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The “Climate dilemma“

• Instrumental data are sparce

• The records of direct temperature measurements are short
and already fall in the phase of strong human influence.

• For the time before instrumental records, one has to rely
on information from proxy data and modeling.

The instrumental record: 

(thermometers, barometers, anemometers, oh my!)

http://www.ncdc.noaa.gov/img/climate/research/ghcn/ghcnv2.mean.gif
http://www.weather.gov/timeline

TOOL #1: FANCY WEATHER INSTRUMENTS
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Motivation: Observational Record
Temperature anomaly [°C]

1

Uncertainty largely due to missing
information at high latitudes

Temperature Anomaly 1930
White areas: not enough data



Motivation: Observational Record
Temperature anomaly [°C]
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Uncertainty largely due to missing
information at high latitudes

Temperature Anomaly 1930
White areas: not enough data

Climate variability beyond the instrumental record:
Decadal, centennial, millennial
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Proxy Data
• Indirect data, often qualitative
• Long time series from archives
• Information beyond the instrumental record



Climate records from 
ice cores

Lake/permafrost
sediment records

Marine sediment
records

Earth System: a polar perspective

Ice drilling camp, 2009 Polarstern, marine sediments Lake/permafrost sediments



Deglaciation – Greenland ice core

Grootes et al. 2000
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Deglaciation



Atmospheric Gas Concentrations from Ice Cores

Time  (Thousands of Years Before Present)

400

EPICA 2008



Eccentricity



Precession of the 
axis of the earth
Year:



Wanderung des Himmelspols



Orbital forcing

• ~20,000, ~40,000, ~100,000 years
• 0.5, 1 year
• Tides
• Geometry of the Sun-Earth configuration (& Moon)



Strahler, 2002 

The seasons



Wieder, 1982

The Earth‘s orbit

mean orbital distance a = 150 Mio km  
eccentricity e = 0.0167 (shown exaggerated)

r = a +/- 2%
Keppler

Conservation of
angular momentum
L = r x p since r || F



Sunspots
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Dissipative Systems (as atmosphere & ocean) cannot
maintain large gradients on long time scales
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Earth System Analysis: Models
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Attribution (model world)
greenhouse gas emissions

no greenhouse gas emissions

observed changes are consistent with 
modeled response to external forcing, 
inconsistent with alternative explanations

Nobel Price, 2021



Attribution (model world)
greenhouse gas emissions

no greenhouse gas emissions

observed changes are consistent with 
modeled response to external forcing, 
inconsistent with alternative explanations

Critics:
• Time series too short
• Estimates of natural variability

based only on models



The incoming solar energy northern hemisphere 7 % 
greater in July and correspondingly less in January.

Kutzbach (1992) 

Perihelion (closest point) 

in January

Tilt of the earth‘s axis: 23.5°

Perihelion in July

Tilt of the earth‘s axis: 
24.0°

Configuration of the Earth‘s orbit: Examples

9000 years ago

Today 



The incoming solar energy in the northern hemisphere 7 % greater in July
and correspondingly less in January.

Kutzbach (1992) 

Perihelion (closest point) 

in January

Tilt of the earth‘s axis: 23.5°

Perihelion in July

Tilt of the earth‘s axis: 
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Insolation (6k minus present)



Movement of Intertropical 
Convergence Zone (ITCZ)

Monsoon

Insolation effect on African climate

9-6 ky



Alkenone Records + Trends

Lohmann et al., 2013 



Model SST at core locations



Marine temperature trends  (last 6000 years)
5

Alkenone-based temperature trends

Annual mean sea surface temperature trends

Lohmann et al., 2013, CP 
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276 CHAPTER 8. BROWNIAN MOTION, WEATHER AND CLIMATE

Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)

with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L
�1

{F (s)}(t) = L
�1

⇢
< T (0) >

s + �
+

c

s
·

1

s + �

�
(8.45)

= T (0) · exp(��t) +
c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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Response 
too low



Marine temperature variability                 
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Power spectrum

Laepple and Huybers, 2014; GRL, PNAS

Current climate models seem to underestimate long-term variability

6(annual to millennial time scales)



Power spectrum
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Noise Forcing
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Stochastic climate model (Hasselmann, 1976)

Relaxation, Rubber band microscope

particles
light

Disorderly, random motion
collision with molecules



Climate variability  and sensitivity are related

Power spectrum
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Stochastic climate model
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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model
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Forcing

Response too low

Damping too high 
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Variance too low

under review(Fluctuation Dissipation Theorem)



PMIP2,  ~3° resol

PMIP3, ~2° resol

Climate model
ECHAM6-FESOM

Downscaling Ocean

Holocene SST -Trends 6000 years: high resolution

AWI-CM



Displayed on a common 1/4o mesh

CMIP5 mesh

Satellite

CMIP6 (HiRes) mesh

Frontier mesh

Indistinguishable from observations!  

How realistic is the model?

Ocean velocity



Scalability

Koldunov et al (2019)

Limited by available HPC capabilities (today)
Limited by our ability to use future HPC systems (tomorrow)



Scalability

Koldunov et al (2019)

Some critical small-scale processes are not represented by the laws of 
physics, but by physically motivated rules of thumb (parametrizations)

➔ Large uncertainties in regional (global) climate change projections
➔ Limitations in predicting extreme events

Limited by available HPC capabilities (today)
Limited by our ability to use future HPC systems (tomorrow)

Parameterizations



Is the warming and CO2 rise unprecedented in the geologic record? 



Lohmann et al., 2020b



Lohmann et al., 2020b

Temperature gradient



Temperatures from EBMs: the e↵ective heat capacity matters 10

Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).

Temperatures from EBMs: the e↵ective heat capacity matters 2

the climate’s dependence on the wind field, ocean currents, the Earth rotation, and thus

have only one dependent variable: the Earth’s near-surface air temperature T.

With the development of computer capacities, simpler models have not disappeared;

on the contrary, a stronger emphasis has been given to the concept of a hierarchy of

models’ as the only way to provide a linkage between theoretical understanding and

the complexity of realistic models (von Storch et al., 1999; Claussen et al., 2002). In

contrast, many important scientific debates in recent years have had their origin in the

use of conceptually simple models (Le Treut et al., 2007; Stocker, 2011), also as a way

to analyze data (Köhler et al., 2010) or complex models (Knorr et al., 2011).

Pioneering work has been done by North (North, 1975a,b, North et al., 1981, 1983)

and these models were applied subsequently (e.g., Ghil, 1976; Su and Hsieh, 1976;

Ghil and Childress, 1987; Short et al., 1991; Stocker et al., 1992). Later the EMBs

were equipped by the hydrological cycle (Chen et al., 1995; Lohmann et al., 1996;

Fanning and Weaver, 1996; Lohmann and Gerdes, 1998) to study the feedbacks in

the atmosphere-ocean-sea ice system. One of the most useful examples of a simple,

but powerful, model is the one-/zero-dimensional energy balance model. As a starting

point, a zero-dimensional model of the radiative equilibrium of the Earth is introduced

(Fig. 1)

(1� ↵)S⇡R2 = 4⇡R2
✏�T

4 (1)

where the left hand side represents the incoming energy from the Sun (size of the disk=

shadow area ⇡R
2) while the right hand side represents the outgoing energy from the

Earth (Fig. 1). T is calculated from the Stefan-Boltzmann law assuming a constant

radiative temperature, S is the solar constant - the incoming solar radiation per unit

area– about 1367Wm
�2, ↵ is the Earth’s average planetary albedo, measured to be

0.3. R is Earth’s radius = 6.371 ⇥ 106 m, � is the Stefan-Boltzmann constant =

5.67 ⇥ 10�8JK�4m�2s�1, and ✏ is the e↵ective emissivity of Earth (about 0.612) (e.g.,

Archer, 2010). The geometrical constant ⇡R2 can be factored out, giving

(1� ↵)S = 4✏�T 4 (2)

Solving for the temperature,

T =
4

s
(1� ↵)S

4✏�
(3)

Since the use of the e↵ective emissivity ✏ in (1) already accounts for the greenhouse

e↵ect we gain an average Earth temperature of 288 K (15�C), very close to the global

temperature observations/reconstructions (Hansen et al., 2011) at 14�C for 1951-1980.

Interestingly, (3) does not contain parameters like the heat capacity of the planet. We

will explore that this is essential for the temperature of the Earth’s climate system.

2. A closer look onto the spatial distribution

Let us have a closer look onto (1). The local radiative equilibrium of the Earth is

✏�T
4 = (1� ↵)S cos' cos⇥ ⇥ 1[�⇡/2<⇥<⇡/2](⇥) (4)

Temperatures from EBMs: the e↵ective heat capacity matters 10

Figure 1. Schematic view of the energy absorbed and emitted by the Earth following
(1). Modified after Goose (2015).

Lohmann, 2020

Heat capacity of the climate system

Fast rotation

Energy balance model: Concepts of climate



Our current warming: mainly in the ocean

Effective heat capacity/heat uptake

5

giving the equilibrium solution

T̃ (') = 4
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shown in Fig. 2 as the read line with the mean
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Therefore, T̃ = 285 ⇡ 288 K, very similar as in (1). A numerical solution of
(9) is shown as the brownish dashed line in Fig. 2 where the diurnal cycle has
been taken into account and Cp = C

a
p has been chosen as the atmospheric

heat capacity

C
a
p = cpps/g = 1004 JK�1

kg
�1 · 105Pa/(9.81ms

�2) = 1.02 · 107JK�1
m

�2

which is the specific heat at constant pressure cp times the total mass ps/g. ps
is the surface pressure and g the gravity. The temperature T is 286 K, again
close to 288 K.

The e↵ect of heat capacity is systematically analyzed in Fig. 3. The tem-
peratures are relative insensitive for a wide range of Cp. We find a severe drop
in temperatures for heat capacities below 0.01 of the atmospheric heat ca-
pacity C

a
p . We find furthermore a pronounced temperature drop during night

for low values of heat capacities and for long days (e.g. 240 h instead of 24
h) a↵ecting the zonal temperatures (4.5 K colder at the equator). It is an
interesting thought experiment what would happen if the length of the day-
light/night would change. The analysis shows that the e↵ective heat capacity
is of great importance for the temperature, this depends on the atmospheric
planetary boundary layer (how well-mixed with small gradients in the vertical)
and the depth of the mixed layer in the ocean. To make a rough estimate of
the involved mixed layer, one can see that the e↵ective heat capacity of the
ocean is time-scale dependent. A di↵usive heat flux goes down the gradient of
temperature and the convergence of this heat flux drives a ocean temperature
tendency:

C
o
p@tT = �@z(k

o
@zT ) (13)

where kv = k
o
/C

o
p is the oceanic vertical eddy di↵usivity in m

2
s
�1 , and C

o
p

the oceanic heat capacity relevant on the specific time scale. The vertical eddy
di↵usivity kv can be estimated from climatological hydrographic data (Olbers
et al. 1985; Munk and Wunsch 1998) and varies roughly between 10�5 and
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Our current warming is

mainly a warming of the ocean

Effective heat capacity/heat uptake

Temperatures from EBMs: the e↵ective heat capacity matters 14

a)

b)

Figure 5. a) Anomalous near surface temperature for the vertical mixing experiment
relative to the control climate. b) Vertical temperature anomaly (zonal mean). Shown
is the annual mean of a 100 year mean after 900 years of integration using the Earth
system model COSMOS. Units are �C. Note the di↵erent scales.

Increased k leads to high latitude warming

& pronounced warming at the thermocline.

Potential solution for the Cenozoic temperature
conundrum

Lohmann, 2020
Lohmann, accepted 2021
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Tidal-induced mixing

After considering ice shelves, the 
strength of  tide will decrease 
significantly during the LGM: kv

PI

LGM

LGM
modified

M2-mode



Shallow 
ice cores



Upscaling concept

Climate archives Climate variabiliy

Lohmann, 2007 

Ice cores

sediments

corals

Decadal
mode





Statistics

Covariance (cross, auto)

g(D) = E (( x (t) - x ) ( y (t + D) – y ))
e.g. coral e.g. meteorol. data

Correlation (cross, auto)

rxy =                
measures the tendency of x (t) and y (t) to covary, between -1 and 1

g(D)
normalized

Spectrum (cross, auto)
(spectral density)

G(w) =S   g (D) e-2piD
D=-

measures variance

8
8

covariance is a measure of how much two random variables change together



Climate Modes from Proxy Data
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Composite Map of SST [°C] and 925 hPa wind [m/s]         
for 1948 -1995, January - February  

mechanistic understanding



Exercise teleconnections
using http://climexp.knmi.nl

1) Monthly climate indices (temp, precip, ...)
a) Select one pre-defined index
b) Correlation with temperature, precipiation, SLP
c) Explain the teleconnections for different seasons

2) Home town climate
a) Calculate different regions on the world
(home town, Bremerhaven has 53°N, 8° E)
b) Correlation with temperature, precipiation, SLP
c) Explain the teleconnections for different seasons
d) Exlain related modes of climate variability
(ENSO, PDO, NAO, Monsoon)







....  Or select a position





Solstice
Solstice (“sun stands still”)
On June 22, the subsolar point is 23½°N (Tropic of Cancer)
On Dec. 22, the subsolar point is 23½°S (Tropic of Capricorn)

Strahler, 2002



Earth’s obliquity oscillates between 22.1° and 24.5° on a 41,000-year cycle. 
The Earth radius a=6371 

Highway in Mexico

Effect of obliquity on the position Tropic of Cancer 

?

How many meters per year? 





High-resolution modelling of the jet stream
and associated extreme events in Europe

Assessment of resolution impact on the jet stream in the Euro-Atlantic region

Blocking frequency
Greenland Ice cores

H

Decadal-centennial
variability

1300  1400  1500  1600  1700  1800 1900  2000

Continous
Frost days

Rimbu and Lohmann, 2011



Past climates help us to understand the climate system as a whole

To elaborate processes (first and second order)

Test hypotheses by scenarios and comparing model results to data

Holocene: High latitude cooling, low-latitude warming
Models and data disagree in amplitude, variability underestimated (fdt)

Dynamics: Heterogeneities in temperature, 
large gradients can persist on long time scales

Interpretation of proxy data: Seasonal to syonptic signatures
Bring the current climate into a long-term context, extremes

Climate variability across time scales: 
challenges from limited instrumental, 
paleoclimate data and modeling


