Paleoclimate dynamicsidentifying driving mechanisms of climate change

POLMAR course 2023

Gerrit Lohmann

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Climate Trends at different Timescales

Temperature of the last **150 years** (instrumental data)

Arctic Sea Ice retreat

Arctic Sea Ice retreat

Missing Information about Sea Ice

The "Climate dilemma"

• Instrumental data are **sparce**

The "Climate dilemma"

• Instrumental data are **sparce**

• The records of direct temperature measurements are **short** and already fall in the phase of strong **human influence**.

The "Climate dilemma"

• Instrumental data are **sparce**

• The records of direct temperature measurements are **short** and already fall in the phase of strong **human influence**.

 For the time before instrumental records, one has to rely on information from proxy data and modeling.

Motivation: Observational Record

Temperature Anomaly 1930 White areas: not enough data

Motivation: Observational Record

Temperature Anomaly 1930 White areas: not enough data

Climate variability beyond the instrumental record: Decadal, centennial, millennial

ALI

Shallow ice cores

Proxy Data

- Indirect data, often qualitative
- Long time series from archives
- Information beyond the instrumental record

Earth System: a polar perspective

Ice drilling camp, 2009

Polarstern, marine sediments

Lake/permafrost sediments

Climate Trends at different Timescales

Deglaciation – Greenland ice core

Deglaciation

Atmospheric Gas Concentrations from Ice Cores

EPICA 2008

Orbital forcing

- ~20,000, ~40,000, ~100,000 years
- 0.5, 1 year
- Tides
- Geometry of the Sun-Earth configuration (& Moon)

The seasons

The Earth's orbit

Spatio-Temporal Scales

Dissipative Systems (as atmosphere & ocean) cannot maintain large gradients on long time scales

Earth System Analysis: Models

$$\begin{aligned} \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} &= -2\Omega \times \mathbf{v} - \frac{1}{\rho} \nabla p + \mathbf{g} + \mathbf{F} \\ \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} &= 0 \\ \frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T - \frac{p}{\rho^2} \frac{d\rho}{dt} = Q \end{aligned}$$

Attribution (model world)

observed changes are consistent with modeled response to external forcing, inconsistent with alternative explanations

Attribution (model world)

observed changes are consistent with modeled response to external forcing, inconsistent with alternative explanations

Critics:

- Time series too short
- Estimates of natural variability based only on models

Configuration of the Earth's orbit: Examples

Perihelion (closest point)

in January

Tilt of the earth's axis: 23.5°

Configuration of the Earth's orbit: Examples

Perihelion (closest point)

in January

24.0°

Tilt of the earth's axis: 23.5°

Perihelion in July Tilt of the earth's axis: N 9000 years ago 21 June 21 December S Large tilt S

The incoming solar energy in the northern hemisphere 7 % greater in July and correspondingly less in January.

Insolation (6k minus present)

Insolation effect on African climate

Movement of Intertropical Convergence Zone (ITCZ)

Monsoon

9-6 ky monsoonal maximum

Alkenone Records + Trends

Model SST at core locations

Marine temperature trends (last 6000 years)

Annual mean sea surface temperature trends

Alkenone-based temperature trends

Marine temperature trends (last 6000 years)

Alkenone-based temperature trends

Marine temperature variability

(annual to millennial time scales)

Current climate models seem to underestimate long-term variability

Laepple and Huybers, 2014; GRL, PNAS

Stochastic climate model (Hasselmann, 1976)

$$rac{dT}{dt} = -\lambda T + ext{Noise} + ext{Forcing}$$

Disorderly, random motion collision with molecules

Climate variability and sensitivity are related

Stochastic climate model

$$rac{dT}{dt} = -\lambda T + ext{Noise} + ext{Forcing}$$

Variance too low

(Fluctuation Dissipation Theorem)

under review

Holocene SST -Trends 6000 years: high resolution

PMIP2, ~3° resol

PMIP3, ~2° resol

Climate model ECHAM6-FESOM

Downscaling Ocean

How realistic is the model?

Ocean velocity

Scalability

Koldunov et al (2019)

Limited by available HPC capabilities (today)

Limited by our ability to use future HPC systems (tomorrow)

Scalability

Koldunov et al (2019)

Limited by available HPC capabilities (today)

Limited by our ability to use future HPC systems (tomorrow)

Parameterizations

Some critical small-scale processes are *not* represented by the laws of physics, but by physically motivated rules of thumb (parametrizations)

→ Large uncertainties in regional (global) climate change projections

→ Limitations in predicting extreme events

Is the warming and CO₂ rise unprecedented in the geologic record?

Natural variability and perturbed climate

Lohmann et al., 2020b

Lohmann et al., 2020b

Energy balance model: Concepts of climate

Heat capacity of the climate system

Fast rotation

Lohmann, 2020

Our current warming: mainly in the ocean

Effective heat capacity/heat uptake

$$C_p^o \partial_t T = \ \partial_z (k^o \partial_z T)$$

Our current warming is

mainly a warming of the ocean

Effective heat capacity/heat uptake

 $C_p^o \partial_t T = \ \partial_z (k^o \partial_z T)$

Increased k leads to high latitude warming & pronounced warming at the thermocline.

Potential solution for the Cenozoic temperature conundrum

Lohmann, 2020 Lohmann, accepted 2021

Tidal-induced mixing

M2-mode

After considering ice shelves, the strength of tide will decrease significantly during the LGM: k_v

ALI

Shallow ice cores

Upscaling concept

Climate variabiliy

Lohmann, 2007

Statistics

covariance is a measure of how much two random variables change together

$$\rho_{xy} = \frac{\gamma(\Delta)}{\text{normalized}}$$

measures the tendency of x (t) and y (t) to covary, between -1 and 1

 $\frac{\text{Spectrum (cross, auto)}}{(\text{spectral density})}$ $\Gamma(\omega) = \sum_{\Delta = \infty}^{\infty} \gamma (\Delta) e^{-2\pi i \Delta}$ measures variance

Climate Modes from Proxy Data

ARCTIC OSCILLATION SIGNATURE IN A RED SEA CORAL

ARCTIC OSCILLATION SIGNATURE IN A RED SEA CORAL

mechanistic understanding

Exercise teleconnections using http://climexp.knmi.nl

- 1) Monthly climate indices (temp, precip, ...)
- a) Select one pre-defined index
- b) Correlation with temperature, precipiation, SLP
- c) Explain the teleconnections for different seasons

2) Home town climate

a) Calculate different regions on the world
(home town, Bremerhaven has 53° N, 8° E)
b) Correlation with temperature, precipiation, SLP
c) Explain the teleconnections for different seasons
d) Exlain related modes of climate variability
(ENSO, PDO, NAO, Monsoon)

1880-now anomalies: ONCDC v3.2.1

i > Monthly CMIP5 scenario runs

Solstice

Solstice ("sun stands still") On June 22, the subsolar point is $23\frac{1}{2}^{\circ}$ N (Tropic of Cancer) On Dec. 22, the subsolar point is $23\frac{1}{2}^{\circ}$ S (Tropic of Capricorn)

Effect of **obliquity** on the **position Tropic of Cancer**

Highway in Mexico

How many meters per year?

Earth's obliquity oscillates between 22.1° and 24.5° on a 41,000-year cycle. The Earth radius a=6371

High-resolution modelling of the jet stream and associated extreme events in Europe

Assessment of resolution impact on the jet stream in the Euro-Atlantic region

Blocking frequency Greenland Ice cores

Decadal-centennial variability

Continous Frost days

Climate variability across time scales:// challenges from limited instrumental, paleoclimate data and modeling

Past climates help us to understand the climate system as a whole To elaborate processes (first and second order) Test hypotheses by scenarios and comparing model results to data

Holocene: High latitude cooling, low-latitude warming Models and data disagree in amplitude, variability underestimated (fdt)

Dynamics: Heterogeneities in temperature, large gradients can persist on long time scales

Interpretation of proxy data: Seasonal to syonptic signatures Bring the current climate into a long-term context, extremes