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Climate Calculations with a Combined Ocean-Atmosphere Model

SvyUKURO MANABE AND KirRx BRrYAN

Geophysical Fluid Dynamics Laboratory, ESSA, Princeton University, Princelon, N. J.
13 March 1969 and 6 May 1969
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F16. 2. Zonal mean temperature of the joint ocean-atmosphere system, left-hand side. This distribution,
which is the average of two hemisphe}rles, represents the tilxlne mean over two-sevenths of the period of the
: . final stage of the time integration. The right-hand side shows the observed distribution in the Northern
F16. 1. Ocean-continent configuration of the model. Hemisphere. The atmospheric part represents the zonally averaged, annual mean temperature. The oceanic
part is based on a cross section for the western North Atlantic from Sverdrup ef al. (1942).
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Carbon dioxide heats
the atmosphere

Increased levels of carbon
dioxide lead to higher
temperatures in the lower
atmosphere, while the upper
atmosphere gets colder.
Manabe thus confirmed that
the variation in temperature
is due to increased levels of
carbon dioxide; if it was
caused by increased solar 30
radiation, the entire atmosp-
here should have warmed up.
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Source: Manabe and Wetherald (1967) Thermal equilibrium of the atmosphere with a given
distribution of relative humidity, Journal of the atmospheric sciences, Vol. 24, Nr 3, May.
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Temperature at the surface
fell by 2.28°C when the level
of carbon dioxide halved.

It increased by 2.36°C when
the level of carbon dioxide
doubled.

Manabe and Wetherald, 1967
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B  Arctic Sealce retreat [

Missing Information about Sea Ice
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The “Climate dilemma*“

* Instrumental data are sparce




The “Climate dilemma*“

* Instrumental data are sparce

* The records of direct temperature measurements are short
and already fall in the phase of strong human influence.



The “Climate dilemma*“

* Instrumental data are sparce

source: Reynolds 2000 “——i_ &

* The records of direct temperature measurements are short
and already fall in the phase of strong human influence.

* For the time before instrumental records, one has to rely on
information from proxy data and modeling.
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Earth System Analysis: Models
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We know the governing equations

0 1
—V+: —20xv—--Vp+g+F
ot 0

dp

+V.pv=0

ot
oT p dp
S VD- 22 )

p = pRT

Vilhelm Bjerknes

BJERKNES, V., 1904: Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der
Physik. — Meteorol. Z. 21, 1-7.



We know how to solve them numerically!

John von Neumann

LRSI

ENIAC

The first multipurpose electronic computer (1946)



OCTOBER 1993 HASSELMANN 1957

Optimal Fingerprints for the Detection of Time-dependent Climate Change

K. HASSELMANN
Max-Planck-Institut fiir Meteorologie, Hamburg, Germany
(Manuscript received 24 August 1992, in final form 17 March 1993)

fL=gplaz* (14)

The multiplication of the signal with the inverse of the
covariance matrix i1s seen to weight the fingerprint
components f ,in the EOF frame relative to the signal
components g, by the inverse o;% of the EOF vari-
ances, thereby slewing the fingerprint vector away from
the EOF directions with high noise levels toward the
low-noise directions.
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depth

Stochastic climate model (Hasselmann, 1976)
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Figure 8.4: Schematic picture of mixed layer in the ocean. collision with molecules



294 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 59 - Spectrum of Stochastic Climate Model

Imagine that the temperature of the ocean mixed layer of depth h is governed by

dT
— = AT+ , (8.17)

where coefficient v is given by the heat capacity c,ph, and A is the typical damping rate of a
temperature anomaly. The air-sea fluxes due to weather systems are represented by a white-noise
process Qner = Qwei“’t where Qw is the amplitude of the random forcing at frequency w and
Q* is the complex conjugate. Remember that (,,; can be described through its distribution and
its correlation properties: a Gaussian distribution of zero average < Q,.: >= 0 and d-correlated
in time < Qpet(t)Qnet(t + 7) >= 6(7) The brackets indicate an average over realizations of

the random force. The spectrum of a process x is defined as

e

S(w) = (#3") = Covn(r) = /R exp(iwr)Cov, (T)dr (8.18)



1. Calculate Sg(w) and describe why Q. is called a white noise process.

2. Solve Eq. 8.17 for the temperature response T = T:,e* and hence show that:

. (8.19)
Yo (A + tw)
3. Show that it has a spectral density Tw’f“: is given by:

TT* = — i (8.20)

Yo (A% + w?)

and the spectrum

A 1

S(w) =<TT* >= (8.21)

76 (A2 + w?)
The brackets < --- > denote the ensemble mean. Make a sketch of the spectrum using a

log-log plot and show that fluctuations with a frequency greater than A are damped.
4. Calculate the spectrum of a regular oszillation with noise. How does the spectrum changes

when you rectify the signal?
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Figure 8.9: Powerspectrum of atmospheric temperature and sea surface temperature. Here 1/ =
300 days from equation (8.43).



Sea Surface Temperatures
Alkenone Records

76 277

160

155

272 2713 274 215 2

15

110

o 3
o
JT96-0909 ' = ODP 1017E
48.91°N pe 34.54°N | 1M0D;I77°1’?4
126.89°W 121.11°W AT
@ ~ - 75.23°
=1 & ~
I & by
pet «
o 3
& ? 2
N
& ©
@ +H
< o B
~ &
\ g .
= e By
& &
ODP 1019C ~
A1.68°N GeoB 58442 o M350034 H ODP 1078C
124.93°W 27.71°N K 12.08°N ~ 11.92°S
34.68°F » 61.25°W 13.40°E
2
&
179402 §~

25 105

20.12°N
117.38°E

20

215

210

295

N

E

e

g

-]

S

@

o e

b g

&

~ <

Pt bl

& g

o

< N

& &
SSDP-102 o KNR176-JPC32
34.95°N & 2 4.85°N
128.88°F & & 77.96°W

&

1

2]

X

290
25
255

260

3 MDO02-2529 & GeoB 49054 MD01-2412
X 8.21°N 2.50°N 44.53°N
84.12°w 9.39°E 145.04°E

28 250

Lohmann et al., 2013, CP

<@

PNal

I o
3l
&

=

N3l e

I
@
N
&

22

V19.27

o 0.47°S 3.38°S T
q] 82.07°W 83.52°W .
o ~
o ~
& & T
1

o
o

o
o
o
o
o

2 3 4 2 3 4 2 3 4
Time (kyr BP) Time (kyr BP) Time (kyr BP)



Marine temperature trends (last 6000 years)
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Marine temperature variability

(annual to millennial time scales)

Power spectrum
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Current climate models seem to underestimate long-term variability

Laepple and Huybers, 2014; GRL, PNAS



Climate variability and sensitivity are related

Stochastic climate model

dT | |
dt — AT + Noise+ Forcing
A
Power spectrum Response oo low
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(Fluctuation Dissipation Theorem) Lohmann 2018



How realistic is the model?
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Energy balance model: Concepts of climate

(1 —a)STR* = 4rR*e0T"

incoming energy from the Sun  outgoing energy from the Earth

Heat capacity of the climate system

Fast rotation
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a TR2
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Lohmann, 2020
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Simulated years per day

Scalability
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Limited by available HPC capabilities (today)
Limited by our ability to use future HPC systems (tomorrow)

Parameterizations

Some critical small-scale processes are not represented by the laws of
physics, but by physically motivated rules of thumb (parametrizations)

=> Large uncertainties in regional (global) climate change projections
-> Limitations in predicting extreme events



So what’s the issue then? @*NVI
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