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Todays lecture

« Earth System Models
e Seaice

e Carbon, Radiocarbon
* Tracers in the Sea

* Vegetation & Ecosystem models
* Daisy World

* Practicals: Daisy World, veg dynamics, stochastic dynamics



Model Categories

>

Conceptual
Models

Comprehensive
Models

Earth System Components

Detail of Description, Processes



AT

',,;

traditional
GCMs

Earth System
Models



CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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thin sheets of smooth nilas in calm water dISkS facake ice in chppy waer

Last week Sea ice

rafts and eventually solidify Over time, large sheets of ice collide,
formlng thlck pressure ridges
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Arctic sea ice
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Energy balance with sea ice

A+B(T-T,)

equator
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FIG. 1. Schematic of the global model of climate and sea ice described in section 2, showing the
fluxes included in the model: insolation (yellow), OLR (red), horizontal heat transport (green),
ocean heating (dark blue), and vertical heat flux through the ice (blue). The temperature of the ice
is given by T at the surface and 7, at the base.

How Climate Model Complexity Influences Sea Ice Stability
TILL J. W. WAGNER AND IAN EISENMAN

JOURNAL OF CLIMATE

VOLUME 28
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tracer: C-14
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Ocean circulation models
tracers in the sea

Continental shelf

Deep-sea floor




Ocean circulation models
tracers in the sea
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a perfect time tracer: C-14



2D Staggered grids: Arakawa
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https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780124608177
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ESM simulations of C-14
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The Carbon Cycle

Carbon 1s the key element for living things.

Carbon 1n the atmosphere and dissolved in the
oceans as part of the imnorganic CO,

CO, is recycled into more complex organic
substances through photosynthesis.



« Photosynthesis — process by which green plants
make their own food from water, carbon dioxide,
and light energy, producing sugar (stored energy)
and oxygen (a by-product).

* The general equation for photosynthesis is:
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Human Impact

1. Deforestation — cutting down forests has
reduced the amount of plants available for
photosynthesis, which means that less CO,
can be removed from the atmosphere.

2. Burning (combustion) of fossil fuels —
gasoline, coal, and natural gas contain carbon
and when burned, they release CO, 1nto the
Earth’s lower atmosphere. There 1s concern
that the increase in CO, will lead to global
warming.
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~ Of concern to all!
A tree is worth

$193,250

according to Professor T.M.Das of the
University of Calcutta. A tree living
for 50 years will generate $31.250 worth
of oxygen, provide $62.000 worth of air
pollution control, control soil erosion and
increase soil fertility to the tune of $31,250,
recycle $37.500 worth of water and provide
a home for animals worth $31.250. This ..
figure does not include the value of fruits,
lumber or beauty derived from trees.
Just another sensible reason to take
care of our forests.

From Update Forestry
Michigan State University

THE VALUE OF ATREE

Z\

) SAVE OUR MOTHER EARTH €

!



Population Growth (ideal conditions) .

The larger the
population gets, the
faster the population

SrOwS.

o Population will increase rapidly
1n size

Population

o The larger a population gets, the
faster it increases

Population is growing slowly

Time



Population

Population rate decreases

The larger the population
gets, the less resources
there are. The population
cannot increase anymore.

Population rate increases

Time




Limiting Factors

* The environment provides factors that prevent
populations from attaining their biotic
potential. Any resource that 1s 1n short supply
1s a limiting factor such as food, water,
territory, and the presence of pollutants.



Number of Individuals

Once the carrying capacity has been reached,
the population size will increase and decrease

around that limit.

Carrying

capacity

Drawing a line through the
middle of the fluctuations

(changes) represents the
carrying capacity for that
species.

Time
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Dynamical vegetation models

* regional climate conditions and atmospheric CO,

e vegetation composition and cover in terms of major species or
plant functional types (PFTs), biomass and soil organic
matter carbon pools, leaf area index (LAI), net primary

production (NPP), net ecosystem carbon balance, carbon
emissions from wildfires,

Furthermore: managed land, methane emissions, and permafrost.

http://www.globalcarbonatlas.org/en/content/land-models



The Lund-Potsdam-Jena Dynamic Global Vegetation Model (DGVM)
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Typical output of

a vegetation model
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Daisy World & the Gaia Hypothesis

'V v ‘IA!

VA

Sunlight reflects off different color daisies.
Black daisies absorb most light, turning it into heat.
White daisies reflect most light, and stay cooler.


https://paleodyn.uni-bremen.de/study/MES/MES_11.html

Daisy World & the Gaia Hypothesis

Sunlight reflects off different color daisies.
Black daisies absorb most light, turning it into heat.
White daisies reflect most light, and stay cooler.

By the mix of white and black daisies and barren ground, Daisy World
strives to keep its temperatures in the range that allows daisies to live.


https://paleodyn.uni-bremen.de/study/MES/MES_11.html

Daisy World & the Gaia Hypothesis

Sunlight reflects off different color daisies.
Black daisies absorb most light, turning it into heat.
White daisies reflect most light, and stay cooler.

By the mix of white and black daisies and barren ground, Daisy World
strives to keep its temperatures in the range that allows daisies to live.

When the world is too cool for black daisies to warm it, or too hot for
white daisies to cool it, the planet is barren.


https://paleodyn.uni-bremen.de/study/MES/MES_11.html

Growth Rate

How the model works

Formulas
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Evolution of area fractions of white (a,) and black (a,) daisies
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Evolution of area fractions of white (a,) and black (a,) daisies
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Exercise I

1.Run Daisy World with the the Daisies - black and white. Notice for what range
of luminosity the daisies manage to control the planet temperature.

2.Do you think control would be better if you set the low and high albedos (for
black and white) to a wider spread?

3.You will notice that the living area (“total daisies”) doesn’t exceed 70%. The
deathrate is set to 0.3, which may explain the living percentage being no more
than 0.7. Play with the deathrate parameter. What does the deathrate do to the
daisies’ ability to control their environment’s temperature? To the species mix?
4.What is the influence of the optimal growth temperature? Please vary the
numbers and describe the consequence !

5. at http://www.climate.be/textbook/daisyworld.html

» https://paleodyn.uni-bremen.de/study/MES/MES 11.html


http://www.climate.be/textbook/daisyworld.html
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Exercise IT

1) Describe the vegetation dynamics
for the Holocene (8000 years ago)!
Which evidences?

2) Which feedbacks are acting in the
system ?

3) Is it possible to generate a green
Sahara and Sinai under present
conditions?

» https://paleodyn.uni-bremen.de/study/MES/MES 11.html


https://paleodyn.uni-bremen.de/gl/Sinai_climate.html

Vegetation Dynamics

A greener and cooler Sinai can bring more moisture to the Sinai region influencing
the larger weather systems in the Mediterranean realm.



We envision a holistic, multidimensional, symbiotic approach for
ecological regeneration in the Sinai. There is much to study and to

do. We have identified five main steps for development:

Restore The Restore The Reuse Marine
Lagoon Wetlands Sediments

Regreen The Restore The
Desert Watershed

https://www.greenthesinai.com/how



Paleo-evidence for an enhancement rainfall from Mediterranean sources,

a regional monsoon-type circulation induced by increased land-sea temperature contrast
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Fig. 3. Timing of the early- to mid-Holocene humid interval in the northern Red Sea comFared with
proxy records from the eastern Mediterranean, southern Oman, and West Africa. (A) 8'®O record
of G. ruber (white) of the southeast Aegean Sea core LC21 (29), marking the enhanced freshwater
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’ ’ Original data in (A) to (D) have been smoothed by simple moving averaging (bold lines). Vertical
bars emphasize the major humid to arid transition in the various records.



The Loess plateau in northern China

Within 20 years, the deserts of the Loess plateau became green valleys and
productive farmland



Exercise ITT

1.Simulate the velocity evolution of one particle which is determined by the
following stochastic dx/dt = -bx + k\W(t)

2.What happens if you change the timestep ?

3.Simulate the ensemble of multiple particles and plot the time evolution of
the v-distribution and compare with the diffusion equation !

4.Test the ergodic theorem: time average is equal ensemble average !

5.Have a look at the more complex 2D diffusion equation program. When are

the two colors are mixed?

https://paleodyn.uni-bremen.de/study/MES/MES 11 .htm_,



https://paleodyn.uni-bremen.de/study/MES/MES_11b.html

