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Oceans, land, Ice
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Mathematical Modelling

Classes of models

Ordinary diffential eq. (Box models)
Partial diffential eq. (Diffusion & Advection)
Stochastic (different time & length scales)



Examples of Resolution
(global spectral model, zoom onto Europe)
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Ocean circulation models
and boundary conditions

Continental shelf

Deep-sea floor




Energy balance model: Concepts of climate

(1 —a)STR? = 4nR%*e0T"

incoming energy from the Sun  outgoing energy from the Earth

Heat capacity of the climate system

Fast rotation
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shadow are

a TR2
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Lohmann, 2020



Euler integrator ———— ———
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Figure 6.2. Origin of oscillation in the Euler method. The gray lines show the family of
solutions of dy/dx = Ay, and the doted lincs show the numer: ical solution for various step

s1zes,

This algorithm approximates the point computation by this formula
Pk+1= Pr + h " v(py)

where h specifies the integration step.

The streamline is then constructed by successive integration.



Finite differences: Diffusion-advection
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Finite differences: Diffusion-advection

o) | ) P
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x - = - (1
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Approximate the derivatives using the centered difference scheme:
j-index dCij _ Gijy1 —Cijoa 2)
for time dt 2A1
1Ciyj _ Ciyri=City i-index for )
dx 2Ax Space
PGy Ciij=2G,;+Ci1y )
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o= Ax©



Finite differences Diffusion-advection

IC(x,1)  AC(x)  B2C(x,1)
- + 1§ — = -
it oy v

Approximate the derivatives using the centered difference scheme:

j-indeX r]lf'r',_r' o Cr',_rq_[ —C,'J'_[
for time dt DAL
"]'f-_'r',_r' Cr'_|_l:_r' =Ci1 i-index
dx 2Ax for time

42y ; L Ci1,j—2G;+Ciyyj
dx: Ax?
Inserting (2)-(4) into (1) gives

Cijr1 =G jm1 e Cip1,j—Gi-1,j Hff+l:j—l =2G -1+ Ci—1 j-1
2 A1 2Ax Axd

(1)

(3)

(4)

(5)

( Note that we evaluate the diffusion term at time j— | instead of time j to avoild numerical instability. ) Rephrasing



Finite differences: Diffusion-advection

IC(x,1)  AC(x)  B2C(x,1)
- + 1§ — = -
it oy v

Approximate the derivatives using the centered difference scheme:

4G Gijt1 —Gij
o1 2 At
0Cij  Ciyrj—Cio1
dx 2Ax

2
d°Cij  Citr,j —2Gi+Cicrj
ol Ax?

Inserting (2)-(4) into (1) gives

Cijrt =Cijmr | G = Gy Gt = 2G4 G
2 A1 2Ax Axt

(1)

(3)

(4)

(5)

( Note that we evaluate the diffusion term at time j— | instead of time j to avoild numerical instability. ) Rephrasing

Leapfrog scheme

Ar 2AT
Cijr1 2 Gjmy — "E{CEHJ — Ci—1,5) + KE{G‘HJ—[ -2G -1+ Cimp,j-1)



Finite differences: Diffusion-advection

IC(x,1)  AC(x)  B2C(x,1)
- + 1§ — = -
it oy v

- ]
Leap-Frog Scheme (CTCS Scheme)

.
|
M9
torn :
| staggered
O leapfrog
xorj

The leap-frog scheme is second order in time and space,

_ VAt
T =T - o (TR = T)

but it requires that the two last time levels are kept in memory.

Silke Thoms ( AWI Bremerhaven )

NUMERICAL APPROXIMATIONS I

Leapfrog scheme

Ar 2AL
Cir1 =G — “;(':'H:;‘ — Gy, ;) + WF(G‘HJ—[ -2G ;-1 +Ci—1,5-1)



Finite differences: Diffusion-advection
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Chess Board for Leap-Frog

- ]
Leap-Frog Scheme (CTCS Scheme)

.
|
M9
torn :
| staggered
O leapfrog
xorj

The leap-frog scheme is second order in time and space,

Leap-frog is stable, provided CFL-criterium is fulfilled, less diffusive
VAt (T0, - T04) than upwind, but leads to oscillations, especially at sharp gradients.
Ax There can be a decoupling of two solutions!

Tf?+1 — T-n71 _
I ]
but it requires that the two last time levels are kept in memory.

Silke Thoms ( AWI Bremerhaven ) NUMERICAL APPROXIMATIONS I Silke Thoms ( AWI Bremerhaven ) NUMERICAL APPROXIMATIONS I |

Leapfrog scheme

At 2

AT
G =G — “E{CEH:;' — G+ KF{GHJ—[ =26+ Gy 1) (6)



Shallow Water Model

Rossby and gravity waves

Oru — f v = Qaaﬂ?
O:v = —fu — goynm
om =  —0,(Hu) — 08,(Hv)

u.newlia.0,ia.0]<-u.old[ia.0,ia.0]-g*dt/dx*(h[ia.p1,ia.0]-h[ia.m1,ia.0])+dt*f*v
v.new(ia.0,ia.0]<-v.old[ia.0,ia.0]-g*dt/dy*(h[ia.0,ia.p1]-h[ia.0,ia.m1])-dt*f*u

h.newl[ia.0,ia.0]<-h.old[ia.0,ia.0]-H*dt*((u[ia.p1,ia.0]-u[ia.m1,ia.0])/dx + (v[ia.0,ia.p1]-
v[ia.0,ia.m1])/dy)
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Figure 7.3: Global Rossby and Kelvin wave signatures in the exercise 49.
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2D Staggered grids: Arakawa

upstaggered grid
(7’7 .]) u:/U

q v q u,v C‘] u, v

Ue (Z)j) o U qe u:v ¢ (

q e q U, v q U, v
Rotated C (D) (E)

U (7’7]) v

q U q

(C)

Advection of tracers

Arakawa, A.; Lamb, V.R. (1977)
doi:10.1016/B978-0-12-460817-
7.50009-4. ISBN 9780124608177



https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780124608177

Spectral methods

Rayleigh Bernard System
in lecture Dynamics I

1.5
solve the diffusion equation

M _ 9, T=D0d%T
f(x) ~a.cos(nx)+b.sin(nx)

051

4

-0.5

0 1 2 8 4 5 6 HELMHOLTZ



Fourier—Galerkin method

used for the basis functions

the famous chaotic Lorenz model was found as a Fourier-
Galerkin approximation to atmospheric convection (Lorenz, 1963)

Benard-Cell
N SRS, S (low temperature) e ——
A et Ty .

A’ _ ey
H o l
IO

y 3 . el P

o ' > v el T
T T +AT Lorenz attractor

Hja (high temperature)

‘P(x,z,t):ZkZl ‘Pk,l(t)sin(knaHx) XSin(lnHz)

20 10 d 10 20




Finite differences and finite element methods

finite differences: approximate partial differential equations.
Questions to analyze and improve the stability and accuracy

Finite-difference Approximation of Derivatives A 2nd-order accurate Difference Quotient

There are many ways to replace differential quotients with difference

quotients, e.g.: ) . o ,
in the centered difference approximation, however, we obtain from Taylor's

oT T —T_ theorem
% ’TX’1 (backward)
X F o T(x+Ax)—T(x—Ax) oT 10T,
=T . = -t g (AX) + ...
= — Ay (forward) 2Ax ox ' 3! 0x
N Tt — Tja (centered) because the terms proportional to the second derivative cancel out. The error
2Ax in the centered finite-difference approximation is of the order (Ax)2.
All these tend to 2L for Ax — 0
Silke Thoms ( AWI Bremerhaven ) NUMERICAL APPROXIMATIONS I Silke Thoms ( AWI Bremerhaven ) NUMERICAL APPROXIMATIONS I _

HELMHOLTZ



Finite differences and finite element methods

As powerful as these ideas are, there are two important cases where they
do not directly apply: problems that are

« described in terms of a spatially inhomogeneous grid,
« posed in terms of a variational principle.

For example, in studying the deformations, it can be most natural to
describe it in finding the minimum energy configuration

for computational efficiency it is certainly important to match the location of
the solution nodes to the shape of the body.

HELMHOLTZ



Ocean Model Setup in finite elements

Greenland Sea
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Earth System Analysis: Models
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Let’s return to the simple first-order flux PDE

(9.11)

to see how the Galerkin method is applied. For each basis function ¢, there is a weighted

residual equation integrated over the problem domain

ou ou
/(E+va—m)¢j dr =0

(in this case the source term f = (). Plugging in

u(z,t) = Z a;(t)pi()

gives
da; dy;
Ei /(dt Yip; T va;p; d:z:) dx =0

This can be written in matrix form as
da L =
A-—+B-a=0
dt

where

and

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)

are matrices that depend only on the basis functions, and the vector @ is the set of
expansion coefficients. This is now a system of ordinary differential equations that can be
solved with the methods that we studied in Chapter 7. Since each basis function overlaps
only with its immediate neighbors, the A and B matrices are very sparse and so they
can be solved efficiently (this is the main job of a finite element package, and much of

numerical linear algebra).



Mathematical Modelling

Classes of models

Ordinary diffential eq. (Box models)

Partial diffential eq. (Diffusion & Advection)
Stochastic (different time & length scales)
Discrete dynamics (e.g., Population dynamics)



Brownian Motion: visible under the
Mikroscope: Motion of particles

Mikroskop —

Pollenkérner

Licht

pulses, irregular
Living?
Pulses from all directions, random



Physics of the 20" century

« The matter the world is made of

* views: Elementary particles, quantum
mechanics, relativity theory

 Limit of divisibility (Democritus, Aristotle):
Matter is not a continuous whole: "The
world cannot be composed of infinitely
small particles”.

HELMHOLTZ



Brownian Motion

%206 0320
i
i g‘- P ‘*«:&

f‘iﬁi“-&;@

Einstein,Orstein, Uhlenbeck, Wiener, Fokker, Planck
et al.

dx/dt = f(x) + g(x) dw/dt
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Is the random movement of particles, caused
by their bombardment on all sides by bigger
molecules.

:gg’ Brownian motion

w\:‘

This motion can be seen in the behavior of
pollen grains placed in a glass of water

Because this motion often drives the
interaction of time and spatial scales, it is
important in several fields.



Following an idea of
Hasselmann one can divide
the climate dynamics into
two parts. These two parts are
the slowly changing climate
part and rapidly changing
weather part. The weather part
can be modeled by a
stochastic process such as
white noise



Climate variability

BIOSPHERE
LAND SURFACE

Evapotranspiration
Albedo, Drag. CO,

Air-Sea Transfer:
Water, Heat, Momentum, CO,...

Runoff:

Water. Organic Matter, . Sea Surface Temperature

Transport of Heat, Salinity, CO,

BIOGEOCHEMICAL CYCLES l&

OCEAN GATEWAYS




Das Klimaproblem aus
physikalischer Sicht

Climate
Brownsche Partikel: Klim

Molekule: Wetter
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Predictability
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Coarse graining -> Stochastic

N

— o
Mechanical motion of Coarse-graining,
ensemble, S=const S increases

Figure 8.11: The Ehrenfests coarse-graining: two motion - coarse-graining cycles in 2D (values of
probability density are presented by hatching density).



Lattice Boltzmann Method

Simple “mesoscopic” rules yield
complex behavior

Recently established as CFD alternative

in engineering

Have been proven to simulate Navier-

Stokes equations
Velocity space discretized

Explicit method, simple update rule:
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LBM (cont'd)

Low per-gridpoint update
cost

Easy parallelization

2nd-order accuracy (spac
checked for 3D Poiseuille
flow

Smagorinsky turbulence
model included

Developing refinements o
LBM for oceanography
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The simplest random system consists of values x taken from a distribution p(x). For
example, in a coin toss = can be heads or tails, and p(heads) = p(tails) = 1/2. In this
case x takes on discrete values; it is also possible for a random variable to come from a
continuous distribution. For a continuous variable, p(x) dx is the probability to observe
a value between z and x + dx, and more generally

b
/ p(z) dz (5.1)

is the probability to observe x between a and b.



5.1.1 Joint Distributions

Now let’s consider two random variables x and y, such as the result from throwing a pair
of dice, that are specified by a joint density p(x, y). The expected value of a function that
depends on both x and y is

ven= [ [ reppendsdy 6.7)
p(x, y) must be normalized, so that
/00 /00 px,y)dedy=1 . (5.8)
It must also be normalized with respect to each variable, so that
po)= [ pe) dy (59)
and
)= [ sayds (5.10)

Integrating a variable out of a joint distribution is called marginalizing over the variable.



For joint random variables a very important quantity is p(x|y) (“the probability of z
given y”). This is the probability of seeing a particular value of z if we already know the
value of ¢, and is defined by Bayes’ rule

p(z,y)
p(y)

p(zly) = , (5.11)

which takes the joint probability and divides out from it the known scalar probability.
This is easily extended to combinations of more variables,

»(z,y, 2) = p(zly, 2) p(y, 2)
= p(x|y, 2) p(y|2) p(2)
=p(z,ylz) p(2) (5.12)

for independent variables p(z|y) = p(x)p(v)/p(y) = p(x)
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"for the physical modelling of Earth's climate, quantifying variability
and reliably predicting global warming"
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OCTOBER 1993 HASSELMANN 1957

Optimal Fingerprints for the Detection of Time-dependent Climate Change

K. HASSELMANN
Max-Planck-Institut fiir Meteorologie, Hamburg, Germany
(Manuscript received 24 August 1992, in final form 17 March 1993)

fL=gplaz* (14)

The multiplication of the signal with the inverse of the
covariance matrix i1s seen to weight the fingerprint
components f ,in the EOF frame relative to the signal
components g, by the inverse o;% of the EOF vari-
ances, thereby slewing the fingerprint vector away from
the EOF directions with high noise levels toward the
low-noise directions.




Attribution (model world)
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depth

Stochastic climate model (Hasselmann, 1976)
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Figure 8.4: Schematic picture of mixed layer in the ocean. collision with molecules



52 STOCHASTIC PROCESSES

It 1s now time for time to appear in our discussion of random systems. When it does,
this becomes the study of stochastic processes. We will look at two ways to bring in time:
the evolution of probability distributions for variables correlated in time, and stochastic
differential equations.

If z(t) is a time-dependent random variable, its Fourier transform

T/2 _
X(@)= lim e x(t) dt (5.27)

is also a random variable but its power spectral density S(v) is not:

Sw) = (| Xw)*) = (X)X *v)) (5.28)
1 T/2 T/2 ' )
—_ l - 12t —i2muvt / !
Jim i [_ T/Ze x(t) dt [_ T/Ze x(t') dt

(where X™ is the complex conjugate of X, replacing 7 with —¢). The inverse Fourier
transform of the power spectral density has an interesting form,

/ S(V)e-——ilm/'r dv

= / h (XW)X*(v))e ™7 dy

T/2 T/2 . , .
= lim _/ / zZ‘n‘utm(t) dt/ e—-zlﬂ'ut .’,U(t,) dtl e-—’LZ‘TrV’T dv

T—oo T T/2 ~T/2



T2 T2 ,
= lim — / / / e =T) dy 2(t)x(t') dt dt’

T—00 T

~T/2J~T)2
T/2 ,T/2

= lim — / / &(t — t' — T)x(t)x(t) dt dt’
T—oo T J 12 )12

T/2
lim —/ z(t)x(t — 1) dt
Jim 7 [, #0e =

= (z(t)x(t — 7)) (5.29)
found by using the Fourier transform of a delta function
/ eTE™iSydt =1 = §(t) = / e?™ dt | (5.30)

where the delta function is defined by
[ f@ie -z do= s (5.31)

This i1s the Wiener—Khinchin theorem. It relates the spectrum of a random process to
its autocovariance function, or, if it is normalized by the variance, the autocorrelation
function (which features prominently in time series analysis, Chapter 16).
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Figure 8.9: Powerspectrum of atmospheric temperature and sea surface temperature. Here 1/ =
300 days from equation (8.43).



How realistic is the
model?

CMIP6 (HiRes) mesh
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Simulated years per day

Scalability

64 1
32
16 A
8 .
—e— Mistral, from scaling s
41 —— JUWELS, from scaling
*  Mistral, operational Koldunov et al (2019)

2000 4000 8000 16000 32000 64000
cores

Limited by available HPC capabilities (today)
Limited by our ability to use future HPC systems (tomorrow)

Parameterizations

Some critical small-scale processes are not represented by the laws of
physics, but by physically motivated rules of thumb (parametrizations)

=> Large uncertainties in regional (global) climate change projections
-> Limitations in predicting extreme events



Exercises

https://paleodyn.uni-bremen.de/study/MES/MES random.html



https://paleodyn.uni-bremen.de/study/MES/MES_random.html

