically, the global mean in the revised EBM is very close to
the original proposed value



Black dots show ϵσT4. The blue line shows the linear fit for the range of
temperatures 0 to 407 K. The thin red line shows the linear fit for temperatures
between −50 to 30 ∘C (range is shown as vertical dotted lines). The thick red line
shows Budyko's (1969) linearization with A=203.3 W m−2 and B=2.09 W m−2 ∘C−1.

The regression coefficients for the blue line
are A=321.4 W m−2 and B=1.88 W m−2 ∘C−1, whereas for the thin red line they
are A=199.5 W m−2 and B=2.56 W m−2 ∘C−1.
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Exercise 1: EBM
D∗=Wm−2K−1  Diffusivity for heat transport: 0.6
A=Wm−2 OLR:193
B=Wm−2K−1 OLR temperature dependence: 2.1
cw=Wyrm−2K−1 Ocean mixed layer heat capacity: 9.8
S0=Wm−2 Insolation at equator: 420
S2=Wm−2 Insolation spatial dependence: 240
A0 Ice-free coalbedo at equator: 0.7
A2 Ice-free coalbedo spatial dependence: 0.1
Ai Coalbedo when there is sea ice: 0.4
Wm−2 Radiative forcing: 0
γ Gamma: 1

1) What will happen if the CO2 content in the atmosphere is doubled?  Radiative forcing= 4 Wm-2
2) What will happen if the factor γ is 1% higher/lower in the long-wave radiation?
3) Describe the effect if the diffusivity is enhanced by a factor of 2!
4) The coalbedo of sea ice can vary between 0.3 and 0.4. Describe the effect when varying the value!
5) Write down the numerical scheme (time stepping etc. from the source code) !
6) Show the evolution at one specific latitude and discuss it!

https://paleodyn.uni-bremen.de/study/MES/ebm/
Upper model

https://paleodyn.uni-bremen.de/study/ebm/


Exercise 2:  Aquaplanet EBM with
seasonal cycle

1) What will happen if the CO2 content in the atmosphere is doubled?  Radiative forcing= 4 W/m2= 
lowering of A 
2) Discuss the sea ice evolution during the year !
3) Reduce and enhance the sea ice thermal conductivity by 20% mimiking more /less snow on top of sea
ice !
4) Write down the numerical scheme (time stepping) !

https://paleodyn.uni-bremen.de/study/MES/ebm/
Lower model

https://paleodyn.uni-bremen.de/study/ebm/

