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Mathematical Modelling

Classes of models

Ordinary diffential eq. (Box models)
Partial diffential eq. (Diffusion & Advection)
Stochastic (different time & length scales)
Discrete dynamics (e.g., Population dynamics)
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Examples of Resolution
(global spectral model, zoom onto Europe)



Ocean circulation models 
and boundary conditions
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Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).
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the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus

have only one dependent variable: the Earth’s near-surface air temperature T.

With the development of computer capacities, simpler models have not disappeared;

on the contrary, a stronger emphasis has been given to the concept of a hierarchy of

models’ as the only way to provide a linkage between theoretical understanding and

the complexity of realistic models (von Storch et al., 1999; Claussen et al., 2002). In

contrast, many important scientific debates in recent years have had their origin in the

use of conceptually simple models (Le Treut et al., 2007; Stocker, 2011), also as a way

to analyze data (Köhler et al., 2010) or complex models (Knorr et al., 2011).

Pioneering work has been done by North (North, 1975a,b, North et al., 1981, 1983)

and these models were applied subsequently (e.g., Ghil, 1976; Su and Hsieh, 1976;

Ghil and Childress, 1987; Short et al., 1991; Stocker et al., 1992). Later the EMBs

were equipped by the hydrological cycle (Chen et al., 1995; Lohmann et al., 1996;

Fanning and Weaver, 1996; Lohmann and Gerdes, 1998) to study the feedbacks in

the atmosphere-ocean-sea ice system. One of the most useful examples of a simple,

but powerful, model is the one-/zero-dimensional energy balance model. As a starting

point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced

(Fig. 1)

(1� ↵)S⇡R2 = 4⇡R2
✏�T

4 (1)

where the left hand side represents the incoming energy from the Sun (size of the disk=

shadow area ⇡R
2) while the right hand side represents the outgoing energy from the

Earth (Fig. 1). T is calculated from the Stefan-Boltzmann law assuming a constant

radiative temperature, S is the solar constant - the incoming solar radiation per unit

area– about 1367Wm
�2, ↵ is the Earth’s average planetary albedo, measured to be

0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8JK�4m�2s�1, and ✏ is the e↵ective emissivity of Earth (about 0.612) (e.g.,

Archer, 2010). The geometrical constant ⇡R2 can be factored out, giving

(1� ↵)S = 4✏�T 4 (2)

Solving for the temperature,

T =
4

s
(1� ↵)S

4✏�
(3)

Since the use of the e↵ective emissivity ✏ in (1) already accounts for the greenhouse

e↵ect we gain an average Earth temperature of 288 K (15�C), very close to the global

temperature observations/reconstructions (Hansen et al., 2011) at 14�C for 1951-1980.

Interestingly, (3) does not contain parameters like the heat capacity of the planet. We

will explore that this is essential for the temperature of the Earth’s climate system.

2. A closer look onto the spatial distribution

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

✏�T
4 = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4)
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Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).

Lohmann, 2020

Heat capacity of the climate system

Fast rotation

Energy balance model: Concepts of climate



This algorithm approximates the point computation by this formula 
pk+1 = pk + h * v(pk) 
where h specifies the integration step.
The streamline is then constructed by successive integration.

Euler integrator



Finite differences: Diffusion-advection

Leapfrog scheme



Finite differences: Diffusion-advection

Leapfrog scheme

j-index
for time

i-index for
space
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Leapfrog scheme



Finite differences: Diffusion-advection

Leapfrog scheme

Leap-Frog Scheme (CTCS Scheme)

The leap-frog scheme is second order in time and space,
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but it requires that the two last time levels are kept in memory.
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Chess Board for Leap-Frog

Leap-frog is stable, provided CFL-criterium is fulfilled, less diffusive
than upwind, but leads to oscillations, especially at sharp gradients.
There can be a decoupling of two solutions!

Silke Thoms ( AWI Bremerhaven ) NUMERICAL APPROXIMATIONS II April 29, 2021 42 / 49
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Shallow water dynamics: linear model

We now simplify the system to a linear model. Ignoring bulk advection (u and v are small) in

(7.1,7.2,7.3), and assuming the wave height is a small proportion of the mean height (⌘ << H),

we have:

@tu = f v � g @x⌘ (7.7)

@tv = �f u � g @y⌘ (7.8)

@t⌘ = �@x(Hu) � @y(Hv) . (7.9)

Skew-Hermetian propertiy of the linear shallow water dynamics

The dynamical system (7.7,7.8,7.9) can be rewritten in a more compact form (using the non-

dimensional values).

@tW + LW = 0 (7.10)

With W = (u, v, ⌘) and the operaor

L =

0

BBB@

0 �f @x

f 0 @y

@x @y 0

1

CCCA
. (7.11)

The x and t dependences can be separated in form of zonally propagating waves exp(ikx � i!t) .

W can therfore be writen as

W (x, y, t) =

0

BBB@

û(y)

v̂(y)

⌘̂(y)

1

CCCA
exp(ikx � i!t) = Ŵ exp(ikx � i!t) (7.12)

Shallow Water Model
Rossby and gravity waves

u.new[ia.0,ia.0]<-u.old[ia.0,ia.0]-g*dt/dx*(h[ia.p1,ia.0]-h[ia.m1,ia.0])+dt*f*v 
v.new[ia.0,ia.0]<-v.old[ia.0,ia.0]-g*dt/dy*(h[ia.0,ia.p1]-h[ia.0,ia.m1])-dt*f*u 
h.new[ia.0,ia.0]<-h.old[ia.0,ia.0]-H*dt*((u[ia.p1,ia.0]-u[ia.m1,ia.0])/dx + (v[ia.0,ia.p1]-
v[ia.0,ia.m1])/dy) 
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Figure 7.3: Global Rossby and Kelvin wave signatures in the exercise 49.

7.3 Plain waves

The analysis of the spherical version of the tidal problem is complicated because the Coriolis ef-

fect depends on the latitude and in general we do not have plain waves with sinus and cosinus base

functions.2 However, because of its simplicity, we will study the plain wave theory here. In this ap-

proach, the Coriolis parameters f and � are taken as fixed parameters in the equations. Then, the

wave equations can be reduced to plain waves with eigenfunctions ⇠ exp(ikx + ily � i!t).

2This approximation may be questioned because the trapped character of the Rossby waves is no included, which
is however, observed and simulated (Fig. 7.3). This shows a general problem in perturbation theory: The concept of
manipulations in the differential equations (e.g., by neglecting terms) is not entirely free from ambiguities, and may
lead to a undesirable transition in the solutions of the system. The type of solutions shall be of the form of the observed
(macroscopic) functions and a proper framework of approximations is required (section 8.4).
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7.3.3 Extratropical Rossby Waves

From the equations (7.7,7.8,7.9), we drop the term @t⌘ and introduce the stream function  

through

u =
@ 

@y
; v = �

@ 

@x
(7.36)

such that (7.9) is fulfilled. Taking @
@y

of (7.7) and subtract @
@x

of (7.8) elimintates the ⌘ term as in

section 1.3:

@

@t

✓
@2

@x2
+

@2

@y2

◆
 = ��

@ 

@x
(7.37)

With the ansatz

 = exp(ikx + ily � i!t) (7.38)

and assumption that � is just a parameter, ! is given by

!(k, l) = �
�k

k2 + l2
, (7.39)

where k and l are the zonal and meridional wavenumbers. Again, � is used as a parameter (also

called Rossby parameter) and is not expressed in terms of y:

� =
df

dy
=

1

R

d

d'
(2⌦ sin') =

2⌦ cos'

R
(7.40)

where ' is the latitude, ⌦ is the angular speed of the Earth’s rotation, and R is the mean radius of

the Earth. The wave speed c = !/k = �� (k2 + l2)�1. The feature that the phase speed is

faster at low latitudes can be also seen in Fig. 7.3 using the full dynamics.

More information about Rossby waves: https://youtu.be/6UCiRIc0nK0

Rossby waves and extreme weather: https://youtu.be/MzW5Isbv2A0



2D Staggered grids: Arakawa

unstaggered grid

Advection of tracers

Rotated C
Arakawa, A.; Lamb, V.R. (1977) 
doi:10.1016/B978-0-12-460817-
7.50009-4. ISBN 9780124608177.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://doi.org/10.1016%2FB978-0-12-460817-7.50009-4
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780124608177


Spectral methods

f(x) ~ ancos(nx)+bnsin(nx) 

solve the diffusion equation 
∂t T = D ∂2

x T

Rayleigh Bernard System 
in lecture Dynamics II



Fourier–Galerkin method
used for the basis functions
the famous chaotic Lorenz model was found as a Fourier- 
Galerkin approximation to atmospheric convection (Lorenz, 1963)

Ψ(x,z,t)=∑k∑l Ψk,l(t)sin(kπaHx)×sin(lπHz)



Finite differences and finite element methods
finite differences: approximate partial differential equations.
Questions to analyze and improve the stability and accuracy

Finite-difference Approximation of Derivatives

There are many ways to replace differential quotients with difference
quotients, e.g.:

@T

@x
!

Tj � Tj�1

�x
(backward)

!
Tj+1 � Tj

�x
(forward)

!
Tj+1 � Tj�1

2�x
(centered)

All these tend to @T

@x
for �x ! 0

Silke Thoms ( AWI Bremerhaven ) NUMERICAL APPROXIMATIONS II April 29, 2021 18 / 49

A 2nd-order accurate Difference Quotient

in the centered difference approximation, however, we obtain from Taylor’s
theorem

T (x +�x)� T (x ��x)

2�x
=

@T

@x
+

1
3!

@3T

@x3 (�x)2 + . . .

because the terms proportional to the second derivative cancel out. The error
in the centered finite-difference approximation is of the order (�x)2.

Silke Thoms ( AWI Bremerhaven ) NUMERICAL APPROXIMATIONS II April 29, 2021 20 / 49



Finite differences and finite element methods
As powerful as these ideas are, there are two important cases where they 
do not directly apply: problems that are 
• described in terms of a spatially inhomogeneous grid, 
• posed in terms of a variational principle. 

For example, in studying the deformations, it can be most natural to 
describe it in finding the minimum energy configuration 
for computational efficiency it is certainly important to match the location of 
the solution nodes to the shape of the body. 



Ocean Model Setup in finite elements
• mesh with high resolution at deep 

water mass formation areas

• min. resolution ~ 6.5 km

• 41 depth level, ~ 6.000.000 3D 
tetrahedral elements, ~ 1.000.000 
3D nodes

Greenland Sea

Labrador Sea Weddel Sea

Ross SeaCoastal Areas

Equator



Earth System Analysis: Models

@v

@t
+ v ·rv = �2⌦⇥ v � 1

⇢
rp+ g + F

@⇢

@t
+r · ⇢v = 0

@T

@t
+ v ·rT � p

⇢2
d⇢

dt
= Q





Mathematical Modelling

Classes of models

Ordinary diffential eq. (Box models)
Partial diffential eq. (Diffusion & Advection)
Stochastic (different time & length scales)
Discrete dynamics (e.g., Population dynamics)



Brownian Motion: visible under the 
Mikroscope: Motion of particles

pulses, irregular
Living?
Pulses from all directions, random



Physics of the 20th century

• The matter the world is made of
• views: Elementary particles, quantum 

mechanics, relativity theory
• Limit of divisibility (Democritus, Aristotle): 

Matter is not a continuous whole: "The 
world cannot be composed of infinitely 
small particles".



Brownian Motion

Einstein,Orstein, Uhlenbeck, Wiener, Fokker, Planck 
et al.

dx/dt = f(x) + g(x) dw/dt



Brownian motion

is the random movement of particles, caused 
by their bombardment on all sides by bigger 
molecules. 

This motion can be seen in the behavior of 
pollen grains placed in a glass of water

Because this motion often drives the 
interaction of time and spatial scales, it is 
important in several fields.



Following an idea of 
Hasselmann one can divide 
the climate dynamics into 
two parts. These two parts are 
the slowly changing climate 
part and rapidly changing 
weather part. The weather part 
can be modeled by a 
stochastic process such as 
white noise 



Climate variability • Brownian Particle: Climate
• Molecules: Weather



Das Klimaproblem aus 
physikalischer Sicht

Extreme	events	and	synop$c	variability	in	the	
context	of	paleoclimatology			

e.g.	
Rimbu,	N.,	G.	Lohmann,	M.	Ionita,	2014:	Interannual	to	mulLdecadal	Euro-AtlanLc	blocking	variability	
during	winter	and	its	rela$onship	with	extreme	low	temperatures	in	Europe.	J.	Geophys.	Res.	Atmos.,	119,	
doi:10.1002/2014JD021983.	(link)	
		
Rimbu,	N.,	G.	Lohmann,	M.	Werner,	and	M.	Ionita,	2016:	Links	between	central	Greenland	stable	isotopes,	
blocking	and	extreme	climate	variability	over	Europe	at	decadal	to	mulLdecadal	Lme	scales.	Climate	
Dynamics,	doi:10.1007/s00382-016-3365-3	(link)		
		
Ionita,	M.,	P.	Scholz,	G.	Lohmann,	M.	Dima,	and	M.	Prange,	2016:	Linkages	between	atmospheric	blocking,	
sea	ice	export	through	Fram	Strait	and	the	Atlan$c	Meridional	Overturning	Circula$on.	ScienLfic	Reports	
6:32881,	DOI:	10.1038/srep32881	(link)	
		
Zhang,	P.,	M.	Ionita,	G.	Lohmann,	D.	Chen,	H.	Linderholm,	2016:	Can	tree-ring	density	data	reflect	summer	
temperature	extremes	and	associated	circula$on	paeerns	over	Fennoscandia?	Climate	Dynamics,		DOI	
10.1007/s00382-016-3422-y	
		
	

Probabilities

Climate

Brownsche Partikel: Klima
Moleküle: Wetter



 Predictability



  
  Coarse graining -> Stochastic



Lattice Boltzmann Method

l Simple “mesoscopic” rules yield 
complex behavior

l Recently established as CFD alternative 
in engineering

l Have been proven to simulate Navier-
Stokes equations

l Velocity space discretized
l Explicit method, simple update rule:

Function of
Fluid viscosity

Force
terms



LBM (cont'd)

l Low per-gridpoint update 
cost

l Easy parallelization 
l 2nd-order accuracy (space) 

checked for 3D Poiseuille 
flow

l Smagorinsky turbulence 
model included

l Developing refinements of 
LBM for oceanography









"for the physical modelling of Earth's climate, quantifying variability 
and reliably predicting global warming"

"for groundbreaking contributions to our understanding of complex systems" 
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Attribution (model world)
greenhouse gas emissions

no greenhouse gas emissions

observed changes are consistent with 
modeled response to external forcing, 
inconsistent with alternative explanations

Nobel Price, 2021
Hasselmann



Attribution (model world)
greenhouse gas emissions

no greenhouse gas emissions

observed changes are consistent with 
modeled response to external forcing, 
inconsistent with alternative explanations

Critics:
• Time series too short
• Estimates of natural variability

based only on models 
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)

with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L
�1

{F (s)}(t) = L
�1

⇢
< T (0) >

s + �
+

c

s
·

1

s + �

�
(8.45)

= T (0) · exp(��t) +
c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Noise Forcing
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�
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Stochastic climate model (Hasselmann, 1976)

microscope

particles
light

Disorderly, random motion 
collision with molecules









Displayed on a common 1/4o mesh

CMIP5 mesh

Satellite

CMIP6 (HiRes) mesh

Frontier mesh

Indistinguishable from observations!  

How realistic is the 
model?

Ocean velocity



Scalability

Koldunov et al (2019)

Some critical small-scale processes are not represented by the laws of 
physics, but by physically motivated rules of thumb (parametrizations)

➔ Large uncertainties in regional (global) climate change projections
➔ Limitations in predicting extreme events

Limited by available HPC capabilities (today)
Limited by our ability to use future HPC systems (tomorrow)

Parameterizations



Exercises

https://paleodyn.uni-bremen.de/study/MES/MES_random.html

https://paleodyn.uni-bremen.de/study/MES/MES_random.html

