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Todays lecture

Earth System Models
Vegetation & Ecosystem models
Practicals: Daisy World, vegetation dynamics

Tracers 1n the Sea (Carbon, Radiocarbon)
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CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Human Impact

1. Deforestation — cutting down forests has
reduced the amount of plants available for
photosynthesis, which means that less CO,
can be removed from the atmosphere.

2. Burning (combustion) of fossil fuels —
gasoline, coal, and natural gas contain carbon
and when burned, they release CO, 1nto the
Earth’s lower atmosphere. There 1s concern
that the increase in CO, will lead to global
warming.




Population Growth (ideal conditions) .

The larger the
population gets, the
faster the population

SrOwS.

o Population will increase rapidly
1n size

Population

o The larger a population gets, the
faster it increases

Population is growing slowly

Time



Population

Population rate decreases

The larger the population
gets, the less resources
there are. The population
cannot increase anymore.

Population rate increases

Time




Limiting Factors

* The environment provides factors that prevent
populations from attaining their biotic
potential. Any resource that 1s 1n short supply
1s a limiting factor such as food, water,
territory, and the presence of pollutants.



Number of Individuals

Once the carrying capacity has been reached,
the population size will increase and decrease

around that limit.

Carrying

capacity

Drawing a line through the
middle of the fluctuations

(changes) represents the
carrying capacity for that
species.

Time




Dynamical vegetation models

* regional climate conditions and atmospheric CO,

e vegetation composition and cover in terms of major species or
plant functional types (PFTs), biomass and soil organic
matter carbon pools, leaf area index (LAI), net primary

production (NPP), net ecosystem carbon balance, carbon
emissions from wildfires,

Furthermore: managed land, methane emissions, and permafrost.

http://www.globalcarbonatlas.org/en/content/land-models



The Lund-Potsdam-Jena Dynamic Global Vegetation Model (DGVM)
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Similar concept :

CARAIB
Dynamic Vegetation Model
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Typical output of

a vegetation model
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Daisy World & the Gaia Hypothesis

Sunlight reflects off different color daisies.
Black daisies absorb most light, turning it into heat.

White daisies reflect most light, and stay cooler.

https://paleodyn.uni-bremen.de/study/MES/MES Vegetation 2023.html



https://paleodyn.uni-bremen.de/study/MES/MES_Vegetation_2022.html

Daisy World & the Gaia Hypothesis

Sunlight reflects off different color daisies.
Black daisies absorb most light, turning it into heat.
White daisies reflect most light, and stay cooler.

By the mix of white and black daisies and barren ground, Daisy World
strives to keep its temperatures in the range that allows daisies to live.

https://paleodyn.uni-bremen.de/study/MES/MES Vegetation 2023.html



https://paleodyn.uni-bremen.de/study/MES/MES_Vegetation_2022.html

Daisy World & the Gaia Hypothesis

Sunlight reflects off different color daisies.
Black daisies absorb most light, turning it into heat.
White daisies reflect most light, and stay cooler.

By the mix of white and black daisies and barren ground, Daisy World
strives to keep its temperatures in the range that allows daisies to live.

When the world is too cool for black daisies to warm it, or too hot for
white daisies to cool it, the planet is barren.



Growth Rate

How the model works

Formulas
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Evolution of area fractions of white (a,) and black (a,) daisies
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Evolution of area fractions of white (a,) and black (a,) daisies
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Evolution of area fractions of white (a,) and black (a,) daisies
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Exercise I

1.Run Daisy World with the the Daisies - black and white. Notice for what range
of luminosity the daisies manage to control the planet temperature.

2.Do you think control would be better if you set the low and high albedos (for
black and white) to a wider spread?

3.You will notice that the living area (“total daisies”) doesn’t exceed 70%. The
deathrate is set to 0.3, which may explain the living percentage being no more
than 0.7. Play with the deathrate parameter. What does the deathrate do to the
daisies’ ability to control their environment’s temperature? To the species mix?
4.What is the influence of the optimal growth temperature? Please vary the
numbers and describe the consequence !

5. at http://www.climate.be/textbook/daisyworld.html

https://paleodyn.uni-bremen.de/study/MES/MES Vegetation 2023.html



http://www.climate.be/textbook/daisyworld.html
https://paleodyn.uni-bremen.de/study/MES/MES_Vegetation_2022.html
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Exercise IT

1) Describe the vegetation dynamics
for the Holocene (8000 years ago)!
Which evidences?

2) Which feedbacks are acting in the
system ?

3) Is it possible to generate a green
Sahara and Sinai under present
conditions?

https://paleodyn.uni-bremen.de/study/MES/MES Vegetation 2023.html



https://paleodyn.uni-bremen.de/gl/Sinai_climate.html
https://paleodyn.uni-bremen.de/gl/Sinai_climate.html
https://paleodyn.uni-bremen.de/study/MES/MES_Vegetation_2022.html

Vegetation Dynamics

{

A greener and cooler Sinai can bring more moisture to the Sinai region influencing
the larger weather systems in the Mediterranean realm.



We envision a holistic, multidimensional, symbiotic approach for
ecological regeneration in the Sinai. There is much to study and to

do. We have identified five main steps for development:

Restore The Restore The Reuse Marine
Lagoon Wetlands Sediments

Regreen The Restore The
Desert Watershed

https://www.greenthesinai.com/how



Paleo-evidence for an enhancement rainfall from Mediterranean sources,

a regional monsoon-type circulation induced by increased land-sea temperature contrast
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The Loess plateau in northern China

Within 20 years, the deserts of the Loess plateau became green valleys and
productive farmland
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tracer: C-14
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Ocean circulation models
tracers in the sea

Continental shelf

Deep-sea floor




Ocean circulation models
tracers in the sea
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Climate
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Climate-Radiocarbon Dynamics

Carbon D;|C'] = Sources - Sinks = Q

Radiocarbon D:|RC| = —ARC + R,Q
Ratio R = —-

Ratio can be treated as a radio-conservative tracer



14C in the surface ocean: Reconstructions
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14C in the surface ocean: Simulation
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14C in the surface ocean: Simulations
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2D Staggered grids: Arakawa
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https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780124608177

The Carbon Cycle

Carbon 1s the key element for living things.

Carbon 1n the atmosphere and dissolved in the
oceans as part of the imnorganic CO,

CO, is recycled into more complex organic
substances through photosynthesis.



« Photosynthesis — process by which green plants
make their own food from water, carbon dioxide,
and light energy, producing sugar (stored energy)
and oxygen (a by-product).

* The general equation for photosynthesis is:

Energy
6CO, + 6H,0 > C.H,,0, + 60,
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