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5 Random Systems

So far we have been studying deterministic systems. But the world around us is not
very deterministic; there are fluctuations in everything from a cup of coffee to the global
economy. In principle, these could be described from first principles, accounting for the
actions of every molecule in the cup or every person on the planet. This is hopeless of
course, for even if we could determine the initial condition of the whole system, any
tiny errors we made would rapidly grow so that our model would no longer be exact.
Even if that wasn’t a problem, such an enormous model would offer little insight beyond
observing the original system.

Fortunately, random (or stochastic) systems can be as simple to understand as deter-
ministic systems, if we’re careful to ask the right questions. It’s a mistake to try to guess
the value of the toss of a fair coin, because it is completely uncertain. But we can quite
precisely answer questions about the likelihood of events such as seeing a particular string
of heads and tails, and easily model a typical sequence of tosses. In fact, simple stochastic
systems are as straightforward as simple deterministic ones. Just as deterministic sys-
tems get harder to understand as they become more complex, stochastic systems become
harder to understand as they become less ideally random, and approximation methods
are needed to describe this deviation.

Different problems lie at different ends of this continuum. For a bridge builder, the
bridge had better remain standing with near-certain probability, so the uncertainty is
~ 1 — ¢, where ¢ is very small. For a financial trader, markets are nearly random, and
so any (legal) trading strategy must start with the assuption of near-random uncertainty.
There, the probabilities are ~ 0.5 + e. The representations appropriate to 1 — € are
different from the ones aimed at 0.5 + ¢, but they do share the central role of variables
that are random rather than deterministic.

Our first step will be to look at how to describe the properties of a random variable,
and the inter-relationships among a collection of them. Then we will turn to stochastic
processes, which are random systems that evolve in time. The chapter closes by looking
at algorithms for generating random numbers.

51 RANDOM VARIABLES

The most important concept in all of stochastic systems is the idea of a random variable.
This is a fluctuating quantity, such as the hiss from an amplifier, that is described by
governing equations in terms of probability distributions. The crucial distinction between

44



Random Variables 45

random variables and ordinary deterministic variables is that it is not possible to predict
the value of a random variable, but it is possible to predict the probability for seeing a
given event in terms of the random variable (such as the likelihood of observing a value
in a particular range, or the functional form of the power spectrum). An ensemble of
identical stochastic processes will generate different values for the random variables, but
each member of the ensemble (or realization) will obey these same distribution laws.
It is important to distinguish between the random variables that appear in distribution
functions and the particular values that are obtained in a single realization of a stochastic
process by drawing from the distribution.

The simplest random system consists of values x taken from a distribution p(z). For
example, in a coin toss z can be heads or tails, and p(heads) = p(tails) = 1/2. In this
case x takes on discrete values; it is also possible for a random variable to come from a
continuous distribution. For a continuous variable, p(z) dz is the probability to observe
a value between x and x + dz, and more generally

b
/ p(x) dz (5.1)

is the probability to observe x between a and b. For a continuous variable, remember that
p(x) must always appear with a dz if you want to make a statement about the likelihood
of an observable event — a common mistake is to try to evaluate the likelihood of an
event by using the value of the density p(x) alone without integrating it over an interval.
That is meaningless; among many problems it can easily lead to the impossible result of
probabilities greater than 1.

Now consider a string (x1, Z2, . .., £n) of N z’s drawn from a distribution p(z) (such
as many coin tosses). The average value (or expectation value) of a function f(zx) is
defined by

1 N
(f@)) = Jim — 2; f:) (52)

/_ 1) pla) dz

(in the statistical literature, the expectation is usually written E[ f(x)] instead of ( f(x))).
The equivalence of these two equations can be taken as an empirical definition of the
probability distribution p(z). This is for a continuous variable; here and throughout this
chapter, for a discrete variable the integral is replaced by a sum over the allowed values.
If p(z) is not defined from —oc to oo then the integral extends over the values for which
it is defined (this is called the support). A trivial example of an expectation value is

oo

<1)=/ pz)dz =1 (5.3)

—Oo0

(since probability distributions must be normalized). An important expectation is the
mean value

Z=(x)= /00 zp(x)dz . (5.4)

~ 00

The mean value might never actually occur (for example p(x) might be a bimodal dis-
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tribution with two peaks that vanish at p(Z)). Therefore, another useful quantity is the
value of x at which p(x) is 2 maximum, the maximum likelihood value.

The mean value tells us nothing about how big the fluctuations in x are around it. A
convenient way to measure this is by the variance o2, defined to be the average value of
the square of the deviation around the mean

%) — (z)? (5.5)

(remember that Z = (z) is just a constant). The square root of the variance is called the
standard deviation o,. To calculate the variance, we need to know the mean value, and
the second moment

(z?) = / b 2 p(x)dz . (5.6)

—00

It is similarly possible to define the higher-order moments (z").

5.1.1 Joint Distributions

Now let’s consider two random variables x and y, such as the result from throwing a pair
of dice, that are specified by a joint density p(x, y). The expected value of a function that
depends on both z and y is

vew=[ [ fevpevddy 6.)
p(x, y) must be normalized, so that
/00 /oo px,y)dedy=1 . (5.8)
It must also be normalized with respect to each variable, so that
W)= [ paydy (59)
and
W= [ pends (5.10)

Integrating a variable out of a joint distribution is called marginalizing over the variable.

For joint random variables a very important quantity is p(z|y) (“the probability of
given y”). This is the probability of seeing a particular value of x if we already know the
value of y, and is defined by Bayes’ rule

_ () G.11)

x|y @
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which takes the joint probability and divides out from it the known scalar probability.
This is easily extended to combinations of more variables,

p(x,y, 2) = p(xly, 2) p(y, 2)
= p(zly, 2) p(ylz) p(2)
=p(x,y|2) p(2) (5.12)

manipulations that will recur in later chapters.

If x and y are independent, p(x,y) = p(x) p(y). The probability of seeing two in-
dependent events is the product of the probabilities of seeing each alone. For inde-
pendent variables, the conditional distribution will then depend on just one variable,
p(z|y) = p(x). This provides a convenient way to remember the form of Bayes’ rule,
because for independent variables p(z|y) = p(x)p(y)/p(y) = p(x). For uncorrelated vari-
ables, (zy) = (z)(y). Independent variables are always uncorrelated, but the converse
need not be true (although it often is).

Bayes’ rule has an almost mystical importance to the (frequently vocal) community
of Bayesians, who object to any distribution that is not conditional. Equation (5.2)
represents a frequentist viewpoint, in which probabilites are defined by observed fractions
of events. If you are told that the probability of flipping a coin and seeing a head is 50%,
you can perform a series of trials to check that. But, if you’re told that the probability
of rain tomorrow is 50%, you can’t check that in the same way. The day will happen
only once, so it doesn’t make sense to discuss an ensemble of tomorrows. This kind of
probability is really a conclusion drawn from a collection of models and prior beliefs. Since
you almost always believe something, when you announce to the world p(observation),
you are really saying p(observation|prior beliefs). From Bayes’ rule, we know that these
are related by

p(observation, prior beliefs)

i . liefs) =
p(observation|prior beliefs) p(prior belicfs)

_ p(prior beliefs|observation) p(observation)
p(prior beliefs)

(5.13)

A term p(prior beliefs) is called a prior, and no well-equipped Bayesian would be caught
without one. While this insistence can be dogmatic, it has helped guide many people
to recognize and clearly state their procedure for handling advance knowledge about a
system and how it gets updated based on experience. We’ll have much more to say about
this in Chapter 10.

To work with random variables we must understand how their distributions change
when they are transformed in mathematical expressions. First, if we know a distribution
p(z), and are given a change of coordinates y(x), then what is the distribution p(y)? This
is easily found by remembering that probabilities are defined in terms of the value of the
distribution at a point times a differential element, and equating these:

p(z) |dz| = p(y) |dy|
d
= p(x) = p(y) }d—iy - (5.14)
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In higher dimensions, the transformation of a distribution is done by multiplying it by the
Facobian, the determinant of the matrix of partial derivatives of the change of coordinates.

If we take p(y) = 1 in the unit interval and integrate both sides of equation (5.14), this
relationship has a useful implication

¥ T '
/ p(z') dz’ = / 1 &) 4
0 0 da:

P(z) = y(z) . (5.15)

This means that if we choose the transformation y(x) to be the integral P(zx) of a given
distribution p(x) (P is called the cumulative distribution), and pick random values of
y from a uniform distribution, then the corresponding values of = will be distributed
according to p.

The next question is how to combine random variables. The simplest operation is
adding two independent random variables, z; drawn from p;, and x, drawn from p,, to
create a new random variable y = z; + z,. To find the probability distribution p(y) for
1y, we must add up the probabilities for each of the different ways that z; and x; can add
up to that value of y. The probability of seeing a particular pair of x; and x;, is given by
the product of their probabilities, and so integrating we see that

p(y) = / pi(x)p2(y — ) dx

—00

= pi(z) * pa(z) - (5.16)

The probability distribution for the sum of two random variables is the convolution of
the individual distributions. Now consider the average of IV variables

_ml+x2+...+xN
Yn N

that are independent and identically distributed (often abbreviated as zid), and let’s look
at what happens as N — oco. The distribution of y is equal to the distribution of x
convolved with itself N times, and since taking a Fourier transform turns convolution
into multiplication, the Fourier transform of the distribution of y is equal to the product
of the N transforms of the distribution of x. This suggests an important role for Fourier
transforms in studying random processes.

(5.17)

5.1.2 Characteristic Functions

The Fourier transform of a probability distribution is called the characteristic function,
and is equal to the expectation value of the complex exponential

x
(ethey = / e*rp(x) de . (5.18)
—00
For a multivariate distribution, the characteristic function is

(eiF%) = /~ Z /~ Z eFEp(E) dE (5.19)
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Now let’s look at the characteristic function for the deviation of ¢y, the average of N iid
random numbers i, ..., Zy, from the average value Z:

<eik(yN—:i:)> = < ik(zl+zz+..-+zN—-N:i:)/N>
< ik[(z1—z)+- +(zN—-T)]/N>

1.k(z—-z)/N)

(e
{1 Be-ope0(2)

klo? K
T + N
e O (Ns)]

e HoLN (5.20)

In deriving this we have used the fact that the x; are independent and identically dis-
tributed, and done a Taylor expansion around the average value. The last line follows
because

1N
. A A
lim_ [1 N] e (5.21)
(which can be verified by comparing the Taylor series of both sides), and we can neglect
higher-order terms in the limit N — oo. To find the probability distribution for y we

now take the inverse transform

o0
p(yn — ) = —/ e~ KoL/IN o~ik(y—2) g
—00

N .
= /___Zﬂaze-N(yN~z)’/lai ) (5.22)

Something remarkable has happened: in the limit N — oo, the sum of N variables ap-
proaches a Gaussian distribution, independent of the distribution of the variables! This
is called the Central Limit Theorem, and explains why Gaussians are so important in
studying random processes. The Gaussian distribution is also called the normal distri-
bution, because it is so, well, normal. Since the standard deviation is o,/ VN, which
vanishes as N — oo, equation (5.22) also contains the Law of Large Numbers: the
average of a large number of random variables approaches the mean, independent of the
distribution.

The characteristic function takes on an interesting form if the complex exponential is
expanded in a power series:

<e1.l_c.f> - /ezl;f p(j') dz

o Sl o PP

n1=0 n;=0 ng=0 TL :

This provides a relationship between the moments of a distribution and the distribution
itself (via its Fourier transform). For this reason, the characteristic function is also called
the moment generating function. If the characteristic function is known, the moments
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can be found by taking derivatives of the appropriate order and evaluating at & = 0 (only
one term will be nonzero).

Another important object is the logarithm of the characteristic function. If we choose
to write this as a power series in k of the form (for the 1D case)

log<e”°’)=n§=:l(zm) Co (5.24)

this defines the cumulants C,, (note that the sum starts at n = 1 because log 1 = 0 and so
there is no constant term). The cumulants can be found by comparing this to the power
series expansion of the characteristic function,

exp (Z (zs')" Cn> = Z %(m") , (5.25)

n=1 n=0

expanding the exponential as
=l+z+ z* + z +
—_— x —_— —_— .. s
2 6
and grouping terms by order of k. The cumulants have an interesting connections to
Gaussianity (Problem 5.1).

(5.26)

52 STOCHASTIC PROCESSES

It is now time for time to appear in our discussion of random systems. When it does,
this becomes the study of stochastic processes. We will look at two ways to bring in time:
the evolution of probability distributions for variables correlated in time, and stochastic
differential equations.

If z(t) is a time-dependent random variable, its Fourier transform

T2
X@)= lim e y(t) dt (5.27)
T— 00 ~T/2
is also a random variable but its power spectral density S(v) is not:
S@) = (IXW)I") = (X@)X ") (5.28)
1 (T2 A
= lim — / e?™ix(t) dt / e 2™ p(t') dt’
T—oo T J_1p2 TN

(where X* is the complex conjugate of X, replacing ¢ with —¢). The inverse Fourier
transform of the power spectral density has an interesting form,

/ S(V)e—-ilmn' dv

/oo <X(1/)X*(1/)> —i2rvT dv

) T/2 ) , .
/ / 1.27r1/tx(t) dt/ e—-1.21r1/t x(t’) dt/ e—-1,27r1/7' dv
T—oo T T2 -T2

n
5
[ =
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L (T e
lim —/ / / ™= dy x(t)x(t’) dt dt’
Sam I (®z(t')
T2 TN
lim — / / 8(t — t' — T)x(t)x(t') dt dt’
T—ooT J Tt

T/2
lim T / z(t)x(t — 1) dt

T—o0 -T2
= (z(t)z(t — 7)) (5.29)
found by using the Fourier transform of a delta function
/ ey dt=1 = §(t) = / ™t dt | (5.30)

where the delta function is defined by
| f@p o0 o= fan) (5.31)

This is the Wiener—Khinchin theorem. It relates the spectrum of a random process to
its autocovariance function, or, if it is normalized by the variance, the autocorrelation
function (which features prominently in time series analysis, Chapter 16).

5.2.1 Distribution Evolution Equations

A natural way to describe a stochastic process is in terms of the probability to see a sample
value z at a time ¢ (written x;) given a history of earlier values

x|z, Toyy o nl) (5.32)

Given starting values for x this determines the probability distribution of the future
values. If the distribution depends only on the time differences and not on the absolute
time,

p(xtlxt—-ﬂ y Lt—gyy e s ) s (533)

then the process is said to be stationary (sometimes qualified by calling it narrow-sense
or strict stationarity). A more modest definition asks only that the means and covariances
of a process be independent of time, in which case the process is said to be weak or
wide-sense stationary.

If the conditional distribution is limited to a finite history

Tt| Tty Ttryy e vy Tty ) (5.34)
this is said to be an Nth-order Markov process. If it depends on just the previous value
P(Te|T2r) (5.35)

it is simply called a Markov process, and if = and ¢ are discrete variables
P(ze|Te-1) (5.36)

it becomes a Markov Chain. As with ODEs, an Nth-order Markov process for a scalar
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variable can always be converted to a first-order Markov process in an N-dimensional
variable.

Given the conditional distribution for one time step p(x:|x;—,) we can find the dis-
tribution two time steps ahead p(x1+,|z:_,) by adding up the probabilities for all of the
ways to get from x;__, t0 Z1+, through the intermediate value x;. The probability for each
possible path is the product of the probability to get from x;_, to x; times the probability
to go from z; to x44.. For a discrete system this is a sum, and for a continuous system
it is the integral

oo

P(Tter|Te—r) =/ PTrer|Te) P(Te|Te—r) dze . (5.37)

— 00

This is called the Chapman—Kolmogorov equation. It can be rewritten by multiplying
both sides by p(x;.) and then integrating over z;_:

DZear|T1r) P@er) = / DTear|2) P@ilTemr) P(E1-r) da

P Ttar, Tpor) = / P(Tter|T) P(24y T2—7) dy
Paer) = [ plaracla) o) do,
= / PZter, ) dzy (5.38)
For a Markov chain with N states = (1,..., N) this becomes
N
P(@e1) = Y P(@rerlze) pae) (5.39)

=1
If we define an N-component vector of the state probabilities 7; = {p(z: = 1),...,p(x; =

N)}, and a matrix of transition probabilities P;; = p(z:+1 = i|z; = j), then the update
for all of the states can be written as

P =P-pi
= Pran = P" Py . (5.40)
The powers of P hence determine the evolution; in particular, if it’s possible to get from
every state to every other state then the system is said to be ergodic [Reichl, 1984].

It’s easy to understand what a Markov model can do. After all, equation (5.40) is a
simple linear first-order finite difference equation (Section 2.5). If P has eigenvectors ;
with eigenvalues );, and the starting distribution is written in terms of the eigenvectors
as

R=Y b, (5.41)

then
Deen = P" Z ;U
i
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LY

Figure 5.1. 2D Brownian motion.

One of the earliest uses of the Chapman—Kolmogorov equation was in the context of
Byownian motion. When the Scottish botanist Robert Brown in 1827 used a microscope
to look at pollen grains suspended in a solution, he saw them move in a path like the
one shown in Figure 5.1. While he originally thought this was a sign of life, it was
of course due to the fluctuating impacts of the solvent molecules on the pollen grain.
This was a significant piece of evidence for the atomic theory of matter, and in 1905
Einstein developed a quantitative description of Brownian motion that could predict the
distribution for how far a particle would travel in a given time.

For 1D Brownian motion (the generalization from 1D to higher dimensions is straight-
forward), let f(z,t) dx be the probability to find the particle between x and x + dx at
time ¢. Because it is a probability, f must be normalized, ffooo f(z,t) dz = 1. Brownian
motion arises from the many impacts of the fluid molecules on the particle; let 7 be a
time that is long compared to these impacts, but short compared to the time for macro-
scopic motion of the particle. We can then define p,(z|z’) dz, which is the probability
for the particle to move from z’ to x in a time 7 due to the fluctuating impacts on it.
This can be used in the Chapman—Kolmogorov equation to write an update equation
for f: :

f(z, t+7)dr=dx /00 ozl f(x',t) d’ . (5.43)

If the fluid is isotropic and homogeneous, then p.(z|z’) will depend only on the posi-
tion difference z = x’ + §, so we can then write p.(z|z’) = p,(6), where by symmetry
p(6) = p(—06). Then the Chapman-Kolmogorov equation becomes

oo

flx,t+7)dx = da:/ pA6)f(x +6,8)dé . (5.44)

— 00

Since 7 has been chosen to be very small compared to the time scale for macroscopic
changes in the particle position, we can expand f in a Taylor series in z and ¢ and keep
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the lowest-order terms:

[f(a:,t) + % T+ (’)(TZ)] dx

= dx/:p,(a) [f(a:,t)+ ‘9—-; 5+ %gz—f 52+---] dé
= dz f(z,t) / p(8) d6 + dz gf p(8) 6d6 +
ﬁ,—/ \;OO—K_I
Zf 2 3
do 553 p,(a)a ds+O8%) . (5.45)
—,_/
(6%)

In the last line, the first integral is 1 because p,(8) must be normalized, the second
one vanishes because it is the first moment of a symmetrical function p.(8) = p.(—96),
and the last integral is the variance. Cancelling out the f(z,t) on both sides, we’re left
with

52) (92

rl

~

(5.46)

2|

L
o>

We’ve found that the evolution of the probability distribution for Brownian motion is
governed by the familiar diffusion equation. In the context of stochastic processes, this is
called a Wiener process. The diffusion equation is a particular case of the Fokker—Plank
PDE which governs the evolution of a probability distribution for an underlying Markov
process.

We obtained the diffusion equation for a system in which time and space are continu-
ous, but for many problems they are discrete. Consider a 1D random walker that at each
time step ¢; can hop from a site z,, one unit to the left or right, x,,1;. The change in
probability p(x,,, ;) to find it at a point is then equal to the sum of the probabilities for
it to hop into the point, minus the sum of probabilities to hop off the point

1
PTn,ti) — P(Tn,tic1) = 2[p($n+l,ti—l) + p(Tn-1,tim1)] — P(Tn, tiz1)

P(ﬂfm tz) = %[p(x'rwh ti—l) + p(xn—h ti—l)] . (547)

This can be rewritten suggestively by subtracting p(z.,,, t;—1) from both sides and rear-
ranging:

P@n t) ~ Pantio) | 0 [P@natstim) = 2@, i) ¥ It Bio)] g e

6,: 26t 6:%
—~
=D
These are discrete approximations of partial derivatives (Chapter 7). If we take the limit
¢, 6 — 0 (keeping D finite), we find once again that
o _ o
ot ox?

(5.49)
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More generally, the time derivative of the probability to be at a state x,, is equal to the
sum over states z,, of the probability to be at x,, times the rate W, __., at which
transitions are made from there to x,,, minus the probability to be at x,, times the rate
at which transitions are made back to x,,:

Op(zn,t)

ot Z Wzm—mn KT, t) — Wzn—vzm A Zns t) . (5.50)

This is called the Master equation. For a stationary solution the transition rate between
two sites is equal in both directions, a condition called detailed balance.

5.2.2 Stochastic Differential Equations

An alternative analysis of Brownian motion was first done by Langevin in terms of a
stochastic differential equation. A particle moving in a fluid feels a drag force, and as
long as the velocity is not too great the force is given by the Stokes drag formula

F=—6npav |, (5.51)

where p is the viscosity of the fluid, a is the diameter of the particle, and 7 is the velocity
of the particle [Batchelor, 1967]. In addition to this force, we can model Brownian motion
by including a fluctuating force 7 that is due to the molecular impacts on the particle. In
terms of these forces, F' = ma for the particle becomes (in 1D):

— = —67ruad—x +n . (5.52)
dt

This 1s an example of what is now called a Langevin equation. Because 7 is a random

variable, £ becomes one, much like the promotion of operator types in a computer pro-

gram. Therefore we cannot solve for xz directly; we must instead use this differential

equation to solve for observable quantities that depend on it. To do this, first recognize

that

d(z?)
Frae =2z d_t (5.53)
and
d¥z?) _ P dg dz
=2 +2r— = 2r— . .54
a0 <dt> Zxdtz 27 + T (5.54)
Using this, if we multiply both sides of equation (5.52) by  we can rewrite it as
m d*(z?) 3 d(z?)
— = — + . .
> v 3nua o nx (5.55)

Next, let’s take the time expectation value

m d*(z?) (=) 2

d d - ) .

3 g + 3mpa T m(v°) + (nzx) (5.56)
Kl 0

In the first term on the right hand side, we’ve used the fact that the particle is in thermo-
dynamic equilibrium with the fluid to apply the Equipartition Theorem [Gershenfeld,
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1999a], which tells us that
1
2m<v2)
where D is the dimension (1 in this case), k is Boltzmann’s constant 1.38 x 10=2 (J/K),
and T is the temperature (in Kelvin). The second term vanishes because the rapidly
fluctuating noise term is uncorrelated with the slowly moving particle. Therefore,
d*{z* d{z? T
(%) + 3mpa d(z?®) _ 2k ‘ (5.58)
dt? m dt m

This is now an ordinary differential equation for the variance, which can easily be solved
to find

= %kT , (5.57)

kT
3nua

(z?) = Ae~bmmatim + t . (5.59)

The first term is a rapidly decaying exponential transient, leaving us with

kT
2 —
(=) 3npa

(5.60)

This result agrees with the form of Einstein’s calculation (Problem 5.3), even though
we got here by a very different path. Solving more general stochastic differential equa-
tions, and justifying assumptions such as throwing out the (nz) term, requires extending
ordinary calculus to integrals of stochastic functions. This is done by the Ito and the
Stratonovich calculus [Gardiner, 1990].

53 RANDOM NUMBER GENERATORS

There is a frequent and apparently paradoxical need to use a computer to generate random
numbers. In modeling a stochastic system it is necessary to include a source of noise, but
computers are (hopefully) not noisy. One solution is to attach a computer peripheral that
performs a quantum measurement (which as far as we know can be completely random),
or perhaps measures the molecular fluctuations in your coffee cup (which are extremely
close to random), but for most people this is not a convenient option. Instead, a more
reasonable alternative is to use an algorithm that produces pseudo—random numbers that
appear to be more random than can be detected by your application. There is a large
difference in what is required to fool a player of a video game and a cryptographic
analyst of a one—time pad. There is a corresponding broad range of choices for random
number generators, based on how sensitive your problem is to the hidden order that
must be present in any deterministic algorithm. While these are numerical rather than
analytical methods, and so rightfully belong in the next part of this book, they are so
closely connected with the rest of this chapter that it is more natural to include them
here.

Why discuss random number generators when most every programming language has
one built in? There are two reasons: portability and reliability. By explicitly including
an algorithm for generating needed random numbers, a program will be sure to give the
same answer whatever system it is run on. And built-in generators range from being
much too complex for simple tasks to much too simple for complex needs.
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Figure 5.2. 1000 points from the map x,+1 = 2z, (mod 1).

5.3.1 Linear Congruential

Linear congruential random number generators, and more sophisticated variants, are the
most common technique used for producing random numbers. The simplest example is
the map

ZTn+1 = 22, (mod 1) . (5.61)

Starting with an initial value for zy (chosen to be between 0 and 1), this generates a
series of new values. The procedure is to multiply the old value by 2, take the part that
is left after dividing by 1 (i.e., the fractional part), and use this as the new value. This
string of numbers is our first candidate as a random number generator. But how random
are the successive values of x? Not very; Figure 5.2 plots z,,+; versus x,, for a series of
1000 points. Two things are immediately apparent: the points lie on two lines rather than
being uniformly distributed (as they should be for two independent random numbers),
and it doesn’t look like there are 1000 points in the figure. The first problem can easily
be explained by looking back at the definition of the map, which shows that successive
pairs of points lie on a line of slope 2, which gets wrapped around because of the mod
operator. To understand the second problem, consider x written in a fractional binary
expansion (where each digit to the right of the binary point stands for 271,272, .. .). Each
iteration of this map shifts all the digits one place to the left, and throws out the digit
that crosses the binary point. This means that it brings up all the bits of the starting
position, and finally settles down to a fixed point at = 0 when all the bits are used up.
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Figure 5.3. 1000 points from the map xz,+; = 8121z, + 28411 (mod 134456).

This bad example can be generalized to the class of maps
Tn+l = aZ, +b(mod ¢) . (5.62)

The value of a determines the slope of the lines that the points are on and how many
lines there will be (& = 2 gave us 2 lines). We want this to be as large as possible, so that
the lines fill the space as densely as possible. Then b and ¢ must be chosen relative to a so
that the period of the map is as long as possible (it doesn’t repeat after a few iterations),
there are no fixed points that it can get stuck at, and the digits are otherwise as random
as they can be. Choosing optimal values for a, b, and c is a surprisingly subtle problem,
but good choices have been worked out as a function of the machine word size used to
represent = [Knuth, 1981]. For the common case of a 32-bit integer, with the leading bit
used as a sign bit, an optimal choice is

ZTn+1 = 8121z, + 28411 (mod 134456) . (5.63)

Iterating this map produces a string of integers between 1 and 134456 (or a fraction
between 0 and 1 if the integer is divided by 134456), shown in Figure 5.3. This now
appears to be much more random, and is adequate when there is a simple need for some
numbers that “look” random.

This is still not a great generator, because there are only 134456 distinct possible
values, and so in a string that long it is possible to detect the predictability. It’s also easy
to see here why the bits of x are not equally random: if z,, is even then z,4; will be
odd, and vice versa, so the lowest order bit of z simply oscillates at each step. Not very
random. To further improve such a simple linear congruential generator, it is possible
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Figure 5.4. A linear feedback shift register.

to add degrees of freedom by techniques such as running multiple generators in parallel
and using them to shuffle entries in a large array [Press ez al., 1992].

5.3.2 Linear Feedback

Linear congruential generators have the problem that all of the bits in each number are
usually not equally random; linear feedback shift registers (LF'SRs) provide a power-
ful alternative that can be used to generate truly psuedo—random bits. A binary linear
feedback shift register is specified by a recursion relation

M
Ty = Z a;Tp—; (mod 2) . (5.64)

i=1

This can be viewed as a series of registers through which the bits are shifted, with taps
specified by the a;’s that select the values to be added mod 2 (Figure 5.4).

If the taps are properly chosen, the bits that come out of the end of the shift register
are as random as possible. This means that the power spectrum is flat (up to the repeat
time, which is 2M — 1 for a register with M steps), all possible substrings of bits occur
equally often, and so forth. Such a maximal LFSR is designed by taking the 2-transform
of the recursion relation, and finding the taps that make this polynomial have no smaller
polynomial factors [Simon et al., 1994]. Table 5.1 gives a (non-unique) choice for maximal
taps for a range of register lengths. For example, for order 12 the tap values are 1, 4, 6,
12, so the recursion relation is

In = Tn-1 + Tn-4 + Tn-6 + Tn-12 . (565)

Because the recurrence time is exponential in the length of the register, a surprisingly
modest LFSR can have an extremely long period and be hard to distinguish from random
(Problem 5.2).

The most sophisticated techniques for making numbers appear random are associated
with cryptography, since detectable deviations from randomness can be used to help
break a code. In fact, the best way of all to improve a random number generator is to run
its output through a cryptographic encoding scheme [Simmons, 1992], which pass much
more sophisticated tests of randomness than the algorithms we have covered (which are
child’s play for a cryptanalyst). This of course does come at the expense of much more
computational effort.
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Table 5.1. For an LFSR x,, = Zi‘fl a;Tn—; (mod 2), lag i values for
which a; = | for the given order M (all of the other a;’s ave 0).

M P M 7 M 7

2 1,2 13 1,3,4,13 24 1,2,7,24
3 1,3 14 1,6,10, 14 25 3,25

4 1,4 15 1, 15 26 1,2,6,26
5 2,5 16 1,3,12,16 27 1,2,5,27
6 1, 6 17 3,17 28 3,28

7 3,7 18 7, 18 29 2,29

8 2,3,4,8 19 1,2,5 19 30 1,2,23,30
9 4,9 20 3,20 31 3,3

10 3,10 21 2,21 32 1,222 32
11 2,11 22 1, 22 33 13, 33
12 1,4,6,12 23 5,23 34 1,2,27,34
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55 PROBLEMS

(5.1) (a) Work out the first three cumulants C;, C;, and C;.
{(b) Evaluate the first three cumulants for a Gaussian distribution

e~ (5.66)

)=
() —
(5.2) (a) For an order 4 maximal LFSR write down the bit sequence.

(b) If an LFSR has a clock rate of | GHZ, how long must the register be for the
time between repeats to be the age of the universe (~ 100 years)?
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(5.3) (a) Use a Fourier transform to solve the diffusion equation (5.46) (assume that the
initial condition is a normalized delta function at the origin).

(b) What is the variance as a function of time?

(c) How is the diffusion coefficient for Brownian motion related to the viscosity of
a fluid?

(d) Write a program (including the random number generator) to plot the position
as a function of time of a random walker in 1D that at each time step has an
equal probability of making a step of = 1. Plot an ensemble of 10 trajectories,
each 1000 points long, and overlay error bars of width 3o(t) on the plot.

(e) What fraction of the trajectories should be contained in the error bars?
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