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"for the physical modelling of Earth's climate, quantifying variability
and reliably predicting global warming"

"for groundbreaking contributions to our understanding of complex systems" 
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Increased levels of carbon 
dioxide lead to higher 
temperatures in the lower 
atmosphere, while the upper 
atmosphere gets colder. 
Manabe thus confirmed that 
the variation in temperature 
is due to increased levels of 
carbon dioxide; if it was 
caused by increased solar 
radiation, the entire atmosp-
here should have warmed up.

Temperature at the surface 
fell by 2.28°C when the level 
of carbon dioxide halved. 
It increased by 2.36°C when 
the level of carbon dioxide 
doubled.
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Source: Manabe and Wetherald (1967) Thermal equilibrium of the atmosphere with a given 
distribution of relative humidity, Journal of the atmospheric sciences, Vol. 24, Nr 3, May.
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The “Climate dilemma“

• Instrumental data are sparce

• The records of direct temperature measurements are short
and already fall in the phase of strong human influence.

• For the time before instrumental records, one has to rely on
information from proxy data and modeling.

The instrumental record: 

(thermometers, barometers, anemometers, oh my!)

http://www.ncdc.noaa.gov/img/climate/research/ghcn/ghcnv2.mean.gif
http://www.weather.gov/timeline

TOOL #1: FANCY WEATHER INSTRUMENTS
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Marine sediment
records

Earth System: Reconstructions

Polarstern, marine sediments

noble gas concentrations

52 Mio years ago



Earth System Analysis: Models
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We know the governing equations
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Vilhelm Bjerknes



John von Neumann

We know how to solve them numerically!

ENIAC
The first multipurpose electronic computer (1946)





Attribution (model world)
greenhouse gas emissions

no greenhouse gas emissions

observed changes are consistent with 
modeled response to external forcing, 
inconsistent with alternative explanations

Nobel Price, 2021
Hasselmann



Attribution (model world)
greenhouse gas emissions

no greenhouse gas emissions

observed changes are consistent with 
modeled response to external forcing, 
inconsistent with alternative explanations

Critics:
• Time series too short
• Estimates of natural variability

based only on models
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276 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)

with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L
�1

{F (s)}(t) = L
�1

⇢
< T (0) >

s + �
+

c

s
·

1

s + �

�
(8.45)

= T (0) · exp(��t) +
c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Noise Forcing
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Stochastic climate model (Hasselmann, 1976)

microscope

particles
light

Disorderly, random motion
collision with molecules



https://paleodyn.uni-bremen.de/study/Dyn2/dyn2script_full.pdf
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Lohmann et al., 2013, CP 

Sea Surface Temperatures
Alkenone Records



Marine temperature trends  (last 6000 years)
5

Alkenone-based temperature trends

Annual mean sea surface temperature trends
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Marine temperature variability                 
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Power spectrum

Laepple and Huybers, 2014; GRL, PNAS

Current climate models seem to underestimate long-term variability

6(annual to millennial time scales)



Climate variability  and sensitivity are related

Power spectrum
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Stochastic climate model
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Forcing

Response too low

Damping too high 
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function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)

with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L
�1

{F (s)}(t) = L
�1

⇢
< T (0) >

s + �
+

c

s
·

1

s + �

�
(8.45)

= T (0) · exp(��t) +
c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
Variance too low

Lohmann 2018(Fluctuation Dissipation Theorem)
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Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).
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the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus

have only one dependent variable: the Earth’s near-surface air temperature T.

With the development of computer capacities, simpler models have not disappeared;

on the contrary, a stronger emphasis has been given to the concept of a hierarchy of

models’ as the only way to provide a linkage between theoretical understanding and

the complexity of realistic models (von Storch et al., 1999; Claussen et al., 2002). In

contrast, many important scientific debates in recent years have had their origin in the

use of conceptually simple models (Le Treut et al., 2007; Stocker, 2011), also as a way

to analyze data (Köhler et al., 2010) or complex models (Knorr et al., 2011).

Pioneering work has been done by North (North, 1975a,b, North et al., 1981, 1983)

and these models were applied subsequently (e.g., Ghil, 1976; Su and Hsieh, 1976;

Ghil and Childress, 1987; Short et al., 1991; Stocker et al., 1992). Later the EMBs

were equipped by the hydrological cycle (Chen et al., 1995; Lohmann et al., 1996;

Fanning and Weaver, 1996; Lohmann and Gerdes, 1998) to study the feedbacks in

the atmosphere-ocean-sea ice system. One of the most useful examples of a simple,

but powerful, model is the one-/zero-dimensional energy balance model. As a starting

point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced

(Fig. 1)

(1� ↵)S⇡R2 = 4⇡R2
✏�T

4 (1)

where the left hand side represents the incoming energy from the Sun (size of the disk=

shadow area ⇡R
2) while the right hand side represents the outgoing energy from the

Earth (Fig. 1). T is calculated from the Stefan-Boltzmann law assuming a constant

radiative temperature, S is the solar constant - the incoming solar radiation per unit

area– about 1367Wm
�2, ↵ is the Earth’s average planetary albedo, measured to be

0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8JK�4m�2s�1, and ✏ is the e↵ective emissivity of Earth (about 0.612) (e.g.,

Archer, 2010). The geometrical constant ⇡R2 can be factored out, giving

(1� ↵)S = 4✏�T 4 (2)

Solving for the temperature,

T =
4

s
(1� ↵)S

4✏�
(3)

Since the use of the e↵ective emissivity ✏ in (1) already accounts for the greenhouse

e↵ect we gain an average Earth temperature of 288 K (15�C), very close to the global

temperature observations/reconstructions (Hansen et al., 2011) at 14�C for 1951-1980.

Interestingly, (3) does not contain parameters like the heat capacity of the planet. We

will explore that this is essential for the temperature of the Earth’s climate system.

2. A closer look onto the spatial distribution

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

✏�T
4 = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4)
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Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).
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Heat capacity of the climate system

Fast rotation

Energy balance model: Concepts of climate
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where ' and ⇥ are the latitude and longitute, respectively. Integration over the Earth

surface is
⇡/2Z

�⇡/2

0

@
2⇡Z

0

✏�T
4
R cos'd⇥

1

ARd' = (1� ↵)S

⇡/2Z

�⇡/2

R cos2 'd' ·
⇡/2Z

�⇡/2

R cos⇥d⇥

✏�R
24⇡

4⇡

⇡/2Z

�⇡/2

0

@
2⇡Z

0

T
4 cos'd⇥

1

A d' = (1� ↵)SR2

⇡/2Z

�⇡/2

cos2 ' d'

| {z }
⇡
2

·
⇡/2Z

�⇡/2

cos⇥ d⇥

| {z }
2

✏�4⇡T 4 = (1� ↵)S ⇡ (5)

giving a similar formula as (3) with the definition for the average T 4.

What we really want is the mean of the temperature T . Therefore, we take the

fourth root of (4):

T =
4

s
(1� ↵)S cos' cos⇥

✏�
⇥ 1[�⇡/2<⇥<⇡/2](⇥) . (6)

If we calculate the zonal mean of (6) by integration at the latitudinal cycles we have

T (') =
1

2⇡

�⇡/2Z

�⇡/2

4

s
(1� ↵)S cos' cos⇥

✏�
d⇥

=

p
2

2⇡

⇡/2Z

�⇡/2

(cos⇥)1/4d⇥

| {z }
2.700

4

s
(1� ↵)S

4✏�
(cos')1/4

= 0.608 · 4

s
(1� ↵)S

4✏�
(cos')1/4 (7)

as a function on latitude (Fig. 2). When we integrate this over the latitudes, we obtain

T =
1

2

⇡/2Z

�⇡/2

T (') cos' d'

=
0.608

2
· 4

s
(1� ↵)S

4✏�

⇡/2Z

�⇡/2

(cos')5/4d'

| {z }
1.862

= 0.4
p
2

4

s
(1� ↵)S

4✏�
= 0.566

4

s
(1� ↵)S

4✏�
(8)

Therefore, T = 163K is a factor 0.566 lower than 288 K as stated at (1). The standard

EBM in Fig. 1 has imprinted into our thoughts and lectures. We should therefore be

careful and pinpoint the reasons for the failure.

What happens here is that the heat capacity of the Earth is neglected. During

night, the temperature is very low and there is a strong non-linearity of the outgoing
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Figure 2. Latitudinal temperatures of the EBM with zero heat capacity (7) in cyan
(its mean as a dashed line), the global approach (3) as solid black line, and the zonal
and time averaging (11) in red. The dashed brownish curve shows the numerical
solution by taking the zonal mean of (9).

EBM

Lohmann, 2020

Heat capacity of the climate system

Fast rotation



Scalability

Koldunov et al (2019)

Some critical small-scale processes are not represented by the laws of 
physics, but by physically motivated rules of thumb (parametrizations)

➔ Large uncertainties in regional (global) climate change projections
➔ Limitations in predicting extreme events

Limited by available HPC capabilities (today)
Limited by our ability to use future HPC systems (tomorrow)

Parameterizations



So what‘s the issue then?

Rackow et al. (2019)

North Atlantic Ocean temperature biases

Based on 13 CMIP5 models




