
Lecture 9: Gerrit Lohmann

Mathematical Modeling of the Earth System

9) Random Systems (Stochastic equations, Lattice Gases)

10) Cryosphere (Sea ice, ice sheets, and permafrost)

11) Earth system models including tracers and dynamical vegetation
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How well do we understand Earth?
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Ocean circulation models
and boundary conditions



Ekman: winds blowing on the sea surface produce a thin, horizontal boundary layer, (~100 m)



Eq                                North Atlantic                             N

Diffusion Advection

Ocean Dynamics: Temperature change



Mathematical Modelling

Classes of models

Ordinary diffential eq. (Box models)
Partial diffential eq. (Diffusion & Advection)
Stochastic (different time & length scales)
Discrete dynamics (e.g., Population dynamics)
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Finite differences: Diffusion-advection

Leapfrog scheme

Leap-Frog Scheme (CTCS Scheme)

The leap-frog scheme is second order in time and space,
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but it requires that the two last time levels are kept in memory.
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Chess Board for Leap-Frog

Leap-frog is stable, provided CFL-criterium is fulfilled, less diffusive
than upwind, but leads to oscillations, especially at sharp gradients.
There can be a decoupling of two solutions!
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Shallow water dynamics: linear model

We now simplify the system to a linear model. Ignoring bulk advection (u and v are small) in

(7.1,7.2,7.3), and assuming the wave height is a small proportion of the mean height (⌘ << H),

we have:

@tu = f v � g @x⌘ (7.7)

@tv = �f u � g @y⌘ (7.8)

@t⌘ = �@x(Hu) � @y(Hv) . (7.9)

Skew-Hermetian propertiy of the linear shallow water dynamics

The dynamical system (7.7,7.8,7.9) can be rewritten in a more compact form (using the non-

dimensional values).

@tW + LW = 0 (7.10)

With W = (u, v, ⌘) and the operaor

L =

0

BBB@

0 �f @x

f 0 @y

@x @y 0

1

CCCA
. (7.11)

The x and t dependences can be separated in form of zonally propagating waves exp(ikx � i!t) .

W can therfore be writen as

W (x, y, t) =

0

BBB@

û(y)

v̂(y)

⌘̂(y)

1

CCCA
exp(ikx � i!t) = Ŵ exp(ikx � i!t) (7.12)

Shallow Water Model
Rossby and gravity waves

u.new[ia.0,ia.0]<-u.old[ia.0,ia.0]-g*dt/dx*(h[ia.p1,ia.0]-h[ia.m1,ia.0])+dt*f*v 
v.new[ia.0,ia.0]<-v.old[ia.0,ia.0]-g*dt/dy*(h[ia.0,ia.p1]-h[ia.0,ia.m1])-dt*f*u
h.new[ia.0,ia.0]<-h.old[ia.0,ia.0]-H*dt*((u[ia.p1,ia.0]-u[ia.m1,ia.0])/dx + (v[ia.0,ia.p1]-
v[ia.0,ia.m1])/dy) 
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Figure 7.3: Global Rossby and Kelvin wave signatures in the exercise 49.

7.3 Plain waves

The analysis of the spherical version of the tidal problem is complicated because the Coriolis ef-

fect depends on the latitude and in general we do not have plain waves with sinus and cosinus base

functions.2 However, because of its simplicity, we will study the plain wave theory here. In this ap-

proach, the Coriolis parameters f and � are taken as fixed parameters in the equations. Then, the

wave equations can be reduced to plain waves with eigenfunctions ⇠ exp(ikx + ily � i!t).

2This approximation may be questioned because the trapped character of the Rossby waves is no included, which
is however, observed and simulated (Fig. 7.3). This shows a general problem in perturbation theory: The concept of
manipulations in the differential equations (e.g., by neglecting terms) is not entirely free from ambiguities, and may
lead to a undesirable transition in the solutions of the system. The type of solutions shall be of the form of the observed
(macroscopic) functions and a proper framework of approximations is required (section 8.4).
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7.3.3 Extratropical Rossby Waves

From the equations (7.7,7.8,7.9), we drop the term @t⌘ and introduce the stream function  

through

u =
@ 

@y
; v = �

@ 

@x
(7.36)

such that (7.9) is fulfilled. Taking @
@y

of (7.7) and subtract @
@x

of (7.8) elimintates the ⌘ term as in

section 1.3:
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With the ansatz

 = exp(ikx + ily � i!t) (7.38)

and assumption that � is just a parameter, ! is given by

!(k, l) = �
�k

k2 + l2
, (7.39)

where k and l are the zonal and meridional wavenumbers. Again, � is used as a parameter (also

called Rossby parameter) and is not expressed in terms of y:

� =
df

dy
=

1

R

d

d'
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(7.40)

where ' is the latitude, ⌦ is the angular speed of the Earth’s rotation, and R is the mean radius of

the Earth. The wave speed c = !/k = �� (k2 + l2)�1. The feature that the phase speed is

faster at low latitudes can be also seen in Fig. 7.3 using the full dynamics.

More information about Rossby waves: https://youtu.be/6UCiRIc0nK0

Rossby waves and extreme weather: https://youtu.be/MzW5Isbv2A0



2D Staggered grids: Arakawa

unstaggered grid

Advection of tracers

Rotated C
Arakawa, A.; Lamb, V.R. (1977) 
doi:10.1016/B978-0-12-460817-
7.50009-4. ISBN 9780124608177.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780124608177


Spectral methods

f(x) ~ancos(nx)+bnsin(nx) 

solve the diffusion equation
∂t T = D ∂2

x T

Rayleigh Bernard System 
in lecture Dynamics II



Fourier–Galerkin method

used for the basis functions (the famous chaotic
Lorenz set of differential equations were found as a 
Fourier- Galerkin approximation to atmospheric
convection (Lorenz, 1963)

Ψ(x,z,t)=∑k∑l Ψk,l(t)sin(kπaHx)×sin(lπHz)



Finite differences and finite element methods
finite differences: approximate partial differential equations.
Questions to analyze and improve the stability and accuracy

Finite-difference Approximation of Derivatives

There are many ways to replace differential quotients with difference
quotients, e.g.:

@T

@x
!

Tj � Tj�1

�x
(backward)

!
Tj+1 � Tj

�x
(forward)

!
Tj+1 � Tj�1

2�x
(centered)

All these tend to @T

@x
for �x ! 0
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A 2nd-order accurate Difference Quotient

in the centered difference approximation, however, we obtain from Taylor’s
theorem

T (x +�x)� T (x ��x)

2�x
=

@T

@x
+

1
3!

@3T

@x3 (�x)2 + . . .

because the terms proportional to the second derivative cancel out. The error
in the centered finite-difference approximation is of the order (�x)2.
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Finite differences and finite element methods
As powerful as these ideas are, there are two important cases where they
do not directly apply: problems that are
• described in terms of a spatially inhomogeneous grid, 
• posed in terms of a variational principle. 

For example, in studying the deformations, it can be most natural to
describe it in terms of finding the minimum energy configuration instead
of a partial differential equation, and for computational efficiency it is
certainly important to match the location of the solution nodes to the shape
of the body. 

These limitations with finite differences can be solved by the use of finite 
element methods. 



Ocean Model Setup in finite elements
• mesh with high resolution at deep 

water mass formation areas

• min. resolution ~ 6.5 km

• 41 depth level, ~ 6.000.000 3D 
tetrahedral elements, ~ 1.000.000 
3D nodes

Greenland Sea

Labrador Sea Weddel Sea

Ross SeaCoastal Areas

Equator



Mathematical Modelling

Classes of models

Ordinary diffential eq. (Box models)
Partial diffential eq. (Diffusion & Advection)
Stochastic (different time & length scales)
Discrete dynamics (e.g., Population dynamics)



This algorithm approximates the point computation by this formula
pk+1 = pk + hv(pk)
where h specifies the integration step.
The streamline is then constructed by successive integration.

Euler integrator



Brownian Motion

Einstein,Orstein, Uhlenbeck, Wiener, Fokker, Planck 
et al.

dx/dt = f(x) + g(x) dw/dt



Brownian motion

is the random movement of particles, caused 
by their bombardment on all sides by bigger 
molecules. 

This motion can be seen in the behavior of 
pollen grains placed in a glass of water

Because this motion often drives the 
interaction of time and spatial scales, it is 
important in several fields.



Following an idea of 
Hasselmann one can divide 
the climate dynamics into 
two parts. These two parts are 
the slowly changing climate 
part and rapidly changing 
weather part. The weather part 
can be modeled by a 
stochastic process such as 
white noise 



Climate variability • Brownian Particle: Climate
• Molecules: Weather



Brownian Motion: visible under the
Mikroscope: Motion of particles

pulses, irregular
Living?
Pulses from all directions, random



Physics of the 20th century

• The matter the world is made of
• views: Elementary particles, quantum

mechanics, relativity theory
• Limit of divisibility (Democritus, Aristotle): 

Matter is not a continuous whole: "The 
world cannot be composed of infinitely
small particles".





Das Klimaproblem aus 
physikalischer Sicht

Extreme	events	and	synop$c	variability	in	the	
context	of	paleoclimatology			

e.g.	
Rimbu,	N.,	G.	Lohmann,	M.	Ionita,	2014:	Interannual	to	mulLdecadal	Euro-AtlanLc	blocking	variability	
during	winter	and	its	rela$onship	with	extreme	low	temperatures	in	Europe.	J.	Geophys.	Res.	Atmos.,	119,	
doi:10.1002/2014JD021983.	(link)	
		
Rimbu,	N.,	G.	Lohmann,	M.	Werner,	and	M.	Ionita,	2016:	Links	between	central	Greenland	stable	isotopes,	
blocking	and	extreme	climate	variability	over	Europe	at	decadal	to	mulLdecadal	Lme	scales.	Climate	
Dynamics,	doi:10.1007/s00382-016-3365-3	(link)		
		
Ionita,	M.,	P.	Scholz,	G.	Lohmann,	M.	Dima,	and	M.	Prange,	2016:	Linkages	between	atmospheric	blocking,	
sea	ice	export	through	Fram	Strait	and	the	Atlan$c	Meridional	Overturning	Circula$on.	ScienLfic	Reports	
6:32881,	DOI:	10.1038/srep32881	(link)	
		
Zhang,	P.,	M.	Ionita,	G.	Lohmann,	D.	Chen,	H.	Linderholm,	2016:	Can	tree-ring	density	data	reflect	summer	
temperature	extremes	and	associated	circula$on	paeerns	over	Fennoscandia?	Climate	Dynamics,		DOI	
10.1007/s00382-016-3422-y	
		
	

Probabilities

Climate

Brownsche Partikel: Klima
Moleküle: Wetter



Predictability



Coarse graining -> Stochastic


