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1 Fundamentals

1.1 Principles of mathematical modeling

Concept of a mathematical model

Definition 1.1. A mathematical model is a description of a system us-
ing mathematical concepts and language. This description is given by
specifying a set of governing equations supplemented by appropriate
boundary and initial conditions.
The governing equations express the relationships between the state vari-
ables of the system (i.e. those that completely describe the mathematical
’state’ of the model) and may also depend on empirical parameters, ran-
dom variables, or other inputs.

Modeling: Workflow diagram and error sources

Practical application

⇓

Physical model & parameters

⇓

Mathematical model

⇓

Numerical scheme
(discretization)

⇓

Computer code
(implementation)

⇓

Useful solution

Physical and mathematical models
are idealized representations of some
important features of a real system.
Differences in the values of state vari-
ables between the model and the real
system are called modeling error.

Differences between the analytical so-
lution of the mathematical model
and that of its discretization are
called discretization or trunca-
tion error.

Errors arising from rounding effects
due to storing and manipulating real
numbers using computer arithmetic
are called round-off error.
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Modeling: Example application
Computation of movement of a pendulum

• L: Length of the pendulum arm

• m: Mass of the pendulum

• g: Acceleration of free fall

• G = mg: Gravity force

• θ: Angle of deviation

• FR = G sin θ: Restoring force

θ

F R

.

G

L

Modeling: Physical model

Assumptions

• Mass point instead of pendulum head

• Pendulum arm – zero mass, zero deformation

• No air resistance (vacuum) and no friction in the pendulum arm

Physical laws and parameters

• Gravitational acceleration at Earth’s surface g ≈ 9.8 [m/s2]

• Angular velocity ω(t) = θ′(t)

• Velocity of the pendulum is given by v(t) = Lω(t)

• Acceleration of the pendulum is given by v′(t) = Lω′(t) = Lθ′′(t)

• Restoring force FR(t) = −mg sin θ(t)

• On the other hand: FR(t) = mv′(t) = mLθ′′(t) (Newton’s 2nd law)

Modeling: Mathematical model
Putting everything together gives an ordinary differential equation
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(ODE)

θ′′(t) = − g
L

sin θ(t)

that also needs initial conditions:

θ(0) = θ0 θ′(0) = ω(0) = ω0 .

Remark 1.2. This differential equation does not have a solution θ(t)
expressible in terms of elementary functions (which is the case for many
ODEs). Therefore this equation can only be solved numerically.

Modeling: Discretization

• Approximate θ′(t) and ω′(t) by differential quotients (with a small h >
0)

θ′(t) ≈ θ(t+ h)− θ(t)
h

, ω′(t) ≈ ω(t+ h)− ω(t)

h
.

• On the other hand, we know that θ′(t) = ω(t) , ω′(t) = − g
L

sin θ(t) .

• Now, using the explicit Euler method we can compute from
(θ(t), ω(t)) an approximation to (θ(t+ h), ω(t+ h)):

θ(t+ h) ≈ θ(t) + hω(t)

ω(t+ h) ≈ ω(t) + h
(
− g
L

sin θ(t)
)

Modeling: Computer program

function pendel

theta0 = 0; omega0 = 6.23; T = 10; N = 10000;

[theta, time, omega] = stabpendel(theta0, omega0, T, N);

plot(time,theta);

end

function [theta, time, omega] = stabpendel(theta0, omega0, T, N)

g=9.81; L=1.0; h = T/N;

time = zeros(N, 1); theta = zeros(N, 1); omega = zeros(N, 1);
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theta(1) = theta0; omega(1) = omega0;

for i = 1 : N

time(i+1) = time(i)+h;

theta(i+1) = theta(i)+h*omega(i);

omega(i+1) = omega(i)-h*g/L*sin(theta(i));

endif

end

Modeling: Verification and validation

Definition 1.3. Verification is the process of establishing the correctness
of the discretization and the computer code of a numerical model. The
main criterion is the ability of the implementation to accurately approxi-
mate the mathematical model being discretized.

• The parts affected by the verification procedure include the numerical
scheme and the computer code

• Verification procedures frequently rely on problems with known solu-
tions, convergence studies, various software checking tools, etc.

• For complex non-linear models, the method of manufactured solu-
tion is often very useful

Definition 1.4. Validation examines the fitness of the model with respect
to the intended purpose: Faithfully imitating some important features of
the real system.

• The validation process can affect all aspects of the model development
workflow:

– Physical models and assumptions behind them

– mathematical models including equations, boundary conditions,
parametrizations, etc.
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– choice of numerical method, order of the approximation scheme,
and computational mesh

– the model code including the computational performance aspects

• Validation techniques are benchmarks of various degrees of realism
and comparisons to the results of established models and observations

• A critical criterion of model’s validity is its ability to make predictions

Figure 1.1: Schematic of verification vs. validation (Goosse 2015).

Modeling: Conservation law in one dimension

x

u(x,t)

x

a u a u 
0 0 1 1 u(x, t) – concentration of dissolved

substance, a(x, t) – the flow velocity.

Consider the conservation of mass of u(x, t) in control volume ∆x:∫
∆x

u(x, t+ ∆t)dx =

∫
∆x

u(x, t)dx+

∫ t+∆t

t

(a0(τ)u0(τ)− a1(τ)u1(τ)) d τ
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⇓ /(∆x∆t)

1

∆x

∫
∆x

u(x, t+ ∆t)− u(x, t)

∆t
dx = − 1

∆t

∫ t+∆t

t

a1(τ)u1(τ)− a0(τ)u0(τ)

∆x
d τ

⇓ ∆x→ 0, ∆t→ 0

∂u

∂t
= −∂(a u)

∂x
⇔ ∂u

∂t
+
∂(a u)

∂x
= 0

Modeling: Conservation law in multiple dimensions
In the multidimensional case, the integral form of conservation law holds:

∂t

∫
Ω̃

u(x, t) dx = −
∫
∂Ω̃

a(x, t) · n(x)u(x, t) dσ +

∫
Ω̃

Q(x, t, u(x, t))dx. (1.1)

n is the exterior unit normal to ∂Ω̃, Q is sources/sinks of u.
From the Gauss theorem, one has∫

Ω̃

{∂tu(x, t) +∇ · (a(x, t)u(x, t))−Q(x, t, u(x, t))} dx = 0.

Given sufficient regularity and requiring the above to hold for arbitrary Ω̃ ⊂
Ω results in the differential form of the conservation law:

∂tu(x, t) +∇ · (a(x, t)u(x, t)) = Q(x, t, u(x, t)), x ∈ Ω, t ∈ (0, T ]. (1.2)

Modeling: Diffusion equation

Remark 1.5. Conservation laws describe the process of transport (advec-
tion, convection). Another common physical process taking place in fluids
is molecular diffusion arising from Brownian motion.

Consider now a vessel with fluid at rest. For, J (1) the diffusive flux of u,
the empirical measurements indicate (Fick’s law)

J (1) = −K∇u, (1.3)
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where K [m2/s] is the positive definite molecular diffusivity tensor.
The resulting relationship is called the diffusion equation

∂tu−∇ · (K∇u) = Q. (1.4)

The same type of equation is also used to model heat transport in solids.

Modeling: Advection-diffusion equation
If the fluid is not at rest but is stirred with given velocity a we have, in
addition, an advective (convective) flux described by

J (2) = au. (1.5)

Together, one obtains an advection-diffusion equation:

∂tu+∇ · (au−K∇u) = Q. (1.6)

For stationary processes, (1.6) becomes

∇ · (au−K∇u) = Q

and, for scalar constant K = 1, a = 0 and f := Q, independent of u, we get
the Poisson equation

−∆u = f in Ω .

Modeling: Nonlinear advection-diffusion equation
In a more general form, advection, diffusion, and source/sink terms can non-
linearly depend on u (in addition to being functions of time and spatial
coordinates)

∂tu+∇ · (A(t, x, u)−K(t, x, u,∇u)) = Q(t, x, u). (1.7)

9



Modeling: Initial and boundary conditions
To have a unique solution, time-dependent problems need initial conditions

u(x, 0) = u0(x) x ∈ Ω. (1.8)

Both, stationary and time-dependent problems need boundary conditions.
The standard boundary condition types on ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂Ω3 are

• Dirichlet – specifies the value of u

u = uD, x ∈ ∂ΩD, (1.9)

• Neumann – specifies the normal flux of u

(A(u)−K(∇u)) · n = gN , x ∈ ∂ΩN , (1.10)

• mixed (also known as Robin or Poincare) – specifies a linear combina-
tion of u and its normal flux

− (A(u)−K(∇u)) · n+ αu = g3, x ∈ ∂Ω3. (1.11)

Modeling: Analytical solution techniques

Remark 1.6. There exist analytical methods for PDEs. Classical
solutions obtained by these methods satisfy equations pointwise and
posses certain minimum regularity (e.g., u ∈ C2(Ω) for the advection-
diffusion equation).

The best-known methods are:

• Separation of unknowns followed by development into Fourier series

• Taylor series approaches

These methods work for simple (mostly linear with constant coefficients)
PDEs on standard domains (rectangles, spheres, etc.).

Remark 1.7. Nearly all problems of interest in climate (and more gen-
erally fluid dynamics) modeling can only be solved numerically!
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Modeling: Numerical methods for PDEs

Idea: Approximate the solution to the PDE that lies in some (as a rule
infinite-dimensional) function space by a series of discrete solutions
that belong to finite-dimensional function spaces and converge to the
classical solution in some norm as these discrete spaces are enlarged.

• In this context, two critical points require particular care:

– Criteria for the quality of approximation (usually in the form of a
norm)

– Choice of finite-dimensional function spaces

• Each large class of numerical methods for PDEs is characterized by
a specific combination of the above two points

• Another important decision factor is the computational efficiency
of the chosen numerical scheme

Modeling: Approximation quality – choice of the norm
Evaluating the quality of the approximation is a critical issue!

When comparing the analytical and numerical solutions one has

• two functions

• that lie (as a rule) in different function spaces

A simple example:

A BEuclidian distance

Not quite as simple example:

???
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Modeling: Approximation space – finite differences
Given a smooth function u(x)

x

u(x)

a b

the finite difference method approximates the values of u in selected nodes

x

a b

x
0

x
1

x
k-1

x
k

x
k+1

x
n-1

x
n

u
0

u
1 u

k-1

u
k

u
k+1

u
n-1 u

n

Main features of finite difference methods

• Discretizes the PDE directly (in differential form)

• Standard error norms: l∞ and l1 (discrete norms for vectors in Rn)

+ Simple to implement and analyze

+ Can produce computationally efficient and easily vectorizable code

+ High-order approximations possible (mostly by extending the stencil)

– In multidimensions generally restricted to structured grids or those that
are topologically equivalent to structured

– High-order discretizations need wider stencils impairing parallel scaling

– Solution is only available in grid nodes – evaluations at all other points
require interpolation
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Modeling: Approximation space – finite volumes

x

u(x)

a b

For a given partition of the computational domain into cells, the finite vol-
ume method approximates the mean value of the solution on each cell1.

x

a b

x
0

x
1

x
k-1

x
k

x
k+1

x
n-1

x
n

u (x)
h

Main features of finite volume methods

• Discretizes the PDE in integral form (after integration by parts)

• Standard error norm: L1(Ωh)

+ Highly suitable for unstructured meshes

+ Robust and stable for advection-dominated problems

+ Guarantee the local conservation of primary unknowns

+ Can be implemented in a computationally efficient and vectorizable
fashion

– Difficult to analyze

– High-order discretizations require reconstruction techniques with
wider stencils that

– are complicated to implement for unstructured meshes

– can affect parallel scaling
1The cell-centered finite volumes are implied here.
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Modeling: Approximation space – (classical) finite elements

x

u(x)

a b

For a given partition (triangulation) of the computational domain into el-
ements, the finite element method uses globally continuous, piecewise
polynomials of order p ≥ 1 defined on this partition as approximation.

x

a b

x
0

x
1

x
k-1

x
k

x
k+1

x
n-1

x
n

u (x)
h

Main features of classical finite element methods

• Discretize the PDE in weak (variational) form

• Standard error norm: L2(Ωh)

+ Excellent analysis framework exists based on Sobolev space theory

+ Highly suitable for unstructured meshes

± Computational efficiency is somewhere between that of the finite vol-
ume and discontinuous Galerkin methods

± High-order discretizations are possible but not trivial to stabilize and
implement

– Needs artificial stabilization for advection-dominated problems

– Does not guarantee the local conservation of primary unknowns
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Modeling: Approximation space – discontinuous Galerkin

x

u(x)

a b

The discontinuous Galerkin method works similarly to the classical finite
elements but uses globally discontinuous piecewise polynomial approxi-
mation spaces.

x

a b

x
0

x
1

x
k-1

x
k

x
k+1

x
n-1

x
n

u (x)
h

Main features of discontinuous Galerkin finite element methods

• Discretize the PDE in weak (variational) form

• Standard error norm: L2(Ωh)

+ Use the same analysis framework as the classical finite elements

+ Highly suitable for unstructured meshes, high-order discretizations, and
all types of adaptivity

+ Very robust for advection-dominated problems, the local conservation
of all primary unknowns is guaranteed

– Much more computationally expensive than the classical finite elements
of the same order

± Computational expenses can be somewhat offset by excellent parallel
scaling properties
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Questions

• What is the purpose of the verification procedure? What standard ver-
ification steps/tools do you know?

• Why is the goal of model validation, and what model parts does it
concern?

• What are the advantages/disadvantages of using analytical/numerical
solution methods for PDEs?

• What are conservation laws and why are they critically important for
climate modeling?

• Name the main selection criteria for choosing a numerical method for
a PDE-based model.

• Discuss pros and cons for the following discretization methods:

– finite differences

– finite volumes

– finite elements

– discontinuous Galerkin

1.2 Climate system

Weather and climate

Definition 1.8. • Traditionally, climate is defined as a description in
terms of mean and variability of the relevant atmospheric vari-
ables: Temperature, atmospheric pressure and humidity, precipita-
tion, cloud cover, wind

• According to the World Meteorological Organisation (WMO), 30
years is the minimum required period for performing the statistics
used to define climate; however, this period is only indicative

• In a more general sense, climate is nowadays frequently defined as
the description of the whole Earth climate system
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Remark 1.9. This contrasts the first interpretation of climate to that of
weather – the latter is usually understood as a snapshot of temperature,
pressure, etc.

Climate system: Compartments

• Ocean

• Atmosphere

• Sea ice

• Ice sheets

• Land surface

• Biosphere (consisting of marine and terrestrial parts)

Figure 1.2: Components of the climate system and their interactions (IPCC
2007).
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Climate system: Driving forces

Earth climate is a dynamic (temporally varying) system driven by the
entering energy (mostly solar) and exchanges of mass, momentum, and
energy between its components.

The dynamics of the system is strongly influenced by the following factors:

• total energy budget and its spatial and temporal distribution

• astronomical factors (Earth orbit and rotation, Sun and Moon gravity)

• hydrological (water) cycle

• cycles of major greenhouse gases (carbon dioxide, methane) and
aerosols

• geothermal forcings (volcanoes, seismic activity)

• geochemical, biogeochemical, biogeophysical, and antropogenic pro-
cesses

Climate system: Feedbacks
Earth climate is a system in dynamic equilibrium; it responds to pertur-
bations by adjusting its equilibrium state.

Definition 1.10. A special type of system response to a perturbation that
affects the perturbing factor itself is called a feedback.

Feedbacks are quantifiable and generally subdivided into two large groups:

• positive feedbacks – i.e. those that amplify the response of the system
to the initial perturbation

• negative feedbacks – i.e. those that lower the response of the system
to the initial perturbation

The main feedbacks considered in the climate research are those related to
the amount and distribution of energy. The response of the climate system
as a whole to perturbations in the energy budget must be characterized by
a negative feedback, otherwise the system would be unstable.
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Ice-albedo feedback

Example 1.11. Increase in temperature ⇒ increase in ice melt ⇒ de-
crease in ice cover / albedo ⇒ increase in absorbed solar radiation ⇒
increase in temperature

Figure 1.3: Schematic of ice-albedo feedback (Goosse 2015). +/- signs denote
the same-direction and the opposite-direction dependencies, respectively.

1.3 Climate models

Climate models: Classification

Definition 1.12. A climate model is defined as a mathematical represen-
tation of the climate system based on physical, biological, and chemical
principles.

Climate models are classified using one or more of the following criteria:

• compartments included (ocean, ocean + atmosphere, etc.)

• modeling focus (process study, general climate)

• spatial coverage (regional or global)

• temporal coverage (present-day climate, paleoclimate, projection, ...)

• number of spatial dimensions (zero-, one-, two-, or three-dimensional)

• stationary or time-varying
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Climate models: Hierarchy
In the order of decreasing complexity, the climate models roughly fall into
one the following four classes:

• general circulation models (GCM, three-dimensional)

• Earth system Models of Intermediate Complexity (EMIC, usually two-
or three-dimensional)

• box models (use boxes for compartments of climate system or large
parts of a compartment, e.g. an ocean or a continent)

• energy balance models (EBM, zero- or one-dimensional)

Climate models: General Circulation Models (GCM)

Idea: Use three-dimensional continuum-based representations of the
ocean and atmosphere enhanced by any number of additional compart-
ments.

Figure 1.4: Schematic of a General Circulation Model (Goosse 2015).
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Climate models: Specific features of GCMs

• Very large spatial extent and
often long simulation times

• Large number of physical,
chemical, and biological pro-
cesses of significance that in-
volve time scales between frac-
tions of a second (e.g., some
chemical reactions) and mil-
lennia (e.g., sedimentation)

• Limited availability of key
data, experimental model val-
idation as a rule not possible

Figure 1.5: Structured mesh from
NEMO ocean model (2008).

• Computationally very expensive; in many cases, resolution sufficient
for error control/convergence is not achievable in practice

Climate models: Components and naming conventions
GCMs consist of more components than their counterparts from other appli-
cation areas. The main components have the following names:

• Dynamical core is the main part of the model that includes the dis-
cretization and the solution algorithm for the PDE system concerned
with the key properties of the system (usually, conservation of mass,
momentum, energy, etc.)

• Auxiliary models for significant but not explicitly resolved processes are
called parametrizations. These sub-models are often simpler than
the dynamical core and can use empirical or statistical methods

• The model inputs can come in form of

– forcings – usually time-varying user-specified functions utilizing
measured data or results of other models

– boundary conditions – data prescribed at the external domain
boundaries in form of fluxes or values of primary variables
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Climate models: EMIC modeling approaches

Idea: Combine highly simplified approximations for some processes or
compartments with sophisticated representations of processes or compart-
ments of interest.

Figure 1.6: Schematic of MOBIDIC model which uses zonally averaged ver-
tical slice models for ocean and atmosphere (Crucifix et al. 2002).

Climate models: Box model of the North Atlantic Ocean

Idea (Stommel, 1961): Represent the southern and the northern parts
of the North Atlantic Ocean by separate well-mixed boxes connected by
a channel (surface currents) and a pipe (bottom currents).

Figure 1.7: Stommel two-box model of North Atlantic circulation (D. Bice).
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Climate models: Energy balance models
Changes in heat storage (T) = absorbed solar radiation - emitted terrestrial
radiation + net horizontal transport

Figure 1.8: A latitude-averaged one-dimensional EBM (Goosse 2015).

Climate models: Regional models

Figure 1.9: Winter temperature [◦C] and precipitation [mm/month] in Spain.
GCM (resolution≈400 km) vs. regional climate model (RCM, resolution≈30
km) vs. observations (Gómez-Navarro et al., 2011).
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Questions

• What is climate and how is it related to weather?

• What is the minimum period required to compile the climate statistics?

• Which is the most important compartment of the climate system and
why?

• Name the main cycles in the climate system.

• What factors determine the dynamics of the climate system?

• What is a feedback and how can it affect the equilibrium of the climate
system?

• Is the Earth climate a stable or an unstable dynamic system and why?

• Name common classification criteria for climate models?

• Discuss the motivation behind the climate model hierarchy.

• What is the dynamical core of a general circulation model and how
does it differ from a parametrization?

1.4 Incorporating observations into models

Model evaluation: Performance metrics
The main purpose of performance metrics is to provide a quantitative
criterion for the quality of model’s results. Simplest metrics are based on
comparisons between simulation results and observations in some norm. In
this context, the l2 norm in Rn (also called root-mean-squares, RMS)

Err(T sim,T obs) :=

√√√√ 1

n

n∑
k=1

(Tsim,k − Tobs,k)2

is particularly widely used. Here n denotes the number of observations, and
T sim,T obs are the vectors of simulated and observed values, respectively.
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Model evaluation: Calibration
Majority of climate-related models utilize parameters whose values might
have uncertainties. Some of these parameters cannot be measured directly,
and their values must be inferred indirectly based on rather tenuous quali-
tative arguments or simulation results obtained using other models.

Definition 1.13. The process of optimizing the model performance by
adjusting values of some parameters is called model calibration.

• Model calibration can be carried out using some performance metrics
or various qualitative criteria based on expert knowledge

• Attention: Calibration (especially based on a limited observation
dataset) is a potentially dangerous procedure capable of

– compromising the physical assumptions the model is based on

– masking problems in the model or even errors in the model code

– impairing model’s performance for scenarios not used for calibra-
tion

Model evaluation: Biases

Definition 1.14. Systematic (over numerous simulations) deviations of
the model results from observations are called biases. Generally biases
can only be reliably detected by comparing observations to the results of
ensemble simulations (multiple simulation runs with perturbed param-
eters such as forcings or initial conditions).

• There exist techniques for correction of model biases. As opposed to a
priori approaches used for model calibration, the bias correction meth-
ods belong to a posteriori (i.e. postprocessing) procedures

• Since the majority of climate models (especially GCMs) are highly
non-linear, avoiding bias corrections by improving the choice of model
parameters (better calibration) is rarely possible in practice
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Model evaluation: Reproducing the current climate
One of the main tests for general-purpose coupled climate models is an eval-
uation of the ability to reproduce the current climate using the data for the
last 150 years as forcing.

Figure 1.10: Ensemble mean of surface temperature over multiple models
(CMIP5, Flato et al. 2013),

Model evaluation: Bias correction

Remark 1.15. The majority of bias correction techniques work on the
assumption that the model captures the main dynamical features of the
modeled system (variability, response to forcings, etc.) reasonably well,
and that there exists some simple functional relationship between model
results and correct values for important unknowns.

The main steps of bias correction can be summarized as follows:

• Pose a hypothesis on the specific type of the functional relationship F

xcorr(t) = F (xsim(t), t),

e.g., additive or multiplicative bias, constant or variable in time

• Determine the parameters for the proposed functional relationship us-
ing some reference observations

• Correct simulation results using the function with these parameters

26



Figure 1.11: Bias correction techniques: a) the mean state has been corrected,
b) the mean state and the time derivative have been corrected (Goosse 2015).

Model evaluation: Model intercomparison projects
Model intercomparison projects (MIP) are a rather recent but a very popular
development in the climate sciences (not only in climate sciences!) aiming to
improve modeling skill by simulating a set of pre-specified scenarios using
multiple models. The main ideas behind MIPs are:

• Identify and analyze sources of main model biases by comparing simi-
larities and differences between models

• Provide better predictions for important climate development scenarios
(biases of multi-model simulations tend to be lower than those of single-
model runs)

• Many MIPs in the area of climate modeling (e.g., Coupled Model Inter-
comparison Project CMIP) have become a standard recurring activity
with elaborate sets of input data, formalized evaluation criteria, and
dedicated special issues in prominent journals

Questions

• What is the model calibration procedure, and what risks are associated
with it?

27



• What are model biases and how can they be corrected? What assump-
tions lie behind bias correction techniques?

• What are model intercomparison projects (MIPs), and why are they
important?

Data assimilation: Motivation

Definition 1.16. Data assimilation (DA) is the discipline concerned with
incorporating observational data into model simulations dynamically,
i.e., during simulation.

• As opposed to the bias correction or calibration techniques, data assim-
ilation cannot be classified as either a priori or a posteriori procedure

• Data assimilation does not assume a perfect model or error-free
observations but can naturally deal with errors in both

• Historically, data assimilation has been developed as a means to im-
prove numerical weather prediction models (NWP); it is still used heav-
ily in all operational NWP models, and it is still critical for the quality
of weather forecasts

Data assimilation: Overview of techniques
The main data assimilation techniques can be classified as follows:

• Nudging

• Optimal interpolation

• Statistical approaches (Kalman filtering)

• Variational methods (3D-Var, 4D-Var)

Data assimilation: Forecast skill
The forecast skill of a model can be quantified based on the Brier skill
score S defined by

S =
eb − ef

eb
,
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where ef is the error (in some norm) of the forecast system (e.g. our model),
and eb is the error of some basic forecast method.

Examples of basic forecast methods include:

• Climatology (means over long time periods)

• Persistence (no change compared to the initial state)

• Random (e.g. climatology or persistence with added random pertur-
bation with zero average and prescribed variance)

Data assimilation: Lorenz model
A useful tool to investigate sensitivity of weather models to perturbations
are Lorenz equations – a low-order truncation of spectral equations for
atmospheric circulation:

x′(t) = σ(y − x), (1.12)

y′(t) = rx− y − xz, (1.13)

z′(t) = xy − bz, (1.14)

where σ, r, and b are some parameters.

Remark 1.17. These equations are known to generate chaotic deviations
from solution trajectories even for small perturbations in initial conditions.
This behavior demonstrates the predictability limits intrinsic to the
atmospheric models.
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Figure 1.12: Lorenz model with σ= 10, r=28, and b= 8/3: Trajectory in
(x, z) space (left) and x(t) for two solutions with slightly different initial
conditions (right) (Cushman-Roisin, Beckers 2011).

Data assimilation: Predictability limits
Error accumulation even for arbitrarily small perturbations leads to predic-
tability limits in strongly nonlinear systems. This limit is estimated to be

• One to two weeks for the global atmosphere

• On the order of one month for midlatitude ocean eddies

Figure 1.13: Lorenz model: Logarithm of the forecast error (left) and skill
score for two forecasts (right) as function of lead time (Cushman-Roisin,
Beckers 2011).
A useful measure of predictability is the autocorrelation of the solution
function for T →∞ given by

ρ(∆) =
1
T

∫ T
0
u(t+ ∆)u(t)dt√

1
T

∫ T
0
u2(t)dt

√
1
T

∫ T
0
u2(t+ ∆)dt

.

• This function measures how closely the solution at moment t + ∆ is
on average related to the solution at moment t. Thus the delay ∆ for
which ρ→ 0 defines the threshold after which the solution is no longer
determined by its past values

• For time points farther apart than ∆, the function values are decor-
related
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• For a purely random signal, the autocorrelation is zero for any ∆ > 0

• For the solution of the
Lorenz system, a limit of
predictability can be ex-
pected (cf. Fig. 1.14)

• Note that the system is
deterministic, i.e. each
initial condition deter-
mines a unique trajec-
tory. However, this
unique trajectory cannot
be isolated in practice due
to system’s sensitivity to
even tiniest perturbations

Figure 1.14: Autocorrelation as a function
of ∆ for solution x(t) of the Lorenz system
(Cushman-Roisin, Beckers 2011).

In geophysical circulation systems, solutions are controlled not only by initial
conditions but also by boundary conditions and forcings.

Boundary conditions and forcings are often reasonably well-known, thus pre-
dictability limits depend mainly on the relative importance of boundary vs.
initial conditions.

Figure 1.15: Predictability for systems
dominated by boundary condition or forc-
ings (flat line), initial condition (steep
line), and mixed situations (intermediate
line) (Cushman-Roisin, Beckers 2011).

For tidal dynamics in shallow seas, long simulation times with little loss of
accuracy are possible since the skill is mainly constrained by the forcings.

For the global atmosphere, the initial conditions are usually constructed with
care, and the initial skill is high but rapidly drops with time.

Data assimilation: Nudging

Idea: If ’better’ values of simulated fields are known, push the simulation
towards these values.
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Denote by Q(x, t) the model equations and consider

x′(t) = Q(x, t).

If the observation y can be represented on the same grid as the solution x,
we can add a linear correction term to our system by

x′(t) = Q(x, t) +K(y − x).

For nudging, K is a diagonal matrix given by K =diag(1/τ), where τ is the
relaxation time controlling the ’strength’ of nudging. For values of τ large
compared to the time scale of the system, the nudging is gentle. One popular
choice of τ is given by

1/τ = K exp
(
−(t− t0)2/T 2

)
,

where t0 is the time point with available observations and T the time scale
allocated to this observation to significantly affect the simulation process.

Data assimilation: Sequential assimilation
The nudging approach is useful but ad-hoc. Next, we consider sequential
assimilation techniques based on statistical methods. They re-initialize the
model by incorporating observations into the model results.

Figure 1.16:
Illustration of
reinitialization:
A new initial
condition for the
model (called
analysis) is cre-
ated by combining
the forecast and
observations of
the real system
(Cushman-Roisin,
Beckers 2011).
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Data assimilation: Optimal interpolation for two values

Example 1.18. Consider two approximations T1 and T2 to the ’true’
value T t of some unknown (e.g., temperature) with corresponding errors
ε1 and ε2, whose error variances are known:

T1 = T t + ε1, T2 = T t + ε2.

We assume our approximations to be unbiased, i.e. 〈ε1〉 = 〈ε2〉 = 0,
where 〈·〉 denotes the mean value.
We seek weights w1, w2 to construct a ’better’ approximation using T1, T2

T = w1T1 + w2T2 = (w1 + w2)T t + w1ε1 + w2ε2.

We obviously have

〈T 〉 = (w1 + w2)T t,

thus for the estimate of T t to be unbiased, w1 + w2 = 1 must hold.
Then the unbiased estimate (analysis) T a is given by

T a = (1− w2)T1 + w2T2 = T1 + w2(T2 − T1)

and its error
ε = Ta − Tt = (1− w2)ε1 + w2ε2.

The error has zero mean

〈ε〉 = (1− w2)〈ε1〉+ w2〈ε2〉 = 0,

but its variance is generally non-zero

〈ε2〉 = 〈(Ta − Tt)2〉 = (1− w2)2〈ε21〉+ w2
2〈ε22〉+ 2(1− w2)w2〈ε1ε2〉.

If measurements T1, T2 are uncorrelated, then 〈ε1ε2〉 = 0 holds giving

〈ε2〉 = (1− w2)2〈ε21〉+ w2
2〈ε22〉 = (〈ε21〉+ 〈ε22〉)w2

2 − 2〈ε21〉w2 + 〈ε21〉,

which is a quadratic function of w2 with a positive leading coefficient.
The solution minimizing the error variance 〈ε2〉 is then

w2 =
〈ε21〉

〈ε21〉+ 〈ε22〉
with T a =

〈ε22〉
〈ε21〉+ 〈ε22〉

T1 +
〈ε21〉

〈ε21〉+ 〈ε22〉
T2.
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Note that the analysis error is at least as good as that of either T1 or T2

〈ε2〉 =
〈ε21〉〈ε22〉
〈ε21〉+ 〈ε22〉

≤ min{〈ε21〉, 〈ε22〉}.

The same result can be alternatively obtained as the solution to the mini-
mization problem

J(T )→ min with J(T ) =
(T − T1)2

2〈ε21〉
+

(T − T2)2

2〈ε22〉
.

Questions

• What is the idea behind data assimilation? Where does it fit between
the calibration and bias correction?

• What is the forecast skill, and how can it be quantified?

• What is a predictability limit, and what values is it estimated to have
for weather prediction models?

• How can one measure the predictability limit of a given model?

• Discuss the differences in the long time behavior for systems that are

– controlled by the initial conditions

– controlled by the boundary data and forcings

• Give the general idea of data assimilation by means of nudging

• What is the main idea behind the sequential assimilation?

• Given two approximation to the true solution (e.g. simulation and
observation), how does one construct a ’better’ approximation?
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Data assimilation: Quick guide to statistics

• The covariance between two variables xi and xj is defined as

cov(xi, xj) = 〈(xi − 〈xi〉) (xj − 〈xj〉)〉.

Given a vector x = (x1, x2, . . . , xm)T , the covariances can be arranged
into a covariance matrix, cov(x), such that cov(x)ij = cov(xi, xj).
Equivalently

cov(x) = 〈(x− 〈x〉) (x − 〈x〉)T 〉.

Covariance matrices are symmetric positive semi-definite.

• Given two vectors xi and xj, one can calculate in a similar way the
cross-covariance matrix

cov(xi,xj) = 〈(xi − 〈xi〉) (xj − 〈xj〉)T 〉.

Cross-covariance matrices of uncorrelated vectors are filled with zeros.

Data assimilation: Optimal interpolation
Similarly to the nudging problem, we denote by xf the model solution (fore-
cast) vector and by y the observations. However, the vector dimensions can
now be different x ∈ Rm,y ∈ Rp.

Then the corrected solution (analysis) vector xf can be expressed as

xa = xf +K(y −Hxf ),
where H is called the observation operator and K the gain matrix.

• The role of the observation operator H : Rm 7→ Rp is to map the
solution vector x to the ’observation space’ of vector y to make both
vectors comparable. If vector y denotes observations at some locations,
H can be, e.g., an operator interpolating solution vector x to these
locations

• Gain matrix K ∈ Rm×p assigns ’weights’ to single observations, and
the choice of this matrix is critical for the ’quality’ of the analysis
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From now on, we assume the observation operator H is linear and denote it
by H ∈ Rp×m.
We write εf = xf − xt, εo = y − yt for the forecast and observation error,
respectively, and get 〈εf〉 = 〈εo〉 = 0 by assuming xf ,y to be unbiased.
We also assume that

K(yt −Hxt) = 0, (1.15)

i.e. the projection of the ’true’ solution exactly fits ’true’ observations.
The observation error covariance matrix

R = 〈εoεoT 〉

contains the error variance of each observation on the diagonal whereas the
off-diagonal terms represent the correlations of corresponding two observa-
tions. Off-diagonal terms may become non-zero when y represents, e.g.,
satellite observations exhibiting correlated errors.
The analysis step can then be expressed as

xa = xf +K(y −Hxf )

or xt + εa︸ ︷︷ ︸
xa=

= xt + εf︸ ︷︷ ︸
xf=

+K(εo −Hεf ) + K(yt −Hxt)︸ ︷︷ ︸
= 0 (c.f. (1.15))

Hence the error of the analysis reads

εa = εf + K(εo −Hεf ). (1.16)

The goal is now to minimize the analysis error norm

‖εa‖ =
√
〈εaT εa〉

with respect to gain matrix K controlling the quality of the analysis.
The solution to this problem is called the optimal interpolation.
We start by constructing the error covariance matrix 〈εaεaT 〉 of the analysis
by multiplying (1.16) with its transposed and taking the average:

〈εaεaT 〉 = 〈εfεfT 〉+K〈(εo −Hεf )εfT 〉+ 〈εf (εoT − εfTHT )〉KT

+ K〈(εo −Hεf )(εoT − εfTHT )〉KT .

Denoting error covariance matrices for the forecasted and analyzed solutions
by

P f = 〈εfεfT 〉, P a = 〈εaεaT 〉,
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we can expand the expressions and assume that observational and model
errors are uncorrelated, i.e. 〈εoεfT 〉 = 0 (this assumption is justified by
different origins of information), to obtain

P a = P f −KHP f − P fHTKT +K
(
R+HP fHT

)
KT .

On the other hand, note that

‖εa‖2 = 〈εaT εa〉 = trace (P a)

is a quadratic form in terms of entries of matrix K. In addition, matrix
R + HP fHT multiplying the quadratic terms of this form is symmetric
semi-positive definite, thus the minimization problem has a unique solution

K∗ = P fHT
(
R+HP fHT

)−1

called the Kalman gain matrix with analysis and covariance given by

xa = xf +K∗(y −Hxf ), P a = (I −K∗H)P f .

Data assimilation: 3D-Var method

Remark 1.19. Computing K∗ involves explicitly inverting a potentially
very large matrix R +HP fHT ∈ Rp×p. Alternatively, the same xa can
be obtained by minimizing quadratic cost functional J(x) given by

J(x) =
1

2

(
x− xf

)T (
P f
)−1 (

x− xf
)

+
1

2
(Hx− y)T R−1 (Hx− y) .

• This approach is called 3D-Var (due to the variational minimization
problem)

• The advantage of this method is the ability to compute an approxima-
tion to xa iteratively
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Data assimilation: Kalman filtering
In the optimal interpolation problem defined above, the model providing
forecast only enters implicitly via the forecast error covariance matrix P f .

Idea: One can utilize more information from the model by using it to
propagate P f as well – this approach is called Kalman filtering.

We assume that between assimilation cycles n and n+1, the model advances
the solution vector in time according to

xn+1 = M(xn) + fn + ηn.

Here ηn takes into account errors introduced by the model, and fn includes
the external forcings. Operator M(xn) represents the total model effect on
xn between assimilation cycles.
Assuming M to be linear and denoting it by matrix M we note that the
true state evolves without modeling errors according to

xtn+1 = Mxtn + fn,

so that the forecast error εf = xf − xt satisfies

εfn+1 = Mεan + ηn. (1.17)

Multiplying (1.17) by its transposed, averaging, and assuming errors of differ-
ent origins to be uncorrelated, we can advance the forecast error covariance
matrix P f in time using the so-called Lyapunov equation

P f
n+1 = MP a

nM
T + 〈ηn ηTn 〉,

where 〈ηn ηTn 〉 represents the model error covariance matrix.
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Remarks 1.20. • The initial value of P a can be computed from the
initial condition

P 0 = 〈(x0 − xt0)(x0 − xt0)T 〉

• Matrix M does not have to be computed explicitly: Since

MP a
nM

T = M (MP a
n)T ,

P a can be evolved by applying the model operator to its columns

• Kalman filtering contains other data assimilation methods as special
cases:

– prescribing the forecast error covariance matrix instead of prop-
agating it results in the optimal interpolation method

– if the model and observation error matrices are given and di-
agonal, one gets a nudging scheme

Initialization:
xa0 = x0

P a
0 = P 0

↓
Loop over n = 1, 2, . . .

Forecast:

xfn+1 = M(xan) + fn
P f
n+1 = MnP

a
nM

T
n + 〈ηn ηTn 〉

↓
Analysis:

Kn+1 = P f
n+1H

T
n+1

(
Hn+1P

f
n+1H

T
n+1 +Rn+1

)−1

xan+1 = xfn+1 +Kn+1(yn+1 −Hn+1x
f
n+1)

P a
n+1 = P f

n+1 −Kn+1Hn+1P
f
n+1

Data assimilation: 4D-Var methods
Kalman filtering (and optimal interpolation in general) assimilate obser-
vations at a given time instant. After analysis (and reinitialization),
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the solution may jump to a new state and trigger model instabilities.

Figure 1.17:
Kalman filtering
reduces the er-
ror but leads to
a model trajectory
interrupted at each
assimilation cycle
(Cushman-Roisin,
Beckers 2011).

The main reason for this problem is the approximation error when propagat-
ing the error covariance matrix due to M ≈M.

Idea: Assimilate observations distributed over multiple time points and
choose the solution trajectory optimal with respect to these data.

Figure 1.18: 4D-
Var methods use
adjoint approach
allowing to com-
pute the model
trajectory that
optimally fits ob-
servations over
a given time in-
terval (Cushman-
Roisin, Beckers
2011).

• This methodology is based on solving an inverse or adjoint problem
and is called 4D-Var data assimilation

• It is powerful but computationally very expensive for real-life problems

To achieve this, we consider observational datasets y0,y1, . . . ,yN at corre-
sponding time instants and denote by xb0 some initial background state (e.g.
provided by a large-scale model) that we want to stay close to. Solution
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trajectory specified by x0,x1, . . . ,xN is then obtained by minimizing cost
functional J(x) given by

J(x) =
1

2

N∑
n=0

(Hnxn − yn)T R−1
n (Hnxn − yn) +

1

2

(
x0 − xb0

)T
P−1

0

(
x0 − xb0

)
(1.18)

subject to constraints

xn+1 = M(xn) + fn, n = 0, 1, . . . , N − 1

or, once again resorting to a linearized formulation,

xn+1 = Mxn + fn, n = 0, 1, . . . , N − 1. (1.19)

A standard way to solve constrained minimization problem (1.18), (1.19)
is the Lagrange multiplier method that formulates an unconstrained
minimization problem for the extended cost functional given by

J(x) =
1

2

N∑
n=0

(Hnxn − yn)T R−1
n (Hnxn − yn) +

N−1∑
n=0

λTn(xn+1 −Mxn − fn)

+
1

2

(
x0 − xb0

)T
P−1

0

(
x0 − xb0

)
. (1.20)

The minimization is then carried out with respect to solution vectors
x0,x1, . . . ,xN and Lagrange multipliers λ0,λ1, . . . ,λN−1.

Questions

• If the cross-correlation matrix of two vectors is zero, what does this
signify?

• Given the optimal interpolation problem

xa = xf +K(y −Hxf ),

what is the role of the observation operator H?

... of the gain matrix K?
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• How is the 3D-Var method related to the optimal interpolation prob-
lem? What are the advantages of the variational approach?

• What is the idea behind the Kalman filtering?

• What is the main motivation for the 4D-Var data assimilation?

• Why are 4D-Var methods not as frequently used as their advantages
would suggest?

2 Compartments of the climate system and

their modeling

2.1 Energy balance models

Earth’s energy budget
At the top of the atmosphere, the total solar irradiance (TSI) is So = 1368
W/m2. This amount is not constant but can vary due to a number of causes
that can be summarized as follows:

Phenomenon Effect Periodicity
Changes in Earth’s orbit eccentricity ≈ 0.1% 100.000 – 400.000 years
Changes in the angle of ecliptic ≈ 0.5% 41.000 years
Precession of Earth’s axis ≈ 4% 19.000 – 23.000 years
Sunspots ≈ 0.1% 9-10 years

Table 2.1: Astronomical factors affecting Earth’s energy budget.
The fraction of the incoming solar radiation that is reflected is called the
albedo of the Earth or planetary albedo (αp), thus the amount of solar
energy per unit of area absorbed by the Earth (A↓) is given by

A↓ = (1− αp)So.

For present-day conditions, αp has a value of about 0.3.
At the top of Earth’s atmosphere, the average total incoming solar energy
per unit of time is the TSI times the surface that intercepts the solar rays
(πR2 with R = 6371 km).
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Figure 2.1: Schematic of the incoming/outgoing radiation (Hartmann 1994).
At the top of the atmosphere, the solar energy (shortwave radiation) is bal-
anced by the energy emitted by the Earth (longwave radiation).

Figure 2.2: Normalized blackbody spectra for representative temperatures
of the Sun (blue, 5780 K) and the Earth (red, 255 K) (Goosse 2015).

• The total amount of energy that is emitted by a 1 m2 surface per unit of
time by the Earth at the top of the atmosphere (A↑) can be computed
following Stephan-Boltzmann’s law

A↑ = σT 4
e ,

where Te is the effective emission temperature of the Earth, and σ =
5.67× 10−8Wm−2K−4 is the Stefan-Boltzmann constant
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• Given the total Earth surface of 4πR2, the balance becomes

πR2(1− αp)So = 4πR2σT 4
e ⇔ 1

4
(1− αp)So = σT 4

e (2.1)

• Solving equation (2.1) for Te gives

Te =
4

√
1

4σ
(1− αp)So = 255K = -18◦C

Greenhouse effect
Earth’s atmosphere is nearly transparent to visible light but opaque across
most of the infrared part of the electromagnetic spectrum because of minor
air constituents (water vapor, carbon dioxide, methane, and ozone). This
phenomenon is called the greenhouse effect.

Figure 2.3: Schematic
of Earth’s energy bud-
get (Trenberth et al.
2009).
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Figure 2.4: Heat balance of the Earth
with the atmosphere represented by a sin-
gle layer transparent to solar radiation
and opaque to infrared radiation (Goosse
2015).

Representing the atmosphere by
a single homogeneous layer of
temperature Ta totally transpar-
ent to the solar radiation and to-
tally opaque to the infrared ra-
diation, the heat balance at the
top of the atmosphere can be
written as

1

4
(1− αp)So = σT 4

a = σT 4
e ,

whereas the heat balance at the
Earth surface has the form

σT 4
s =

1

4
(1− αp)So + σT 4

a ,

corresponding to Ts = 4
√

2Te ≈
1.19Te = 303 K = 30◦ C.

• More precise estimates of the radiative balance of the Earth must ac-
count for absorptions and reemissions by various atmospheric layers,
selective absorptions in specific frequency bands characteristic for each
constituent, and the contribution of non-radiative exchanges

• Since the interplay of different factors affecting Earth’s energy budget
is very complex, one can try to determine the effective parameters
describing the current energy state (c.f. model calibration). We modify
equation (2.1) by introducing emissivity2 ε obtaining

1

4
(1− αp)So = εσT 4

and calculate the value of ε based on the current mean Earth surface
temperature Tm = 287.7K = 14.7◦C resulting in

ε ≈ 0.62

2Emissivity 0 ≤ ε ≤ 1 of a body is the ratio between the energy emitted and the energy
emitted by the blackbody at the same temperature
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A zero-dimensional Energy Balance Model

• Assuming that the Earth’s surface has a constant heat capacity C (the
amount of energy per unit of area needed to raise the temperature by
one degree), one can formulate an instationary version of (2.1) as

CT ′(t) =
1

4
(1− αp)So − σT 4

• The assumption that the planetary albedo does not depend on the
temperature is not realistic since cold temperatures usually result in
an increase in the snow/ice cover and thus in albedo. Introducing
temperature-dependent albedo αp(T ) that has the following property:

αp(T ) ≈
{

0.7 if T < 250K,
0.3 if T ≥ 280K,

one can take an expression that provides a smooth transition, e.g.,

αp(T ) = 0.5− 0.2 tanh

(
T − 265

10

)
.

Figure 2.5: Equilibria of the zero-
dimensional EBM (Kaper, Engler 2013).

• Fig. 2.5 plots the incoming
solar radiation (solid line)
taken as 1

4
(1 − αp)So and

the emitted infrared radia-
tion (dotted line) given by
εσT 4 for ε = 0.6

• Intersection points are
equilibria of the model
where T ′(t) = 0

• Note that the equilibrium
at T ∗2 ≈ 263K is unsta-
ble, i.e., any perturbation
drives T (t) away from T ∗2

• The rightmost equilibrium at T ∗3 ≈ 288K corresponds to the current
climate, whereas T ∗1 ≈ 235K represents the ’snowball Earth’
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Figure 2.6: Bifurcation points of the zero-
dimensional EBM (Kaper, Engler 2013).

• Increasing So
results in T ∗2 and
T ∗3 moving closer to
each other and,
eventually merging
and disappearing

• Similar property
holds for T ∗1 and T ∗2
when So decreases

• This phenomenon
signifies qualitative
changes in the
character of the
system and is called
bifurcation

A one-dimensional Energy Balance Model

Figure 2.7: Top: annual zonal mean of the ab-
sorbed solar radiation and the outgoing longwave
radiation at the top of the atmosphere [W/m2];
bottom: the difference (net mean) (Goosse 2015).

• Until now, radiative
energy fluxes were
averaged over the
total Earth surface

• However, the
absorbed and the
emitted radiation
strongly depend on
the geographic
latitude ϕ (Fig. 2.7)
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Figure 2.8: Schematic of local energy balance for
an elementary volume of Earth’s surface (Goosse
2015).

• This radiative
flux imbalance is
almost entirely
compensated for
by the energy
transport

• The main energy
transport media
are the
atmosphere and
the ocean with
the former
playing a much
larger role

The total energy consists of sensible heat cT , potential energy gz, latent
heat3 Lq, and kinetic energy 0.5|u|2; it can be expressed as

E = cT + gz + Lq + 0.5|u|2,
where c is the specific heat capacity of the medium (air or water), g the
gravity acceleration, z the height above a reference level, L the specific latent
heat, q the specific humidity (mass of water vapor per unit of dry air), and
u the velocity vector (mostly without the vertical component).

Name Formula Amount [106 × Jm−2] Percentage of total
Sensible heat cT 1800 70.2
Potential energy gz 700 27.3
Latent heat Lq 64 2.5
Kinetic energy 0.5|u|2 1.2 0.05

• The meridional flux of sensible heat in the atmosphere F can be ex-
pressed (we assume a specific parametrization here!)

F = −ρcK(ϕ)
1

R

∂T

∂ϕ
,

3Note that this term is formulated in the form used in atmospheric modeling although
the latent heat of sea ice melt can be also a part of the energy budget in the ocean
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where ρ is the air density and K(ϕ) the effective zonal diffusivity de-
pendent on latitude ϕ

• Using this expression, the one-dimensional energy balance model for
a layer of thickness h can be formulated4 as follows:

hρc
∂T

∂t
=

h

R cosϕ

∂

∂ϕ

(
ρcK(ϕ)

1

R
cosϕ

∂T

∂ϕ

)
+

1− α(ϕ)

4
S(ϕ)− ε(ϕ)σT 4,

where the effective diffusivity K, the albedo α, and the emissivity ε may
be functions of latitude. The (mainly shortwave) incoming radiation
S(ϕ) also depends on the latitude.

Questions

• What main types of radiation contribute to Earth’s energy budget?

• What is a blackbody and what is the blackbody spectrum of the Sun? ...
of the Earth?

• What is the greenhouse effect and its main causes?

• What assumptions lie behind the simplest (zero-dimensional) EBM?

• How do the key properties of the zero-dimensional EBM change when
one introduces a temperature-dependent albedo?

• What is bifurcation and how does it affect the zero-dimensional EBM?

• What is the physical phenomenon described by the one-dimensional
EBM but absent in the zero-dimensional EBM?

• Name the main types of energy contained in an elementary volume of
ocean or atmosphere.

• What type of PDE is solved in the one-dimensional EBM?

4The divergence and gradient operators are given in spherical lon/lat coordinates!
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2.2 Main global cycles

Cycles in the climate system
The main cycles in the Earth’s climate system are

• the hydrological (water) cycle

• the carbon cycle

• the methane cycle

The hydrological cycle
The water cycle plays several major roles in the dynamics of the climate
system:

• water vapor is the main greenhouse gas in the atmosphere (66 to 85%
of the greenhouse effect compared to 9 to 26% for CO2)

• water is an essential vehicle for the energy storage and transport (both
due to the heat capacity of oceans and latent heat release in the atmo-
sphere)

• water is the main ingredient in the planetary albedo changes

• is a critical factor influencing the Earth environment; its availability is
essential for life and for many chemical and physical processes influenc-
ing the climate

The main reservoir
of water is the
Earth’s crust con-
taining ca. 10 times
the amount of water
in oceans. The bulk
of the remaining
water is contained
in the oceans.

Figure 2.9: Distribution of water in the climate sys-
tem (Credits: USGS).
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Figure 2.10: Global hydrological cycle (Trenberth et al. 2007).

The hydrological cycle over land

• Soil water content per unit volume: θsw = |volume of water in V |/|V |

• Moisture content per unit surface for a layer of thickness d: Sm = θswd

Figure 2.11: Soil moisture content (Goosse 2015).

• dSm
dt = P − E −Rs −Rg

• P – precipitation, E – evapotranspiration, Ps – surface runoff, Pg – drainage
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The hydrological cycle over oceans
Oceans compensate the E − P imbalances by horizontal water transport.

Figure 2.12: Global E − P budget (Trenberth et al. 2007).

The carbon cycle

Definition 2.1. The carbon cycle is the biogeochemical cycle of carbon
exchange among the compartments of the Earth system. It describes the
movement of carbon as it is recycled and reused throughout the biosphere
and long-term processes of carbon sequestration to and release from
carbon sinks.

• As a component of two greenhouse gases, carbon dioxide (CO2) and
methane (CH4), carbon plays a key role in the climate system

• One of the major changes brought about by human activity is the
large increase in the atmospheric concentration of those two gases. The
concentration of CO2 has increased from around 280 ppm (parts per
million) in 1800 to 384 ppm in 2007

• CH4 is more reactive than CO2 and can be oxidized to form CO2 and
H2O. Its concentration is lower than that of CO2, but it has increased
from 725 ppb (parts per billion) to 1780 ppb in 150 years
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Figure 2.13: Global carbon cycle with the main natural (black) and antro-
pogenic (red) fluxes of carbon [PgC] (petagrams of carbon) (Ciais et al.
2013).

Oceanic carbon cycle
A flux of CO2 between the ocean and the atmosphere ΦCO2 occurs if its
concentrations are at imbalance. It can be computed as

ΦCO2 = kCO2(pCO2
w − pCO2

a ).

pCO2
w , pCO2

a – partial pressures of CO2 in sea water and air, kCO2 – the transfer coefficient

Figure 2.14: Estimates of ocean-to-atmosphere flux of CO2 (Denman et al.
2007).
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Oceanic carbon cycle: inorganic carbon

• When gaseous CO2 is transferred from the atmosphere to the ocean, it
immediately reacts with water to form carbonic acid (H2CO3) which
dissociates, leading to the formation of bicarbonate (HCO−3 ) and car-
bonate ions (CO2−

3 ):

CO2(gas) +H2O 
 H2CO3

H2CO3 
 H+ +HCO−3
H2CO

−
3 
 H+ + CO2−

3

• The sum of these three forms of carbon is often referred to as Dissolved
Inorganic Carbon (DIC):

DIC = [H2CO3] +
[
H2CO

−
3

]
+
[
CO2−

3

]
• The solubility of CO2 strongly depends on temperature; thus CO2 is

released when the sea water circulates to higher latitudes.

Oceanic carbon cycle: organic carbon

• Next to the effect of chemical processes, the biological processes play
a major role in the carbon cycle. A first important reaction is pho-
tosynthesis in which phytoplankton (mostly in the surface layer) use
solar radiation to form organic matter from CO2 and water:

6CO2 +H2O 
 C6H12O6 + 6O2

• Conversely, organic matter can be dissociated to form inorganic carbon
(the reverse process of photosynthesis) by respiration and remineraliza-
tion of dead phytoplankton and detritus.

• A second important biological process is related to the production of
calcium carbonate (in form of calcite or aragonite) by different species,
in particular to form their shells:

Ca2+ + CO2−
3 
 CaCO3
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Oceanic carbon cycle: biological pumps

Definition 2.2. The biological pump is the ocean’s biologically driven
sequestration of carbon from the atmosphere to the ocean interior and
seafloor sediments.

One distinguishes three main biological pumps

• Particles with greater density than that of sea water settle downward
out of the surface layer. The net downward flux of carbon associated
with this transport of organic matter is called the soft tissue pump

• The dissolution of calcite and aragonite mainly occurs at great depth,
following the precipitation of particles and dead organisms. This leads
to the downward transport of DIC called the carbonate pump

• A third pump, called the solubility pump, is associated with the sink-
ing of cold surface water, characterized by a relatively high solubility
of CO2 and thus high DIC, to great depths at high latitudes and its
resurfacing in equatorial regions with release of dissolved CO2

Terrestrial carbon cycle

• The uptake of carbon through
photosynthesis by land plants is
larger than the corresponding up-
take by phytoplankton, in particu-
lar in spring because of the green-
ing of forest at mid and high lati-
tudes and of the growth of herba-
ceous plants.

• About half of this primary pro-
duction is directly transferred
back to the atmosphere by the res-
piration of the land plants, and
the remaining part is incorporated
into leaves, wood, and roots (this
fraction is called the net primary
production, NPP).

Figure 2.15: Net productivity
of CO2 over land in 2004/2005
(NASA Earth Observatory).

55



Geological carbon reservoirs

• The majority of the organic carbon that is exported downward from
the surface layer is remineralized in the water column. In particular,
the ocean is under-saturated with respect to calcite (aragonite) below
4500m (3000m) in the Atlantic and below 800 m (600m) in the Pacific.
As a consequence, the long-term burial of CaCO3 in the sediments to
produce limestone mainly occurs in shallow seas (for instance in coral
reefs).

• Averaged over the whole ocean, this long term burial corresponds
to 13% of the export of CaCO3 out of the surface layer. On short
timescales, this is a small fraction of the whole carbon cycle, but it
becomes a crucial component on timescales longer than a century. An
even smaller percentage of the organic carbon is stored in the form of
natural gas, oil, and coal.

• Because the sea floor spreads due to plate tectonics, sediments are
transported horizontally and are eventually incorporated within the
mantle through subduction along plate boundaries. At higher temper-
atures and pressure, limestone is transformed during subduction into
calcium-silicate rocks (this is called metamorphism) by the reaction:
The CO2 that is released in this reaction can return to the atmosphere,
in particular through volcanic eruptions.

• The plate motion also allows the calcium-silicate rocks to be uplifted
to the continental surface, where they are affected by physical and
chemical weathering.

• The products of this reaction are transported by rivers to the sea where
they can compensate for the net export of CaCO3 by sedimentation.

Overall sedimentation, subduction, metamorphism, and weathering form a
closed loop that takes place over millions of years and is sometimes referred
to as the long term inorganic carbon cycle.
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Figure 2.16: Long term inorganic carbon cycle through sedimentation, sub-
duction, metamorphism, and weathering (Goosse 2015).

The methane cycle

Figure 2.17: Global methane cycle with the main natural (black) and antro-
pogenic (red) fluxes of CH4 Tg(CH4) (teragrams of CH4) (Ciais et al. 2013).

Questions

• What part of the Earth system contains the largest reserves of water?
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• Explain the idea of ’available water’ in the soil.

• What is the carbon cycle and why is it important for climate modeling?

• Describe the main aspects of the inorganic carbon cycle in the ocean.

• What are the two main effects of biological processes on the ocean
carbon cycle.

• What is a bilogical pump? Describe the main biological pumps in the
ocean.

• What mechanisms affect the carbon budget in geological carbon reser-
voirs?

2.3 Modeling biogeochemistry and carbon cycle

Biogeochemistry modeling for ocean
The most common type of
model used in ocean bio-
geochemistry is a coupled
set of advection-diffusion-
reaction equations for
tracer concentrations ci
∂tci +∇ · (vci −K∇ci)

=

n∑
k=1

R(ci, ck) + Ψatm + Ψsed

• R(ci, ck) – reaction
rate between ci and ck

• Ψatm – flux of ci
from/to atmosphere

• Ψsed – flux of ci
from/to sea bed

Figure 2.18: Schematic of ocean biogeochem-
istry model HAMOCC (Ilyina et al. 2013).

Tracers and reactions
The tracers can be various chemical, biological, or physical quantities

• DIC, alkalinity
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• dissolved gases (O2, CO2, . . .) and isotopes (e.g. 14C)

• nutrients (Fe, PO4, NO3, . . .)

• phytoplankton or various functional groups thereof (functional
groups are distinguished by their size, nutrient requirement, and their
biogeochemical role in the ecosystem but not necessary by their taxa)

• zooplankton or various functional groups thereof

• detritus (sinking particulate organic matter)

The advective∇·(vci) and the diffusive −∇·(K∇ci) transport are prescribed
by the oceanic equations of motion; the key part of the biogeochemistry
model are the reaction and source/sink terms. Therefore, the model can be
generally studied using an ODE system given by

dci
dt

=
n∑
k=1

R(ci, ck) + Ψatm + Ψsed, i = 1, . . . , n.

Population models: Exponential growth
The equations of this type are called population models and are widely
used in population dynamics modeling.
The simplest model of this type considers the population P of one species
with unlimited resources and net growth proportional to the population size

dP

dt
= kP, P (0) = P0.

Its solution can be ob-
tained analytically

P (t) = P0e
kt.

It implies an exponential
growth for k > 0 or an ex-
ponential decay for k < 0.

Figure 2.19: Exponential growth with
P0=0.1.
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Population models: The logistic model
Exponential growth is usually unrealistic: No resources are infinite.
The one-species model can be augmented by introducing the maximum pop-
ulation M called the ’carrying capacity’

dP

dt
= kP

(
1− P

M

)
, P (0) = P0.

Its solution can also be
obtained analytically

P (t) =
P0M

P0 + (M − P0)e−kt

Figure 2.20: Logistic model with M = 0.3.

Population models: Predator-prey model
Predator-Prey model (also known as Lotka-Volterra equations) considers two
species R (predator) and B (prey) that dynamically interact with each other.
The prey species is assumed to have unlimited food source.

dB

dt
= µBB − αBR

dR

dt
= −µRR + βBR

µB, µR, α, β are positive constants. µBB is the ’natural’ growth rate of the
prey species, −µRR is the ’natural’ death rate of the predator species, −αBR
is the death rate of prey due to predator (proportional to the meet frequency
BR), βBR is the growth rate of predator due to the availability of prey.
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This system is difficult
to solve analytically, but
one can find equilibria of
the model (points with
dB
dt

= dR
dt

= 0) and plot the
solution trajectories in the
phase space.

Figure 2.21: Phase-space
plot of the predator-prey
model. Prey population
(horizontal axis), predator
population (vertical axis).  0

 0.5

 1
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 2
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 3

 0  0.5  1  1.5  2  2.5  3

vf

Ecosystem modeling: NPZ and NPZD models

NPZ The standard approach to the full ecosystem modeling usually consid-
ers at least three compartments: (N)utrients, (P)hytoplankton, and
(Z)ooplankton

NPZD For long-term ocean biogeochemistry, carbon cycle, and climate studies,
one also considers the forth compartment: (D)etrius

For more detailed modeling, each compartment can be subdivided into as
many subcompartments as needed: Current state-of-the-art models consider
40-70 different compartments in total.
Phytoplankton and zooplankton can, in particular, be modeled by identify-
ing the main functional groups as tracers and representing the exchange pro-
cesses between them. For phytoplankton such functional groups can include:
Small phytoplankton (nano- and picoplankton), large (nonsilicifying) phyto-
plankton, silicifying phytoplankton, calcifying phytoplankton, N2-fixing phy-
toplankton, etc.
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Figure 2.22: Schematic of three different NPZD models (Heinle, Slawig 2013).

dN

dt
= −J(N, I)P + ΦZZ + γD

dP

dt
= (J(N, I)− ΦP )P −G(ε, g, P )Z

dZ

dt
= (βG(ε, g, P )− ΦZ)Z

dD

dt
= ΦPP + ((1− β)G(ε, g, P ) + ΦZ)Z − γD

Symbol Definition
I light intensity
J(·, ·) phytoplankton growth rate
γ detritus

remineralization rate
ΦP,Z mortality rates
β assimilation efficiency

of zooplankton
G(·, ·, ·) zooplankton grazing rate
ε grazing encounter rate
g maximum grazing rate

Figure 2.23: Three equilibria of the NPZD model depending on the initial
mass S distributed among N, P, Z, and D compartments (Heinle, Slawig
2013).

• The first equilibrium corresponds to the situation when no phyto-
plankton growth occurs (e.g. not enough sunlight) and is given by
N = N0, P = Z = D = 0

• In the second equilibrium, the phytoplankton reaches its growth limit
on the available nutrients in the absence of zooplankton

• In the third equilibrium, all compartments are present, zooplankton
reaches its growth limit using up the available phytoplankton
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Environmental study with an NPZ model
• Study site:

Galveston Bay
(Texas)

• Study length: 90
days

• Initial
conditions:
localized sources
of phyto- and
zooplankton, no
nutrients

• Boundary
conditions:
constant river
inflow of
nutrients

X,m
Y
,m

2.8E+05 3.0E+05 3.2E+05 3.4E+05 3.6E+05 3.8E+05

3.2E+06

3.22E+06
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0.06
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0.02

0

­0.02
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­0.08
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Phytoplankton: 0 1E­11 5E­11 1E­10 5E­10 1E­09 5E­09 1E­08 5E­08 1E­07 5E­07 1E­06 Zooplankton: 0 1E­12 5E­12 1E­11 5E­11 1E­10 5E­10 1E­09 5E­09 1E­08 5E­08 1E­07 5E­07 1E­06

Figure 2.24: Model setup and initial conditions (Ha-
jduk et al. 2018).

Figure 2.25: Development of phytoplankton over 90 days (Hajduk et al.
2018).
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Figure 2.26: Development of zooplankton over 90 days (Hajduk et al. 2018).

Questions

• What type of equation system is used to model ocean biogeochemistry?

• Can this model be run in a standalone mode (without the ocean dy-
namics model)?

• What is a ’tracer’? What quantities can be tracers?

• What is the simplest population model? Why is it not a realistic one?

• Describe briefly the main features of a predator-prey model.

• What is an equilibrium of a predator-prey model? How can it be char-
acterized mathematically?

• What is the main idea behind the NPZ and NPZD models?

• How can the NPZ and NPZD models be made more detailed?
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2.4 Geophysical flows

Specifics of large-scale geophysical flows
Two main ingredients distinguish the geophysical fluid dynamics (GFD) from
the traditional fluid mechanics: The effects of rotation and of stratification.
The relative influence of either one leads to peculiarities exhibited only by
geophysical flows. Also the scales of motion are several orders of magnitude
greater than those of a typical engineering application.

• Earth’s rotation gives rise to two additional accelerations entering the
momentum equations as forcing terms: The Coriolis and centrifu-
gal forces. The former plays a crucial role in geophysical flows (both,
oceanic and atmospheric), whereas the latter is usually neglected

• Stratification arises because naturally occurring flows involve fluids
of different densities (e.g., warm and cold air, fresh and saline water).
Gravity forces the heavier fluid to go down and the lighter one to go
up resulting, under equilibrium conditions, in a stably stratified fluid
consisting of vertically stacked horizontal layers. Fluid motions act to
disturb this equilibrium, whereas gravity strives to restore it

Scales of motion

Remark 2.3. To discern whether a physical process is dynamically impor-
tant in any particular situation, one introduces so-called scales of mo-
tion. These are dimensional quantities expressing the overall magnitude
of the variables under consideration and understood as estimates rather
than precise values. A specific choice of temporal or spatial scales requires
a clear understanding of the physics of the problem and can be ambigu-
ous for phenomena taking place on variety of different scales; e.g., the
atmosphere exhibits variations on daily (weather) and decadal (climate)
scales. The selection of scales then reflects the choice of processes being
investigated.

• The key scales are time (T), length (L), and velocity (U)

• For flows, in which the density plays an important role, additional scales
are introduced: Mean density (ρ0), typical range of density variations
(∆ρ), height (H) over which such density variations occur
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Figure 2.27: Hurricane Frances over Florida on 5 September 2004. Satellite
image (left), model prediction made on 3 September (right) (NOAA 2004).

Hurricane Frances (2004) during her course over the southeastern USA
(Fig. 2.27) had a nearly circular form spanning ca. 7.5◦ (830 km) with
sustained surface winds from 59 to 69 m/s. These data suggest the following
choice of scales: L = 800 km, U = 60 m/s, and T = 2 × 105 s (= 55.6 h).
This fits well to the typical hurricane tracks displaying appreciable change
in direction and speed of propagation over 2-day intervals.

Importance of rotation
A major effect of the Coriolis force is to impart certain vertical flow pat-
terns to the fluid. In rapidly rotating, homogeneous fluids, this effect can be
so strong that the flow displays strict columnar motions; that is, all parti-
cles along the same vertical line evolve in concert and retain their vertical
alignment over long periods of time.

Figure 2.28: Left: An initially amorphous cloud of dye is transformed af-
ter several rotations of the vessel into vertical sheets called Taylor curtains
(Cushman-Roisin, Beckers 2011). Right: Hurricane Frances approaching
Florida (NASA 2004).
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Definition 2.4. The Earth’s rotation rate is given by Ω =
2π

length of sidereal day
, where sidereal day (ca. 23 hours 56 minutes)

is the shortest period of time for a fixed star to be seen at the same po-
sition from the same point on Earth. Sidereal day takes into account the
periods of rotation of Earth around its axis and around the Sun.

We consider the effects of rotations to be important, if either

• time scale of motion T is comparable to or longer than the period of
Earth’s rotation, i.e. T ≥ 2π/Ω ⇔ 2π

ΩT
≤ 1

• or particle traveling at velocity U covers distance L or less during the
period of Earth’s rotation, i.e.

U 2π/Ω ≤ L ⇔ ε =
2πU

ΩL
≤ 1

The following table gives an intuitive idea of lengths and velocities for which
rotational effects start to matter:

L 1m 10m 100m 1km 10km 100km 1000km 6371km (Earth radius)

U ≤ 0.012mm
s 0.12mm

s 1.2mm
s 1.2 cm

s 12 cm
s 1.2m

s 12m
s 74m

s

Obviously, in most engineering applications the above conditions are not met.
This includes, e.g.,

• the flow of water at a speed of 5 m/s in a turbine 1 m in diameter
giving ε ≈ 4× 105

• or the air flow past a 5-m wing on an airplane flying at 100 m/s resulting
in ε ≈ 2× 106

On the other hand, an ocean current flowing at 10 cm/s a distance of 100
km or a wind blowing at 10 m/s in a 1000-km-wide anticyclonic formation
do meet the criteria for the rotational effects to be important.
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Importance of stratification

• Geophysical fluids typically consist of fluid masses of different densities,
which under constant gravitational action tend to arrange themselves in
vertical columns corresponding to a state of minimal potential energy.
However, motions continuously disturb this equilibrium raising dense
fluid and sinking light fluid. The corresponding increase of potential
energy happens at the expense of kinetic energy thereby slowing the
flow

• Also the opposite situation happens: Previously disturbed stratifica-
tion returns toward equilibrium, potential energy converts into kinetic
energy, and the flow gains momentum

• Therefore the dynamical importance of stratification can be evaluated
by comparing potential and kinetic energies

Introducing σ, the ratio of kinetic energy (given by 1
2
ρoU

2) to the change in
potential energy (given by ∆ρgH and equal to the energy needed to vertically
exchange a parcel of fluid with density ρ0 + ∆ρ with a parcel of fluid with
density ρ0 over height H), we obtain

σ =
1
2
ρoU

2

∆ρgH
,

where g = 9.81 m/s2 is the average gravitational acceleration on Earth.
Depending on the value of σ, three standard situations can arise:

• For σ ∼ 1, a typical change in potential energy consumes a sizable
chunk of the kinetic energy, therefore stratification is important

• For σ � 1, the kinetic energy level is insufficient to substantially dis-
turb the stratification, thus the fluid is mostly at rest

• Finally, σ � 1 means that stratification hardly affects the flow

Combining rotation with stratification
Of special interest is the case when rotation and stratification effects are
equally important, yet neither dominates over the other: ε ∼ 1 and σ ∼ 1.
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• Omitting the constant factors 2π and 1/2, we arrive at

L ∼ U

Ω
and U ∼

√
∆ρ

ρ0

gH.

• Combining the above estimates yields the fundamental length scale

L ∼ 1

Ω

√
∆ρ

ρ0

gH,

which for the Earth conditions (Ω = 7.29 × 10−5 s−1, g = 9.81 m/s2)
takes the following values:

– atmosphere (ρ0 = 1.2 kg/m3,∆ρ = 0.03 kg/m3, H = 5000 m)

L ∼ 500 km, U ∼ 30 m/s ⇒ size/wind speed of weather patterns

– ocean (ρ0 = 1028 kg/m3,∆ρ = 2 kg/m3, H = 1000 m)

L ∼ 60 km, U ∼ 4 m/s ⇒ width/speed of major ocean currents

The Coriolis force
Let the X- and Y -axes form the inertial framework of reference and the
x- and y-axes have the same origin but rotate counterclockwise at angular
rate Ω. The corresponding unit vectors are denoted (I,J) and (i, j). At
time t, the rotating x-axis makes an angle Ωt with the fixed X-axis giving

Figure 2.29: Fixed (X, Y ) and ro-
tating (x, y) frames of reference.

i = I cos(Ωt) + J sin(Ωt),

j = −I sin(Ωt) + J cos(Ωt),

(2.2)
I = i cos(Ωt)− j sin(Ωt),

J = i sin(Ωt) + j cos(Ωt).

For a point r = XI + Y J = xi+ yj,
one obtains

x = X cos(Ωt) + Y sin(Ωt),

(2.3)y = −X sin(Ωt) + Y cos(Ωt).

69



Differentiating (2.3) with respect to time yields

dx

dt
=
dX

dt
cos(Ωt) +

dY

dt
sin(Ωt)−ΩX sin(Ωt) + ΩY cos(Ωt)︸ ︷︷ ︸

=Ωy

,

dy

dt
= −dX

dt
sin(Ωt) +

dY

dt
cos(Ωt)−ΩX cos(Ωt)− ΩY sin(Ωt)︸ ︷︷ ︸

=−Ωx

.
(2.4)

Writing out relative velocity u using the coordinate vectors of the rotating
frame gives

u =
dx

dt
i+

dy

dt
j =: ui+ vj.

A similar expression holds for absolute velocity vector U in the inertial frame

U =
dX

dt
I +

dY

dt
J .

Next, we express the absolute velocity vector U via the coordinate vectors
of the rotating frame using transformations for I,J from (2.2)

U =

(
dX

dt
cos(Ωt) +

dY

dt
sin(Ωt)

)
i+

(
−dX
dt

sin(Ωt) +
dY

dt
cos(Ωt)

)
j

=: Ui+ V j.

Combining (2.4) with the above equation results in

U = u− Ωy, V = v + Ωx. (2.5)

These equalities state that the absolute velocity is equal to the relative ve-
locity plus the correction velocity arising from the rotation of the reference
framework.
Differentiating once more with respect to time obtains

d2x
dt2

= d2X
dt2

cos(Ωt) + d2Y
dt2

sin(Ωt) + 2 Ω
(
−dX

dt sin(Ωt) + dY
dt cos(Ωt)

)︸ ︷︷ ︸
=V−Ω2 (X cos(Ωt) + Y sin(Ωt))︸ ︷︷ ︸

=x

,

d2y
dt2

=−d2X
dt2

sin(Ωt) + d2Y
dt2

cos(Ωt)− 2 Ω
(
dX
dt cos(Ωt) + ΩdY

dt sin(Ωt)
)︸ ︷︷ ︸

=U−Ω2 (−X sin(Ωt) + Y cos(Ωt))︸ ︷︷ ︸
=y

.

(2.6)
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Similarly to the velocity, we obtain accelerations in each frame of reference

a = d2x
dt2
i+ d2y

dt2
j =: ai+ bj,

A= d2X
dt2
I + d2Y

dt2
J

=
(
d2X
dt2

cos(Ωt) + d2Y
dt2

sin(Ωt)
)
i+

(
−d2X

dt2
sin(Ωt) + d2Y

dt2
cos(Ωt)

)
j

= : Ai+Bj.

Using (2.5) we can write (2.6) compactly as

a = A+ 2 ΩV − Ω2x, b = B − 2 ΩU − Ω2y,

A = a − 2 Ωv︸ ︷︷ ︸
Coriolis

acceleration

− Ω2x,︸ ︷︷ ︸
Centrifugal
acceleration

B = b + 2 Ωu︸ ︷︷ ︸
Coriolis

acceleration

− Ω2y.︸ ︷︷ ︸
Centrifugal
acceleration

Introducing the vector rotation Ω = Ωk, where k is the unit vector corre-
sponding to the vertical coordinate common for both, inertial and rotating
systems, the same result can be written in a vector form

U = u+ Ω× r,
A = a + 2 Ω× u︸ ︷︷ ︸

Coriolis
acceleration

+ Ω× (Ω× r)︸ ︷︷ ︸
Centrifugal
acceleration

,

where ’×’ denotes the vector product.
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Figure 2.30: Illustration of the cen-
trifugal force and of flattening of
the rotating Earth (Cushman-Roisin,
Beckers 2011).

• The centrifugal force is di-
rected outward, perpendicularly
to the axis of rotation; com-
bined with the gravitation of
the Earth, it constitutes Earth’s
gravity field. Earth’s shape
(called geoid) corresponds to
an equipotential surface of this
field

• The direction of the the grav-
ity force resulting from the vec-
tor addition of the gravitational
and centrifugal forces (Fig. 2.30)
is thus perpendicular to the sur-
face of the Earth and coincides
with the local vertical
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Figure 2.31: Definition of the local
coordinate system: x-axis eastward,
y-axis northward, z-axis upward.

• In the ’traditional’ local Carte-
sian coordinate system, the x-axis
is directed eastward, the y-axis
northward, and the z-axis upward
(see Fig. 2.31). In this framework,
Earth’s rotation is expressed as

Ω = Ω cos(ϕ) j + Ω sin(ϕ)k

• Using notation u = (u, v, w)T , the
Coriolis term has the form

2 Ω× u = 2 Ω

cos(ϕ)w − sin(ϕ)v
sin(ϕ)u
− cos(ϕ)u


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Questions

• What distinguishes geophysical flow systems from engineering ones?

• What is the idea behind the scales of motion and what scales are com-
monly used in connection with geophysical flows?

• What is the sidereal day and how is it related to Earth’s rotation rate?

• For which types of flow are the rotation effects important?

• What is stratification and how is it related to the potential energy of
the fluid?

• How is it possible to determine the importance of stratification for
a given flow system?

• What role does the Coriolis force play in the momentum equations?

• What is the difference between the form of the Coriolis term for a ro-
tating disk and that in the geographic coordinates?

• Why does the gravity force generally point into a different direction
than the gravitational force?

2.5 Basics of Continuum Mechanics

Brief introduction to Continuum Mechanics
With big thanks to Prof. Ian Hewitt

Idea of a continuum: Although fluids and solids consist of molecules,
the continuum approximation treats the material as having a continu-
ous distribution of mass. This assumption is only valid on spatial and
temporal scales that are much larger than the largest molecular scales.
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Each ’point’ of the material
is ascribed properties such
as density, velocity, pres-
sure, or temperature. Some
of them are related to each
other by constitutive laws –
essentially by empirical pa-
rameterizations of the unre-
solved molecular mechanics
of the material.

Figure 2.32: Density at different scales (Powers 2020).

Eulerian and Lagrangian coordinates
Two different coordinate systems are used in continuum mechanics.

• In Eulerian coordinates (x, t), spatial coordinate x is fixed in space
(that is, in a fixed reference frame). A parcel of fluid will generally
move through different coordinates as time t evolves

• In Lagrangian coordinates (X, t), spatial coordinate X is fixed in
the material; it labels the same parcel of fluid for all time. Commonly
X is chosen as the Eulerian coordinate of the parcel at the initial time

Figure 2.33: Parcel of fluid with Lagrangian

coordinates X follows Eulerian path x(X, t).

The velocity of this parcel of
fluid with respect to Eulerian
coordinates is given by

u = (u, v, w) =

(
∂x

∂t
,
∂y

∂t
,
∂z

∂t

)

The material derivative

• Consider a function f(x, t) described in Eulerian coordinates.
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• The partial derivative with respect to time
∂f

∂t
(x, t) gives the rate of

change of f at point x and time t.

• Alternatively, one can use a coordinate transformation to express f in
Lagrangian coordinates f̂(X, t) := f(x(X, t), t) and calculate the time

derivative of f̂ using the chain rule of differentiation

∂f̂

∂t
=
∂f

∂t
+
∂f

∂x

∂x

∂t︸︷︷︸
=u

+
∂f

∂y

∂y

∂t︸︷︷︸
=v

+
∂f

∂z

∂z

∂t︸︷︷︸
=w

=
∂f

∂t
+ u · ∇f =:

Df

Dt
.

• The time derivative
Df

Dt
(x, t) describes the rate of change of f for

a fluid parcel moving through point x at time t. It is called the mate-
rial derivative (also known as the total or advective derivative).

Mass conservation: Eulerian coordinates
Consider an arbitrary fixed volume V within the fluid of density ρ(x, t) mov-
ing with the velocity u(x, t). The mass within this volume can only change
due to the movement across its boundary ∂V resulting in the (integral) state-
ment of mass conservation

d

dt

∫
V

ρ(x, t)dx = −
∫
∂V

ρ(x, t)u(x, t) · n ds,

where n denotes the outward unit normal to the boundary of V .
Noting that V is not time-dependent we can pull the time derivative into
the first integral. Assuming that ρu is differentiable in space we obtain after
applying the Gauss theorem to the surface integral∫

V

(
∂ρ

∂t
+∇ · (ρu)

)
dx = 0.

Since V is arbitrary, the differential statement of mass conservation holds
∂ρ

∂t
+∇ · (ρu) = 0.

Mass conservation: Lagrangian coordinates
The statement of mass conservation for a material point is then given by

Dρ

Dt
+ ρ∇ · u = 0.

75



If the fluid is incompressible, the density of a fluid parcel does not change,
thus

Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ = 0

implying that the fluid is divergence-free

∇ · u = 0.

The latter equation is called the continuity equation.

Questions

• What is the main assumption behind the continuum approach?

• What are Eulerian coordinates, and what is the meaning of the time
derivative in these coordinates?

• What are Lagrangian coordinates, and hat is the meaning of the time
derivative in these coordinates? How is it called?

• What fluid is called incompressible?

Forces in continuum mechanics
Continuum mechanics deals with deformable as opposed to rigid bodies.

Definition 2.5. • A solid is a deformable body that possesses shear
strength, i.e. a solid resists shear deformations (deformations par-
allel to the material surface on which they act)

• Fluids, on the other hand, do not resist shear deformation

In the classical dynamics of Newton
and Euler, the motion of a material
body is caused by the action of ex-
ternally applied forces which are as-
sumed to be of two kinds:

• Body forces

• Surface forces
Figure 2.34: Shear deformation
schematic.
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Body forces

• Body forces act on all parts of the body in the same way; they usually
arise from an interaction of an external field (e.g. gravity or electro-
magnetic) with the body

• Examples include the gravity, electric, or magnetic forces

• Also the Coriolis force is counted among the body forces

Surface forces

• Surface (or contact) forces arise due to actions of or interactions be-
tween the molecules of the material (e.g. attraction or collision); they
can be present throughout the body and on its external surface

• Their specific magnitude and direction depends on the shape and
orientation of the surface being considered

• Examples include pressure or friction

• Surface forces usually manifest themselves in the form of stress

Mechanical stress

• In continuum mechanics, stress is a physical quantity that expresses
the internal forces that neighboring particles of a continuous material
exert on each other.

• Stress σ is defined as the force F applied to a material divided by the
material’s cross-sectional area A: σ = F/A.

• The stress state in a material is described by means of the Cauchy
stress tensor (matrix) σ whose components represent the force per
unit area in the jth direction on a surface with a normal pointing in
the ith direction.
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σ = σij =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz



The Cauchy stress tensor is symmetric σij = σji, therefore one needs only 6
components of σ to fully describe the stress state at a material point.
The Cauchy stress tensor allows to calculate the stress for an arbitrarily
oriented surface, thus, for a surface with unit normal vector n, it is given by

s = σ · n or si =
3∑
j=1

σijnj, i = 1, 2, 3.

We define the pressure p to be the negative mean of the diagonal components
of the stress tensor

p = −1

3
(σ11 + σ22 + σ33)

and then decompose the stress tensor into

σ = −pI + τ ,

where I is the identity matrix, and τ is the deviatoric (viscous) stress
tensor. For non-viscous fluids (e.g. an ideal gas), one has τ = 0.

Momentum conservation
Consider once again an arbitrary fixed volume V within the fluid of density
ρ(x, t) moving with the velocity u(x, t) = (u, v, w)T .

Its momentum is given by

∫
V

ρu dx.

Changes of momentum can occur due to the movement of fluid into and
out of the volume and due to the action of forces resulting in the (integral)
statement of momentum conservation
d

dt

∫
V

ρu dx = −
∫
∂V

ρu (u · n) ds−
∫
V

ρ (gk + 2Ω× u) dx+

∫
∂V

σ · n ds,

where g is the gravity acceleration, and k = (0, 0, 1)T .
Using the Gauss theorem and the fact that V is time-independent and arbi-
trary, we arrive at the differential statement of momentum conservation

∂(ρu)

∂t
+∇ · (ρu⊗ u) + ρ gk + 2ρΩ× u−∇ · σ = 0,
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where ⊗ is the tensor (outer) product defined as u⊗ u =
(
u2 uv uw
uv v2 vw
uw vw w2

)
.

Navier–Stokes equations
The equations of mass and momentum conservation

∂ρ

∂t
+∇ · (ρu) = 0, (2.7)

∂(ρ u)

∂t
+∇ · (ρ uu) + 2ρΩ (cos(ϕ)w − sin(ϕ)v) −∇ · (σxx, σxy, σxz) = 0, (2.8)

∂(ρ v)

∂t
+∇ · (ρ vu) + 2ρΩ sin(ϕ)u−∇ · (σyx, σyy, σyz) = 0, (2.9)

∂(ρw)

∂t
+∇ · (ρwu) + ρ g − 2ρΩ cos(ϕ)u−∇ · (σzx, σzy, σzz) = 0 (2.10)

are called the Navier–Stokes equations; they represent the fundamental
model in fluid mechanics used to simulate nearly any type of fluid motion.
The primary unknowns in (2.7)–(2.10) are density ρ and velocity u =
(u, v, w). However, in order to obtain a closed system, one also needs a consti-
tutive expression for σ relating it to the primary unknowns. Such expressions
rely on the knowledge of the rheology of the material.

Questions

• What type of deformation is called a shear deformation?

• How is a solid (fluid) defined in continuum mechanics?

• What kinds of forces are considered in the classical mechanics of New-
ton and Euler?

– Describe the physical mechanism and give examples of body
forces.

– Describe the physical mechanism and give examples of surface
forces.

– Why pressure is a surface force?

• What is the mechanical stress and why do we need a tensor to describe
it mathematically? How is it calculated on a given surface?

• How do we define pressure using the Cauchy stress tensor? Why do we
call it isotropic?
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• What is the deviatoric stress tensor and why is it called ’viscous’?

• What types of conservation relationships are described by the Navier–
Stokes equations?

• What are the primary unknowns of the Navier–Stokes equations?

Rheology

• Rheology is the science of deformation and flow. Knowing rheological
properties of a material allows us to provide an empirical relationship
between the deformation or velocity variations and the stress.

• For fluids (as opposed to solids), the stress can be expressed in terms of
velocity gradients. The pressure p represents the isotropic (i.e. acting
equally in all directions) part of the stress tensor, whereas the deviatoric
(viscous) stress tensor τ represents deviations from this isotropic state.

• For Newtonian fluids such as water or air, viscous stresses depend
linearly on velocity gradients.

Our representation of the stress tensor σ can be then expressed as

σ = −pI + τ = −pI − 2

3
µ(∇ · u)I + µ

(
∇u+ (∇u)T

)
, ∇u =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 ,

where µ is called the dynamic viscosity coefficient.

Boundary conditions

• In order to have a unique solution (i.e. to be well-posed), the system
(2.7)–(2.10) must be complemented with boundary conditions that cor-
rectly represent physical processes taking place at the exterior bound-
aries.

• The standard PDE boundary conditions such as Dirichlet or Neumann
are building blocks for more elaborate expressions needed in fluid dy-
namics.

• The boundary conditions for the Navier–Stokes system are of either of
the two types: kinematic (i.e., describing the movement at the bound-
ary) or dynamic (i.e., describing the forces applied to the boundary
surface).
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• The specific boundary conditions prescribed vary according to the type
of the boundary.

Boundary conditions: sea bed

• The standard kinematic boundary condition for a viscous fluid at a rigid
boundary (wall) is ’no slip’: u = 0.

• If the fluid is inviscid, this changes to ’no normal flow’ u · n = 0,
where n denotes a normal to the boundary surface.

• Let the 2D function z = zb(x, y) describe a (time-independent) sea bed
(ocean) or a land surface (atmosphere) boundary. The ’no normal flow’
equation can then be put into a 2D form

n = ∇(z − zb) =

(
−∂zb
∂x

,−∂zb
∂y

, 1

)T

⇒ 0 = u|z=zb · n = u|z=zb
∂zb
∂x

+ v|z=zb
∂zb
∂y
− w|z=zb .

• Alternatively, one can take the material derivative of z − zb and take
into account that this boundary is not moving, and that no material
crosses it

D

Dt
(z − zb) = 0 ⇔ ∂(z − zb)

∂t︸ ︷︷ ︸
0

+u|z=zb
∂(z − zb)

∂x︸ ︷︷ ︸
− ∂zb∂x

+v|z=zb
∂(z − zb)

∂y︸ ︷︷ ︸
− ∂zb∂y

+w|z=zb
∂(z − zb)

∂z︸ ︷︷ ︸
1

= 0.

Boundary conditions: free surface

• In a similar manner, namely using the material derivative, one can
derive the kinematic boundary condition at the oceanic free surface. We
define the vertical coordinate of the free surface with respect to some
zero-level (e.g. the mean sea level) by the 2D function z = ξ(x, y, t)
and note that the free surface elevation is generally a time-dependent
function

• Similarly to the bottom boundary condition, we take into account that
no material crosses this boundary and take the material derivative of
z − ξ
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D

Dt
(z − ξ) = 0 ⇔ ∂(z − ξ)

∂t︸ ︷︷ ︸
− ∂ξ∂t

+u|z=ξ
∂(z − ξ)
∂x︸ ︷︷ ︸
− ∂ξ∂x

+v|z=ξ
∂(z − ξ)
∂y︸ ︷︷ ︸
− ∂ξ∂y

+w|z=ξ
∂(z − ξ)
∂z︸ ︷︷ ︸
1

= 0.

• This results in the equation that can be used to determine the free
surface elevation

∂ξ

∂t
+ u|z=ξ

∂ξ

∂x
+ v|z=ξ

∂ξ

∂y
− w|z=ξ = 0.

Boundary conditions: dynamic boundary conditions
Whereas kinematic boundary conditions prescribe the movement, the dy-
namic ones describe forces acting on the surface (usually in the form of
stress). Thus at the air-sea interface (free surface of the ocean), one usually
postulates the continuity of pressure

p|z=ξ = pa,

where pa denotes the atmospheric pressure, and prescribes the wind stress

τ |z=ξ · n = τ s,

where τ s is the surface wind stress.
Similar conditions can be used to model friction effects at the sea bed

τ |z=zb · n = τ b,

where τ b denotes the bottom stress.

Questions

• What type of relationship is given with the help of rheology?

• What type of fluid is called Newtonian?

• What kinds of standard boundary conditions are used in connection
with the Navier–Stokes equations?

• What type of kinematic boundary condition is prescribed at the sea
bed?

• How do we derive the kinematic boundary condition at the free surface?

• What do we prescribe as dynamic boundary conditions at the free sur-
face? sea bed?
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2.6 Ocean

2.6.1 Ocean physics

Ocean: Composition and physical properties

• The ocean covers ca. 71% of Earth’s surface

• It has an average depth of about 3700 m

• Sea water is composed of 96.5% water, the remaining 3.5% are dissolved
salts, particles, gases, and organic matter

• The salt (NaCl) represents about 85% of the dissolved material; its con-
tent is usually measured in [ppt] (parts per thousand) or [psu] (practical
salinity units) – the latter is based on the electrical conductivity of the
sea water; both measurements usually give very similar results

• Sea water is slightly compressible (density increases with pressure);
the sea water density also increases with salinity and decreases with
increasing temperature

• Salinity also influences the freezing point that varies between 0◦C for
pure water and -1.8◦C for water with salinity of 35 psu

Ocean: Circulation types

• The driving forces of ocean circulation are Earth gravity and rotation,
wind, gravity of other celestial bodies (mainly the Sun and the Moon
causing tides), and tectonic events

• Large-scale ocean studies are mainly concerned with two distinct types
of circulation: Wind-induced surface currents and the so-called ther-
mohaline circulation caused by the interplay between variations in sea
water density and winds, Earth rotation, and topography

• Coastal ocean dynamics is also strongly forced by tides and weather
systems, which – due to their relatively short time scales – play only
a secondary role in the large-scale dynamics.

83



Ocean: Wind-induced circulation

• The surface ocean circulation is
mainly driven by the winds

• At mid-latitudes, the atmospheric
westerlies induce eastward cur-
rents in the ocean while the trade
winds are responsible for west-
ward currents in the tropics

Figure 2.35: Oceanic gyres &
western boundary currents (Goosse
2015).

• Because of continental barriers, those currents form loops called the
subtropical gyres characterized by an intensification along the western
boundaries of the oceans (eastern coasts of continents). These include
well-known strong currents such as the Gulf Stream off the east coast
of the USA and the Kuroshio off Japan

• These currents generally run parallel to the winds, whereas the equa-
torial countercurrents run in the direction opposite to the trade winds

In the Southern Ocean, in the absence of continental barriers the Antarctic
Circumpolar Current (ACC) connects all ocean basins. This is one of the
strongest currents on Earth transporting about 0.13× 109m3s−1 of water.

Figure 2.36: Map
of important sur-
face currents (En-
cyclopedia Britan-
nica).

84



• Because of Earth’s rotation, the
wind-induced ocean transport is
perpendicular to the wind stress
(to the right in the North-
ern, to the left in the South-
ern Hemisphere – cf. Fig. 2.37).
This transport called the Ek-
man transport plays an impor-
tant role in explaining the path
of the wind-driven surface cur-
rents (Fig. 2.36)

Figure 2.37: Ekman transport
schematic for the Northern Hemi-
sphere (NOAA).

• Along coastlines or if the transport has horizontal variations, this can
lead to surface convergence/divergence that has to be compensated by
vertical movements in the ocean

• The Ekman transport direction to the north in the Northern and to the
south in the Southern Hemisphere results in a divergence at the equator
that has to be compensated by an upwelling there (c.f. Fig. 2.38 (left)).
This phenomenon is called the equatorial upwelling

• For winds blowing parallel to coast, a similar mechanism leads to
a coastal upwelling compensating for the transport away from the
coast (Fig. 2.38 (right))

Figure 2.38:
Equatorial (left)
and coastal
upwelling (right)
caused by the
Ekman trans-
port (Goosse
2015).
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Ocean: Thermohaline circulation

• At high latitudes, low temperatures and relatively high salinity cause
the surface water to sink to great depths. This process, often referred
to as deep oceanic convection, is only possible in a few places in the
world, mainly in the North Atlantic and in the Southern Ocean

• These water masses (called the deep water) are then slowly trans-
ported from the North Atlantic southward along the western boundary
of the Atlantic towards the Southern Ocean. From there, it is trans-
ported to the other oceanic basins where it slowly surfaces

• The return flow to the sinking regions is achieved through surface and
intermediate depth circulation

• The thermohaline circulation is quite slow. The time needed for water
masses formed in the North Atlantic to reach the Southern Ocean is of
the order of a century. If the whole cycle is taken into account, the time
scale is estimated as several centuries to a few millennia depending of
the exact location and mechanism studied

• The thermohaline circulation (Fig. 2.39), which is associated with cur-
rents at all depths, is often called the global conveyor belt; it is
driven by density gradients, but winds also play a significant role

• This circulation transports huge amounts of water, salts, energy, and
nutrients that play an important role in the global climate dynamics.

Ocean: Salinity

• The sea surface salinity is strongly influenced by the freshwater fluxes
at the surface reaching a maximum in subtropical areas because of
the large evaporation and low rainfall there. The high precipitation
rates induce lower salinity at the equator, while the weak evaporation
is responsible for the lower salinity observed at mid and high latitudes
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Figure 2.39: Schematic of the oceanic thermohaline circulation (Ramstorf
2002).

Figure 2.40: Annual mean sea surface salinity [psu] (Levitus 1998).

• River input also has a large regional impact with low values close to
the mouths of the Amazon and Mississippi rivers

Ocean: Temperature at the surface

• Because of the strong interactions between the ocean and the atmo-
sphere, the sea surface temperature (SST) is very close to the temper-
ature of the air above it. One exception is the polar regions where sea
ice insulates the ocean from the cold polar atmosphere

• The uppermost tens of meters of ocean water at mid- and high latitudes
show a clear seasonal cycle

• When temperature rises in spring and summer, a shallow layer (gener-
ally less than 40 m) warms up and stabilizes the water column. The
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water below this layer is insulated from the surface and thus conserves
the properties acquired by contact with the air in winter

Figure 2.41: Monthly
mean temperature pro-
files at a mid-latitude site
in the Northern Hemi-
sphere (PMEL/NOAA).

Ocean: Mixed layer
In winter, stirring by the winds and cooling at the surface tend to destabilize
the water column and generate shallow convection inducing thereby strong
mixing. This homogenizes a surface layer called the oceanic mixed layer
(Fig. 2.42) that has a typical winter depth of 50 to 100 m but may reach
several hundred meters in some regions

This process gives rise
to a region with strong
vertical variations
in density under the
summer extent of the
mixed layer that is
called the seasonal
thermocline

Figure 2.42: Oceanic mixed layer (Goosse 2015).

Ocean: Deep water

• Below the mixed layer (except in polar regions), a temperature gradient
is observed causing the permanent thermocline (Fig. 2.43)

• This shows that the majority of the ocean has strong stratification
meaning that light water sits above dense water as required by the
vertical stability of the water column

• In the deep ocean, the vertical density variations are much weaker
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Figure 2.43: Thermocline: Tropics (left), midlatitudes (center), and polar
(right).

• The temperature and salinity of sea water are modified by interactions
with the atmosphere only in the oceanic mixed layer

• Thus water mass formation and transformation mainly occur close
to the surface. When these waters flow beneath the mixed layer, they
tend to keep the properties they have acquired close to the surface

• As a consequence, the path of important water masses such as North
Atlantic Deep Water (NADW), Antarctic Bottom Water (AABW), or
Antarctic Intermediate Water (AAIW) can easily be followed from their
region of formation on temperature vertical sections (Fig 2.44)

Figure 2.44: Zonally averaged temperature in Atlantic Ocean (Levitus 1998).

Questions

• What types of circulation are relevant for the global ocean dynamics?

• What is a subtropical gyre and how does it arise?
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• What is the mechanism behind the Ekman transport?

• What is the deep oceanic convection? Where can it happen?

• What is the typical time scale of the thermohaline circulation?

• What is the global conveyor belt, and why is it called thus?

• What factors strongly affect the global distribution of ocean salinity?

• What is the oceanic mixed layer and what important processes are
taking place in it?

• What is the seasonal thermocline, and where is it not present?

• What is the permanent thermocline and how does it influence the in-
teraction between the surface and deep water in different regions?

• How do you interpret the term ’water mass’, and what is the role of
water masses in the global eco-system?

2.6.2 Ocean circulation modeling

Ocean: The equation of state
The description of the fluid system is not complete until a relation between
density and pressure called the equation of state is specified

• For pure water at ordinary pressures and temperatures, the statement
can be as simple as ρ = const. In the ocean, however, water density is
a complicated function of pressure, temperature, and salinity

• For most applications, it can be assumed that the density of seawater
is independent of pressure (incompressibility) and linearly dependent
on both temperature and salinity according to

ρ(T, S) = ρ0(1− α(T − T0) + β(S − S0)),

where T is the temperature and S the salinity. ρ0, T0, and S0 are
the reference values of density, temperature, and salinity, respectively,
whereas α and β are the coefficients of thermal expansion and saline
’contraction’. Typical seawater values are ρ0 = 1028 kg/m3, T0 = 10◦C,
S0 = 35 psu, α = 1.7 × 10−4 K−1, and β = 7.6 × 10−4
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Ocean: The hierarchy of circulation models

The starting point for the derivation of the model hierarchy for ocean
(Fig. 2.45) are the mass and momentum conservation (Navier–Stokes)
equations in a frame of reference rotating with angular velocity Ω.

Figure 2.45: Hierarchy of ocean circulation models.

Ocean: The Navier–Stokes equations

The Navier–Stokes equations are the main mathematical model describing
the motion of viscous fluids.

Denoting by τ the viscous stress tensor and by p the pressure, the conserva-
tive (also called divergence) form of the Navier-Stokes system is

Conservation of mass︷ ︸︸ ︷
∂ρ

∂t
+∇ · (ρu) = 0, (2.11)

Conservation of momentum︷ ︸︸ ︷
∂(ρu)

∂t︸ ︷︷ ︸
change in

momentum

+ ∇ · (ρu⊗ u)︸ ︷︷ ︸
momentum
advection

+∇p+ ρ g k︸ ︷︷ ︸
pressure and
gravity forces

+ 2 ρΩ× u︸ ︷︷ ︸
Coriolis

force

−∇ · τ︸ ︷︷ ︸
viscous
forces

= 0, (2.12)

where ⊗ is the notation for the tensor (outer) product.
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In continuum mechanics, the Navier–Stokes system is the foundation for
a range of key mathematical models. The standard special cases are:

• Neglecting viscosity effects (τ = const) results in the Euler equations
widely used (usually in combination with an energy conservation equa-
tion) for modeling compressible fluids (atmospheric flows, acoustics,
airspace applications)

• Assuming constant density (ρ = ρ0) results in the incompressible
Navier-Stokes equations that pose a saddle point problem

∂u

∂t
+∇ · (u⊗ u) +

∇p
ρ0

+ g k + 2 Ω× u− ∇ · τ
ρ0

= 0, (2.13)

∇ · u = 0. (2.14)

• Neglecting, in addition, the advection term results in the Stokes sys-
tem – a standard model for very viscous (and frequently also non-
Newtonian) flows; in climate modeling, this system and its simplifica-
tions are used to model sea and land ice flows

In the ocean modeling, the mass and momentum conservation equations must
be complemented by the temperature and salinity transport equations given
as advection-diffusion equations with µr denoting the diffusivity coefficient
for the corresponding constituent

∂r

∂t
+∇ · (u r)−∇ · (µr∇r) = 0, r ∈ {T, S} (2.15)

and an equation of state for density

ρ = ρ(T, S, p). (2.16)

Conservation of internal energy is expressed by the transport equation for
temperature; the exchange between the mechanical and internal energy is
usually not modeled explicitly since its effects are comparably minor for the
majority of ocean applications.
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Questions

• What physical relationship is expressed by an equation of state for sea
water?

• What is the starting point for the derivation of the ocean circulation
models?

• What physical phenomena are accounted for in the Navier-Stokes equa-
tions?

• In which situations is it possible to neglect viscous effects?

• How is the Navier-Stokes system modified to model incompressible flu-
ids?

• What is the difference between Stokes and Navier-Stokes systems?

• What additional relationships – aside of the Navier-Stokes equations –
are needed in ocean circulation models?

Ocean: The Boussinesq (non-hydrostatic) system

• The density-driven circulation plays a major role in ocean systems
whenever large temporal scales are important. Motions caused by den-
sity gradients due to varying salinity and temperature are generally
slow since the local variations in the sea water density in the world
oceans rarely exceed 0.5%

• This fact motivates the fundamental assumption made in nearly every
ocean model, the so-called

Boussinesq approximation

Replace the actual water density with its reference value ρ0 every-
where except in the gravity forcing term ρgk in the momentum
equation (2.12).
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Applying this approximation to system (2.12)–(2.11), dividing by ρ0, and
transforming the Coriolis term to the local coordinate system (see Fig. 2.31)
results in the Boussinesq equations of the ocean:

∂u

∂t
+∇ · (u⊗ u) +

∇p
ρ0

+
ρ

ρ0
g k + 2 Ω

(
0 − sin (ϕ) cos (ϕ)

sin (ϕ) 0 0
− cos (ϕ) 0 0

)
u− ∇ · τ

ρ0
= 0, (2.17)

∇ · u = 0. (2.18)

Transport equations for temperature and salinity (2.15) and the equation of
state (2.16) complement system (2.17)–(2.18).

• The conservation of mass represented by (2.11) is now replaced by the
continuity equation (2.18) that expresses conservation of volume

• (2.18) implies a divergence-free fluid (sea water is, in fact, very slightly
compressible at ca. 5× 10−7 kg m−3 Pa−1)

• Similarly to the incompressible Navier-Stokes equations, the Boussinesq
system poses a saddle-point problem

Ocean: Treatment of viscous terms
For incompressible Newtonian fluids, the viscous stress tensor

τ = −2

3
µ(∇ · u)I + µ

(
∇u+ (∇u)T

)
reduces to

τ = µ
(
∇u+ (∇u)T

)
or, equivalently,

τ

ρ0

= ν
(
∇u+ (∇u)T

)
, (2.19)

where µ, ν denote the dynamic and kinematic viscosity coefficients, re-
spectively.
Assuming a constant viscosity and using continuity equation (2.18) we have
∇ · (∇u)T = 0, and the viscous term simplifies to

∇ · τ
ρ0

= ∇ · (ν∇u) = ν∇2u =


∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

∂2v
∂x2

+ ∂2v
∂y2

+ ∂2v
∂z2

∂2w
∂x2

+ ∂2w
∂y2

+ ∂2w
∂z2

 , (2.20)

where ∇2 is called the (vector) Laplace operator.
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Ocean: Dimensional analysis of the Boussinesq system
To identify geophysically relevant motion scales, we non-dimensionalize
the Boussinesq system by introducing typical values for the horizontal and
the vertical lengths and velocities denoted by L,H,U , and W , respectively.
Introducing ε := H/L, the typical aspect ratio of vertical to horizontal
dimensions, we note that ε rarely exceeds 1/100 for the majority of realistic
ocean domains.
Marking by prime the dimensionless unknowns, we can write

x = Lx′, y = Ly′, z = Hz′ = εLz′, t =
L

U
t′,

∇ =
1

L
∇′, ∂

∂z
=

1

εL

∂

∂z′
,

∂

∂t
=
U

L

∂

∂t′

and, analogously, for the main physical quantities

u = Uu′, v = Uv′, w = Ww′, ρ = ρ0ρ
′, p = ρ0U

2p′, g =
U2

εL
g′.

Denoting by subscript 2 the horizontal (xy-) components of 3D vectors and
operators, the continuity equation (2.18) becomes

U

L
∇′2 · u′2 +

W

εL

∂w′

∂z′
= 0. (2.21)

Our next goal is to identify the relationship between typical scales of vertical
and horizontal velocities.

• Suppose W � εU

• It would follow that ∂w′

∂z′
≈ 0 implying w nearly constant over the ver-

tical extent of the domain

• No-normal-flow boundary conditions at the bottom imply w = 0

• Then we have ∇2 · u2 ≈ 0, and the lateral (land) boundaries (also
using no-normal-flow boundary conditions) result in u ≈ 0 – a rather
unlikely situation in a real ocean

• From now on, we assume W = εU and note that all arguments also
hold for W � εU
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We introduce the dimensionless Rossby (Ro) and Reynolds (Re) num-
bers that play a key role in determining the character of ocean circulation

Ro :=
U

2ΩL
, Re :=

UL

ν
.

For the momentum equations (2.17), we separate the horizontal from the
vertical momentum exchange arriving after the non-dimensionalization at

U2

L

{
∂u′2
∂t′

+∇′2 · (u′2 ⊗ u′2) +
∂ (u′2w

′)

∂z′
+∇′2p′ +

1

Ro

(
0 − sin (ϕ)

sin (ϕ) 0

)
u′2 (2.22)

+
ε

Ro

(
cos (ϕ) 0

0 0

)
w′ −∇′2 ·

(
1

Re
∇′2u′2

)
− ∂

∂z′

(
1

ε2 Re

∂u′2
∂z′

)}
= 0,

εU2

L

{
∂w′

∂t′
+∇′2 · (u′2w′) +

∂
(
w′2
)

∂z′
+

1

ε2

∂p′

∂z′
+

1

ε2
ρ′ g′ (2.23)

− 1

εRo
cos (ϕ)u′ −∇′2 ·

(
1

Re
∇′2w′

)
− ∂

∂z′

(
1

ε2 Re

∂w′

∂z′

)}
= 0.

Ocean: The Reynolds number and the role of viscosity

• The Reynolds number Re= UL
ν

describes the relative importance of
inertial (advective) forces compared to viscous forces

• It is very large for flows on geophysical scales even when turbulence
effects are taken into account

• A clear contrast between the horizontal and vertical viscosities is ap-
parent whose coefficients may differ by several orders of magnitude

• The much larger vertical viscosity term i.e., the last term on the left-
hand side of (2.22)

∂

∂z′

(
1

ε2 Re

∂u′2
∂z′

)
and of (2.23)

∂

∂z′

(
1

ε2 Re

∂w′

∂z′

)
plays an important role as a major mechanism of vertical momentum
transport toward its sinks via bottom friction at the sea bed or via
interaction with the wind at the free surface
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Ocean: Hydrostatic balance and the vertical Coriolis force

• Starting from vertical momentum equation (2.23), omitting primes

εU2

L

{
∂w

∂t
+∇2 · (u2w) +

∂
(
w2
)

∂z
+

1

ε2

∂p

∂z
+

1

ε2
ρ g

− 1

εRo
cos (ϕ)u−∇2 ·

(
1

Re
∇2w

)
− ∂

∂z

(
1

ε2 Re

∂w

∂z

)}
= 0,

and collecting leading-order terms (∼ 1/ε−2) except for the vertical
viscosity term multiplying 1

Re
� 1 leads to

∂p

∂z
+ ρ g = 0, (2.24)

which is also known as the hydrostatic balance condition

• The vertical Coriolis terms (those containing cos (ϕ)) tend to be much
smaller than their horizontal counterparts for ε� 1 and are neglected
in the following (as a part of so-called traditional approximation);
these terms, however, can be important in non-hydrostatic settings

Ocean: The Rossby number and the geostrophic balance

• The Rossby number Ro= U
2ΩL

in (2.22) relates advection to the Coriolis
force and is of order of unity or less. Horizontal Coriolis terms are very
important for the slow-varying large-scale circulation in global ocean
where their magnitude may exceed by far that of the advective terms

• For such types of flow, the velocity variations are usually very small,
thus the horizontal pressure gradient is the only term comparable in
size to the Coriolis force. Then the leading-order approximation to the
horizontal momentum equations is given by

∇2 p+
(

0 −fc
fc 0

)
u2 = 0, where fc := 2 Ω sin (ϕ) (2.25)

• The above expression is called the geostrophic balance condition; it
constitutes, similarly to the hydrostatic balance, a fundamental char-
acteristic of large-scale ocean circulation

• In coastal ocean with its fast-moving flows, Coriolis terms are not as
important, and pressure gradients are often balanced by the advection
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Questions

• What is the main idea behind the Boussinesq approximation?

• Which conservation unknowns are different in the Boussinesq equations
from the Navier-Stokes ones?

• What is a Newtonian fluid?

• How does one perform a dimensional analysis and why is it useful?

• What is the aspect ratio and what are typical aspect ratios for ocean
applications?

• What relationship is expressed by the Reynolds number and why is it
useful?

• What is the hydrostatic balance and why does it have a dramatic effect
on the model equations?

• What is the geostrophic balance and what types of of ocean circulation
are represented well by it?

Ocean: Modeling subgrid scale dynamics

• The viscous stress term ν
(
∇u+∇uT

)
in (2.19) is extremely small for

the sea water (ν ≈ 10−6 m2 s−1); however, terms formally similar to
the molecular viscosity but much larger in size are frequently employed
to model the effects of turbulent subscale motions

• The standard approach to de-
rive these terms is based on the
Reynolds averaging technique
in which a time-varying function
ω(t) is decomposed as a sum of
its mean value ω(t) assumed to
be constant the averaging time
period ∆t and an instantaneous
deviation from the mean ω̃(t)

ω(t) = ω(t) + ω̃(t) (2.26) 0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

The averaging · operator has the following properties:
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• ω1 + ω2 = ω1 + ω2,

• ω = ω,

• ω̃ = 0,

• ω ω = ω ω,

• ω ω̃ = 0

Splitting u, p, and ρ into the mean and the deviation, substituting into
momentum equation (2.17), recalling that for a constant viscosity coefficient
∇ · (ν∇uT ) = 0, and applying the Reynolds averaging results in

∂u

∂t
+∇ · (u⊗ u) +

1

ρ0
∇ p+

ρ

ρ0
g k + fc k × u−∇ ·

(
ν∇u− ũ⊗ ũ

)
= 0. (2.27)

Note that all linear terms vanish due to the linearity of the averaging oper-
ator.
Equation (2.27) serves as the starting point for incorporating the eddy vis-
cosity effects into the model. It has several important characteristics:

• Having two velocities (u and ũ) instead of one without adding any new
equations, poses the so-called closure problem how to express terms
containing ũ through u

• Products of deviation terms arising from the advection operator,
namely ũ⊗ ũ, can be interpreted as corrections to the viscous stress;
this motivates the simplest possible eddy viscosity parametrization:
A linear eddy viscosity coefficient of the same type as the kinematic
viscosity coefficient ν but several orders of magnitude larger

Remark 2.6. Reynolds averaging can be applied directly to the Navier–
Stokes equations, the system processed in this way is called Reynolds aver-
aged Navier–Stokes equations (RANS). Next to the Large Eddy Simulation
(LES) it represents the most common way to account for turbulent effects.

An anisotropy between the vertical and the horizontal viscosity clearly fol-
lows from the non-dimensionalization given in (2.22)–(2.23); therefore, we
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emphasize this distinction by introducing separate horizontal and vertical
eddy viscosity coefficients in (2.28)

∂u

∂t
+∇ · (u⊗ u) +

∇p
ρ0

+
ρ

ρ0

g k + fc k × u−∇ · (D∇u) = 0, (2.28)

where D is the tensor of eddy viscosity coefficients defined as

D =

(
Du 0 0
0 Dv 0
0 0 Dw

)
, Du = Dv = Dw =

(
Au 0 0
0 Au 0
0 0 νt

)
, D∇u :=

(
(Du∇u)T

(Dv∇v)T

(Dw∇w)T

)

where Au is the horizontal and νt the vertical eddy viscosity coefficient.

Remark 2.7. (2.28) is, in fact, an equation for u although we drop the
bar for brevity.

Remark 2.8. The horizontal and the vertical eddy viscosity coefficients
express physically distinct momentum exchange mechanisms and can differ
by several orders of magnitude.

In a similar way, one obtains transport equations for temperature and salinity
with eddy diffusivity terms:

∂r

∂t
+∇ · (u r)−∇ · (Dr∇r) = 0, Dr =

(
Ar 0 0
0 Ar 0
0 0 νr

)
, r ∈ {T, S} . (2.29)

Questions

• Describe the main idea of Reynolds averaging.

• What are the main properties of the averaging operator?

• How are the eddy viscosity (turbulence) effects incorporated in the
momentum equations?

• Why is there a clear difference between the eddy viscosity mechanisms
in the horizontal and vertical directions?
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Ocean: The primitive (hydrostatic) equations
The non-dimensionalzied Boussinesq vertical momentum equation (2.23)

∂w′

∂t′
+∇′ · (u′w′) +

1

ε2

(
∂p′

∂z′
+ ρ′ g′

)
−

1

εRo
cos (ϕ)u′ −∇′2 ·

(
1

Re
∇′2w′

)
−

∂

∂z′

(
1

ε2 Re

∂w′

∂z′

)
= 0

leads to

Idea of the hydrostatic approximation

According to the dimensional analysis, for ε � 1, the retention of only
leading-order terms reduces the vertical momentum equation to the state-
ment of hydrostatic balance given in (2.24)

∂p

∂z
+ ρ g = 0.

Taking the above equality as a diagnostic equation for determining the
pressure dramatically changes the mathematical character of the system
and has profound implications from the physical point of view.

The hydrostatic equations of the ocean is the most commonly used
mathematical model for simulating the baroclinic (variable density) circu-
lation in global, regional, and coastal ocean. They are given by

∂u2

∂t
+∇ · (u⊗ u2) +

∇2p

ρ0

+
(

0 −fc
fc 0

)
u2 −∇ · (D2∇u2) = 0, (2.30)

∇ · u = 0, (2.31)

∂p

∂z
+ ρ g = 0, (2.32)

ρ = ρ(T, S, p), (2.33)

∂r

∂t
+∇ · (ur)−∇ · (Dr∇r) = 0, r ∈ {T, S} . (2.34)

System (2.30)–(2.34) is complemented by the kinematic and dynamic
boundary conditions.
We only state the conditions at the free surface and the sea bed for the
continuity and momentum equations; the boundary conditions at the lateral
boundaries come in more varieties and can be found in many textbooks on
ocean modeling.
Denoting by n = (nx, ny, nz)

T an exterior unit normal to the ocean domain,
we specify at the bottom (sea bed) boundary
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• Kinematic: No-normal-flow

u|z=zb · n = 0 (2.35)

• Dynamic: Quadratic slip for the horizontal velocity components

D2∇u2|z=zb · n = −Cf |u|z=zb |u2|z=zb , (2.36)

where zb denotes the value of the z-coordinate at the sea bed, and
Cf > 0 is a constant friction coefficient

The standard boundary conditions at the free surface have the form (here,
ξ denotes the value of the z-coordinate at the free surface):

• Kinematic (points at the free surface move with it)

∂ξ

∂t
+ u|z=ξ

∂ξ

∂x
+ v|z=ξ

∂ξ

∂y
− w|z=ξ = 0 (2.37)

• Dynamic: Pressure and wind stress are prescribed

p|z=ξ = pa, (2.38)

where pa is the atmospheric pressure, and

D2∇u2|z=ξ · n =
τ s
ρ0

, (2.39)

with τ s denoting the surface wind stress

Their main properties can be summarized as follows:

• Pressure is computed from the hydrostatic pressure condition ∂p
∂z

+
ρ g = 0 and only accounts for the hydrostatic (weight of the water above
the point) and not for the hydrodynamic effects

• The prognostic vertical momentum equation for the vertical veloc-
ity w is not included in the hydrostatic system, and w is computed
diagnostically using the continuity equation (2.31) ∇ · u = 0

• As opposed to the non-hydrostatic Boussinesq system, the hydro-
static equations do not pose a saddle point problem
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• Using equation (2.32) and the pressure boundary condition at the free
surface (2.38), the hydrostatic pressure gradient in the momentum
equation (2.30) is usually represented in the following convenient form

1

ρ0
∇2 p =

1

ρ0
∇2

(
pa +

∫ ξ

z
ρ g dζ

)
=
∇2 pa
ρ0

+ g∇2 ξ +
g

ρ0
∇2

∫ ξ

z
(ρ− ρ0) dζ

• While much better treatable numerically, from the physical point of
view, the hydrostatic system presents a number of limitations:

– Vertical accelerations are neglected

– The vertical momentum is not conserved

– Vertical accelerations affect the propagation of internal and short
surface waves, therefore any studies sensitive to an accurate rep-
resentation of these phenomena require a non-hydrostatic model

• In summary, any problem setting focusing on domains and flow regimes
with the ratio of vertical-to-horizontal scales greater than 1/10 most
likely should be modeled using a non-hydrostatic system

Ocean: 2D shallow water equations

• Even in the substantially simplified settings of non-hydrostatic (Boussi-
nesq) or hydrostatic (primitive) equations, the resulting PDE system
is still rather complex and computationally expensive to solve

• For problems not greatly affected by the density-driven dynamics but
focusing instead on fast moving surface waves (tidal flows, tsunamis),
one can make further simplifications to obtain a 2D system of PDEs

• By integrating the continuity equation ∇ · u = 0 vertically over the
depth and applying kinematic boundary conditions at the free surface

∂ξ

∂t
+ u|z=ξ

∂ξ

∂x
+ v|z=ξ

∂ξ

∂y
− w|z=ξ = 0

and the sea bed u|z=zb · n = 0,[1ex] we obtain the 2D (primitive)
continuity equation

∂ξ

∂t
+∇2 ·

∫ ξ

zb

u2 dz = 0 (2.40)
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The treatment of the momentum equation (2.30)
∂u2

∂t
+∇ · (u⊗ u2) +

∇2 p

ρ0

+
(

0 −fc
fc 0

)
u2 −∇ · (D2∇u2) = 0

is somewhat more involved. We proceed as follows:

• Assume constant density ρ = ρ0 and a vertically uniform horizontal
velocity u2

5

• Denote by q :=
∫ ξ
zb
u2 dz the depth integrated horizontal velocity and

by H := ξ − zb the total water depth

• Next, the momentum equation (2.30) is integrated vertically applying
the dynamic boundary conditions at the free surface

D2∇u2|z=ξ · n = τ s/ρ0

and at the sea bed

D2∇u2|z=zb · n = −Cf |u|z=zb |u2|z=zb

Skipping some intricacies of the viscosity parametrization, we end up with
the system of two-dimensional (viscous) shallow water equations

∂q

∂t
+∇2 ·

q ⊗ q
H

+ gH∇2 ξ +
(

0 −fc
fc 0

)
q −

C∗f
H
|q| q − τ s

ρ0
−∇2 · (Au∇2 q) = 0,

(2.41)
∂ξ

∂t
+∇2 · q = 0, (2.42)

where C∗f = const > 0 denotes the bottom friction coefficient for the depth-
integrated momentum equations.

Remark 2.9. Equation (2.42) is often utilized in 3D hydrostatic and non-
hydrostatic systems in place of (2.37) to determine the free surface eleva-
tion. The usual way to accomplish this is called mode-splitting and boils
down to solving system (2.41), (2.42) to obtain the free surface elevation
that is then used in the solution of the full 3D system to determine the 3D
fields.

5These assumptions are reasonably realistic for shallow coastal shelves dominated by
tidal dynamics where fast flows result in an efficient vertical mixing.
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2.7 Atmosphere

2.7.1 Physics of the atmosphere

Atmosphere: Chemical composition

• Dry air is mainly composed of nitrogen (78.08 % in volume), oxygen
(20.95% in volume), argon (0.93% in volume) and to a lesser extent
carbon dioxide (380 ppm or 0.038% in volume)

• The remaining fraction is made up of various trace constituents such
as neon (18 ppm), helium (5 ppm), methane (1.75 ppm), and krypton
(1 ppm)

• In addition, a highly variable amount of water vapor is present in the
air. This ranges from approximately 0% in the coldest part of the
atmosphere to as much as 5% in moist and hot regions. On average,
water vapor accounts for 0.25% of the mass of the atmosphere

Atmosphere: Equation of state
The equation of state is based on the ideal gas law

p = ρRT,

where p is the pressure, ρ the density, R the universal gas constant (R ≈
8.31287[J/(K mol)]), and T the absolute temperature.
Similar relationships also hold for dry air (subscript d) and water vapor
(subscript v)

pd = ρdRdT, pv = ρvRvT,

where Rd and Rv denote the specific gas constants obtained using the molec-
ular masses of dry air md and water vapor mv via

Rd = R/md, Rv = R/mv.

The total air pressure and density are then given as sums of those of dry air
and water vapor

p = pd + pv, ρ = ρd + ρv.
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Introducing the specific humidity q = ρv/ρ and the ratio between the molec-
ular masses of dry air and water vapor ε = mv/md, the equation of state for
moist air can be expressed as

ρ(p, T, q) =
p

RdT (1− q + q
ε
)

=
p

RmT
, (2.43)

where Rm is the specific gas constant for moist air

Rm = Rd

(
1− q +

q

ε

)
=

R

md

(
1− q +

q

ε

)
.

Denoting by

α =
1

ρ

the specific volume of gas, (2.43) can be equivalently written as

pα = RmT. (2.44)

Atmosphere: Vertical pressure profile
On a large-scale, the atmosphere is nearly
in hydrostatic equilibrium, meaning that at
height z, the force due to the pressure p on
a 1 m2 horizontal surface balances the force
due to the weight of the air above z. The at-
mospheric pressure is thus at its maximum at
the Earth’s surface, and the surface pressure
ps depends on the mass of the air column at
a particular location

Combining the equation of state for moist air (2.43) with the hydrostatic
pressure ∂p/∂z = −ρg results in an ODE for pressure

∂p

∂z
= − p

RmT
g, p|z=0 = ps ⇒ p = pse

− g z
RmT = pse

− z
H ,

where H = RmT/g is a scale height6 (ca. 8 km for the atmosphere).

6Distance over which a quantity (pressure in our case) decreases by a factor of e.
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Atmosphere: The first law of thermodynamics
Application of the first law of thermodynamics to a parcel of fluid relates
the heat (energy) exchange with the surroundings dQ, the internal energy
change dU , and the work done by or on the parcel dW

dQ = dU + dW,

where d denotes an infinitesimal change in the corresponding quantity.

• For a parcel of gas of mass M , if the volume V changes then there is
some work done

dW = p
dV

M
= p dα,

where α = 1/ρ denotes once again the specific volume.

• The change in internal energy is proportional to the temperature change
for a fixed volume

dU = CvdT,

where Cv is the specific heat of moist air at constant volume

Atmosphere: Adiabatic processes
Combining the expressions for internal energy and work, we arrive at

dQ = CvdT + p dα. (2.45)

Differentiating the equation of state in the form (2.44) pα = RmT gives

p dα + αdp = RmdT

which can be then substituted into (2.45) resulting in

dQ = CpdT − αdp, (2.46)

where Cp = Cv +Rm is the specific heat of moist air at constant pressure.
A thermodynamic process is called adiabatic if it takes place without ex-
changing heat with the environment, i.a.

dQ = 0 ⇔ CpdT − αdp = 0. (2.47)

Since the thermal conductivity of air is very small, many processes that do
not involve radiative transfer can be considered adiabatic.

Atmosphere: Lapse rate
Substituting the hydrostatic pressure ∂p/∂z = −ρg into (2.47) gives

CpdT = −α ρ g dz ⇔ −∂T
∂z

=
g

Cp
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motivating the definition of Γd := g
Cp

called the adiabatic lapse rate and

describing the rate of change of temperature with altitude (for adiabatic and
unsaturated conditions).

• The temperature in the troposphere, roughly the lowest 10 km of the
atmosphere, generally decreases with height

• The measured lapse rate Γ := −∂T
∂z

depends on the radiative balance
of the atmosphere, convection, and the horizontal heat transport. Its
global mean value is around 6.5 K km−1, but Γ depends on the location
and season

• The lapse rate is an important characteristic of the atmosphere. For
instance, it determines its static stability

Atmosphere: Stable and unstable conditions
Consider a parcel of air rising adiabatically. Its temperature changes accord-
ing to the adiabatic lapse rate Γd, and its pressure is equal to the air pressure
at the current altitude. However, the temperature (and thus also the density)
of the surrounding air changes according to the measured lapse rate Γ, and
those can be different from that of the rising air parcel.

Low measured lapse rates inhibit vertical
movements and increase the vertical stabil-
ity. Negative lapse rates (temperature increas-
ing with height), called temperature inversions,
correspond to highly stable conditions

When the measured lapse rate rises, a verti-
cal instability followed by convection may arise.
The lapse rate is also involved in feedbacks and
plays an important role in the response of the
atmosphere to perturbations

108



Atmosphere: Troposphere, Stratosphere, Mesosphere
At an altitude of about 10 km, a region of
weak vertical temperature gradients, called
the tropopause, separates the troposphere
from the stratosphere where the tempera-
ture generally increases with height until
the stratopause at around 50 km.
In the mesosphere, temperature decreases
strongly with height until ca. 80 km and
then increases again in the thermosphere.

The vertical gradients above 10 km are strongly influenced by the absorp-
tion of solar radiation by different atmospheric constituents and by chemical
reactions driven by the incoming light. In particular, the warming in the
stratosphere at heights of about 30-50 km is mostly due to the absorption
of ultraviolet radiation by stratospheric ozone, which protects life on Earth
from this dangerous radiation.

Atmosphere: Horizontal distribution of temperature

Figure 2.46: Surface air temperature
[◦C] (Brohan et al. 2005) averaged over
(a) December, January, and February
(b) June, July, and August

• At the Earth’s surface, the
temperature reaches its maxi-
mum in equatorial regions due
to the higher incoming solar
radiation. In those regions,
the temperature is relatively
constant throughout the year

• Because of the much stronger
seasonal cycle at mid and high
latitudes, the north-south gra-
dients are much larger in win-
ter than in summer

The distribution of the surface temperature is also affected by atmospheric
and oceanic heat transport as well as by the thermal inertia of the ocean
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Atmosphere: Convection

• The high temperatures at the equator make the air there less dense. It
thus tends to rise before being transported poleward at high altitudes
in the troposphere. This motion is compensated for at the surface by
an equatorward displacement of the air.

• On a motionless Earth, this big convection cell would reach the poles,
inducing direct exchanges between the warmest and coldest places on
Earth. Because of the Earth’s rotation, such an atmospheric structure
would be unstable

Atmosphere: Hadley and Ferrel cells

• Two cells driven by the ascendance at the equator, called the Hadley
cells close with a downward branch at a latitude of about 30◦C. The
northern boundary of these cells is marked by strong westerly winds in
the upper troposphere called the tropospheric jets

• The extratropical circulation is dom-
inated at the surface by westerly
winds whose zonal symmetry is per-
turbed by large wave-like patterns
and the continuous succession of dis-
turbances that governs the day-to-
day variations in the weather in these
regions. The dominant feature of the
meridional circulation at those lati-
tudes is the Ferrell cell, which is
weaker than the Hadley cell
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Atmosphere: Surface winds

• At the surface, the Earth’s rotation is responsible for a deflection to-
ward the right in the northern hemisphere and toward the left in the
southern hemisphere (due to the Coriolis force) of the flow coming from
the mid-latitudes to the equator. This gives rise to the easterly trade
winds characteristic of the tropical regions

Figure 2.47: Winds [m/s] at 10m above the sea level (arrows) and sea level
pressure [hPa] (colors) in December, January, and February (Kalnay et al.
1996).

Atmosphere: Precipitation

Figure 2.48: Precipitation [cm/year]
(P. Xie and P. A. Arkin 1997):
(a) December, January, February;
(b) June, July, August.

The large-scale atmospheric circula-
tion has a strong influence on precip-
itation, which is, with temperature,
the most important variable in defin-
ing regional climate.

Along the equatorial belt, the cooling
of warm and moist surface air during
its rising motion leads to condensa-
tion and heavy precipitation in this
area. For instance, the western trop-
ical Pacific receives more than 3 m of
rainfall per year.

By contrast, the downward motion in the subtropics is associated with the
presence of very dry air and very low precipitation rates. Thus the majority
of large deserts are located in the sub-tropical belt.
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Atmosphere: Monsoons

• The presence of land surfaces has a critical role in monsoon circulation.
In summer, the continents warm faster than the oceans because of their
lower thermal inertia. This induces a warming of the air close to the
surface and a decrease in surface pressure there inducing a transport
of moist air from the sea to the land

• In winter, the situation reverses with high pressure over the cold conti-
nent and a flow generally from land to sea. Such a monsoonal circula-
tion, with seasonal reversals of the wind direction, is present in many
tropical areas of Africa, Asia and Australia. Nevertheless, the most
famous monsoon is probably the South Asian one that strongly affects
the Indian sub-continent

• The monsoon strongly affects precipitation in subtropics. During the
winter monsoon, the inflow of dry continental air is associated with
low precipitation, whereas the summer brings moist air from the ocean
inducing rainfall that can reach several meters in a few months

Questions

• What kind of equation is used as the equation of state for the atmo-
sphere?

• What is the specific volume of gas and why does one introduce it?

• What is the scale height, and under what assumption can it be calcu-
lated for the Earth’s atmosphere?

• Formulate the first law of thermodynamics.

• How does one compute

– the work of a parcel of air?

– the change of internal energy in a parcel of air?

• What is the adiabatic lapse rate and how is it related to the measured
lapse rate?

• How is the static stability of an air column related to the lapse rate?
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• Name the main parts in the vertical structure of the atmosphere and
describe criteria used for this classification.

• What are the convection cells and how do they arise?

2.7.2 Atmospheric modeling

Atmosphere: Energy conservation

• One of the key differences between atmospheric and oceanic GCMs is
the form of the equation for energy conservation: In the latter, this is
represented by a temperature transport equation, whereas the former
considers a much more elaborate relationship that accounts for several
important physical processes.

• The energy conservation equation for a parcel of air is called the ther-
modynamic energy equation; it is based on the first law of thermo-
dynamics but has, in particular, to account for radiative energy fluxes
and latent heat exchanges associated with phase changes of water
(solid, liquid, gaseous).

• For the atmosphere, it can be written (cf. (2.46)) as

Cp
DT

Dt
− 1

ρ

Dp

Dt
= Q, (2.48)

where Q denotes the heat flux (also called diabatic heating rate).

Atmosphere: Diabatic heating
The diabatic heating rate Q is usually represented in the following form:

Q = Qce +Qfm +Qds +Qsol +Qir,

where
• Qce is the rate of energy release (absorption) due to condensation (evap-

oration)

• Qfm is the rate of energy release (absorption) due to freezing (melting)

• Qds is the rate of energy release (absorption) due to deposition (subli-
mation)

• Qsol is the rate of solar heating

• Qir is the rate of net infrared heating (cooling)

113



Atmosphere: Non-hydrostatic equations
The non-hydrostatic (also called elastic) system of equations for the atmo-
sphere contains seven equations/unknowns

• The conservation of mass:
∂ρ

∂t
+∇ · (ρu) = 0

• The conservation of mass of water vapor:
∂ρq

∂t
+∇ · (ρqu) = E − C,

where E and C are the evaporation and condensation, respectively

• The conservation of momentum (F represents the friction forces):

∂u

∂t
+∇ · (u⊗ u) +

∇p
ρ

+ gk + 2Ω× u = F

• The conservation of energy:

Cp

(
∂T

∂t
+∇ · (Tu)

)
− 1

ρ

(
∂p

∂t
+∇ · (pu)

)
= Q

• The equation of state: p = ρRmT

Atmosphere: Other systems

• Similarly to the oceanic equations, the atmospheric ones can be sim-
plified using the Boussinesq and hydrostatic approximations

• Another common approach considers potential temperature7 θ in-
stead of T as a primary unknown

• The relationship between temperature and potential temperature can
be derived by substituting the equation of state for moist air (2.43)
into the first law of thermodynamics for adiabatic conditions (2.47)

dT

T
=
Rm

Cp

dp

p
⇒ T = Cp

Rm
Cp ,

where C is an integration constant calculated from the definition of θ

θ = T |p=ps ⇒ C = θp
−Rm
Cp

s ⇒ T = θ

(
p

ps

)Rm
Cp

7Potential temperature is the temperature an unsaturated air parcel attains if it is
brought adiabatically from its altitude down to the mean sea level pressure ps = 105 Pa
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Figure 2.49: Comparison of pressure and altitude coordinates.

Atmosphere: Pressure coordinate

• Under the hydrostatic assumption ∂p/∂z = −ρg < 0, pressure is
a monotonic function of altitude p(z) and has an inverse function that
expresses altitude as a monotonic function of pressure: z(p) = p−1(z)

• This allows to formulate the hydrostatic system in the so-called pres-
sure coordinate where the isobaric surfaces represent levels of constant
vertical coordinate

Atmosphere: Derivatives in pressure coordinate
To transform spatial and temporal derivatives of a scalar field ϕ from stan-
dard Cartesian to pressure coordinate consider a simple relation

ϕ3 − ϕ1

∆x
=
ϕ2 − ϕ1

∆x
+
ϕ3 − ϕ2

∆x
=
ϕ2 − ϕ1

∆x
+
ϕ3 − ϕ2

∆z

∆z

∆x
.

Δz

Δx
z=const

p=c
ons

t

φ
1

φ

φ
2

3

Taking a limit as ∆x → 0, ∆z → 0
and denoting the derivatives on con-
stant z-surfaces with the subscript z

and on constant p-surfaces with the
subscript p, we obtain(

∂ϕ

∂x

)
p

=

(
∂ϕ

∂x

)
z

+
∂ϕ

∂z

(
∂z

∂x

)
p

.

In a similar manner

(
∂ϕ

∂y

)
p

=

(
∂ϕ

∂y

)
z

+
∂ϕ

∂z

(
∂z

∂y

)
p

.
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Denoting the horizontal gradient operators in both coordinates by

∇p =


(
∂
∂x

)
p(

∂
∂y

)
p

 , ∇z =

( ∂
∂x

)
z(

∂
∂y

)
z

 ,

we obtain the following transformation rules:

• ∇pϕ = ∇zϕ+
∂ϕ

∂z
∇pz

• ∇zϕ = ∇pϕ+
∂ϕ

∂p
∇zp

•
(
∂ϕ

∂t

)
p

=

(
∂ϕ

∂t

)
z

+

(
∂ϕ

∂z

)
t

(
∂z

∂t

)
p

•
(
∂ϕ

∂t

)
z

=

(
∂ϕ

∂t

)
p

+

(
∂ϕ

∂p

)
t

(
∂p

∂t

)
z

Atmosphere: Using pressure coordinate
Denoting the velocity in altitude coordinate as u = (u, v, w) and in pressure
coordinate as u = (u, v, ω) The vertical velocity in pressure coordinate is
expressed as

ω =

(
Dp

Dt

)
.

This definition of vertical velocity only considers the movement relative to
the movement of the material points.
The material derivative is transformed in a similar way using the hydrostatic
pressure relation (

Dϕ

Dt

)
z

=

(
Dϕ

Dt

)
p

+ u2 · ∇pϕ+ ω
∂ϕ

∂p
,

where we use notation u2 = (u, v).

Atmosphere: Mass conservation in pressure coordinate
Using the mass conservation equation in material derivative form

Dρ

Dt
+ ρ∇ · u = 0
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allows to quickly transform it to pressure coordinate

∇p · u2 +
∂ω

∂p
=

(
∂u

∂x
+
∂v

∂y

)
p

+
∂ω

∂p
= 0.

This form of the mass conservation equation has the advantage that it does
not contain density!

Questions

• What are the main differences between the energy conservation equa-
tions for the ocean and the atmosphere?

• What physical processes are usually represented by the diabatic heating
rate in the energy conservation equation for the atmosphere?

• What are the main differences between the non-hydrostatic systems for
the ocean and the atmosphere?

• Explain the idea of potential temperature. What are the advantages of
using it?

• What is pressure coordinate? Why is it useful?

3 Environmental models

3.1 Subsurface

Modeling of flow, transport, and reactions in subsurface
With thanks to Dr. Alexander Prechtel
The modeling activities concerning the subsurface generally focus on two
main processes/applications:

• Groundwater flow

• Transport and reactions of various substances carried by the ground-
water
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Ground water management

Figure 3.1: Lowering of the groundwater level from 4 to 15 meters by means
of 90 wells for Stuttgart 21 construction project.

Contaminant remediation (Altlastensanierung)
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Nuclear waste storage

Carbon Capture & Storage

CCS is the critical enabling technology that would reduce CO2 emissions
significantly while also allowing coal to meet the world’s pressing energy
needs (MIT 2007).
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CO2-Sequestration in exhausted oil and gas reservoirs

Flooding prevention planning at Mangfall

• 1100 km2 watershed
area, partially by sea-
sonal tributaries

• mean outflow to Inn:
17,5 m3/s

• Centennial Flood: Po-
tential damage of ca. 1
bln. Euro, 42,000 people
in the endangered area

• Prediction for the water
levels

• Flooding scenarios
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Applications of groundwater flow models

• Evaluation of pumping efforts

• Quantitative risk assessment

• Planning of remediation activities

• Prediction of groundwater level developments

• Determination of water budgets

• Physically justified approximation based on point-measurements

• Foundation for transport and reaction modeling

Applications of species transport models

• Interpretation of measured concentration data

• Estimation of contaminant volumes

• Planning for protection and remediation activities

• Planning and optimization of monitoring

• Risk evaluation and long-term prediction of contaminant propagation

First step: Understanding the relevant processes
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describing the relevant domains

and identifying the relevant scales

Figure 3.2: Spatial scales for
modeling of groundwater flow and
transport (Spitz & Moreno 1996).

Porous medium is

• microscopically a discontinu-
ous medium consisting of solid
matrix and pores

• macroscopically a continuum
with spatially averaged effective
characteristics
Example: Porosity = total pore
volume / volume of REV (repre-
sentative elementary volume)

• Everything is a question of scale
being considered!
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3.1.1 Modeling flow in the subsurface

Darcy’s Law

Figure 3.3: Experimental
setup for Darcy’s law
(1856)

Observation: Water flux is proportional to

the pressure gradient: q = −K∆h

∆s

(
=
Q

A

)
q: filtering velocity/volumetric flux density of
water (Darcy velocity) [L/T]
K: (saturated) hydraulic conductivity [L/T]
∆h: pressure difference divided by ρg [L]
∆s: length of the column [L]
Q: flux (water volume per unit of time) [L3/T]
A: (constant) cross-section of the column [L2]

Remark 3.1. Darcy’s law is valid for sta-
tionary laminar flow in isotropic homoge-
neous porous media

The total mechanical energy per unit of weight of water is nearly equal to
its potential energy (due to very small flow velocities); the latter generally
consists of the pressure and elevation parts.

The piezometric height also known as
piezometric or potentiometric head h
results from the action of the fluid pressure
p and of the local height z

h =
p

ρg
+ z

h can be directly measured in the field using
an observation well. The piezometric head
is the state unknown of Darcy’s equation.

Remark 3.2. Darcy’s law can be derived from the Stokes equations under
the assumptions of stationary Newtonian flow of viscous fluid.
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Observation (Hubbert [1856]): Hydraulic conductivity K depends on

• the porous medium (→ permeability k[L2])

• physical properties of the fluid (→ density ρ[M/L3] and dynamic
viscosity µ[M/(LT )])

and is given by K = k ρg
µ

.

The hydraulic conductivity can be anisotropic, thus we obtain in the 3D

q =

 qx
qy
qz

 = −K∇h = −

 KxxKxyKxz

KyxKyyKyz

KzxKzyKzz

 ∂h
∂x
∂h
∂y
∂h
∂z


In an inhomogeneous case, K is, in addition, a function of the space coordi-
nates: K = K(x, y, z).

Saturated case
Conservation of mass (continuity equation)

• Mass- or volume conservation for water:

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

= 0.

• Generalization: Change in storage (S – storativity of porous medium)

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

= S
∂h

∂t
.

• Generalization: Sources/sinks (Q – volumetric density of sources/sinks)

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

= S
∂h

∂t
+Q.

Boundary conditions

• h(t,x) = g1 on (0, T ]×Γ1 – Dirichlet: Specified piezometric head
h e.g. measured water levels, open water bodies

124



• q(t,x) ·n = g2 on (0, T ]× Γ2 – Neumann): Specified flux over the
boundary q e.g. pumping wells, impermeable boundaries

• q(t,x) · n = I(h − hout) to (0, T ] × Γ3 – mixed, leakage, semiper-
meable: Flux depends on the difference between the external and the
internal head e.g. drainage, semi-permeable river bed

Unsaturated case: Richards equation

Idea: Introduce moisture content Θ(hp) (Volume of water/total volume);
Seek: hp and q in (0, T ]× Ω satisfying

∂Θ(hp)

∂t
+∇ · q = Q ,

q = −Ks kr(hp)∇(hp + z) .

hp: pressure head (hp > 0 – saturated, hp < 0 – unsaturated)

q: volumetric velocity of water (Darcy velocity)

Q: sources/sinks,

z: height with respect to datum,

Ks: saturated hydraulic conductivity, Ks =
kρg
µ with permeability k,

viscosity µ, density of water ρ, and the gravity constant g,

Θ: volumetric moisture content Θ = Θ(hp),

kr: relative hydraulic conductivity kr = kr(hp).

Remark 3.3. Caution:

• Darcy velocity q: computed with the total REV

• Average or seepage velocity q/Θ: computed with the water-filled
fraction of REV

Generalizations of Darcy’s law:

• Multi-phase flow

• Preferential flow directions

• Density-driven flows
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• ...

Parametrization: Graph

Typical non-linear pressure-
saturation relationship (retention
curve)

Parametrization: Analytical
E.g. van Genuchten/Mualem

Θ(hp) = Θr + (Θs −Θr)

(
1

1 + (−αhp)m

) m
m−1

, (3.1)

K(hp) = Ks

(
1− (−αhp)m−1(1 + (−αhp)m)

1−m
m

)2

(1 + (−αhp)m)
m−1
2m

. (3.2)
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Need to specify: Θr, Θs, Ks, α, m.

Example: Unsaturated,
multilayered soil profile;
infiltration and evaporation
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Questions

• Describe the application of the continuum approach to subsurface mod-
eling at micro- and macro-scales.

• What is the main idea of Darcy’s law and how can it be empirically
confirmed?

• What is the piezometric head and how is it related to the pressure?

• How can the saturated flow model be extended to an unsaturated case?

• What methods can be used to determine the moisture content Θ(hp),
where hp denotes the pressure head?
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3.1.2 Modeling species transport in the subsurface

Species transport

Contaminants in the groundwater: Main problem settings

• Water quality: What is the natural groundwater background?
Regional differences in the composition, different standards (US
EPA, EU, ...)

• Contamination sources: Deponies, industry, agriculture, ...

• Thousands of substances are classified as dangerous

• Classification according to transport behavior

Main processes:

• Advective transport: Transport by the groundwater flow

• Mechanical dispersion: Mixing due to local variations in the velocity
field

• Molecular diffusion: Mixing due to arbitrary movements of molecules
(Brownian motion)

• Adsorption: Adhesion of fluid molecules to a surface

• Degradation: Destruction or transformation of species due to chemical,
physical, or biological processes
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Reactive species transport: Processes

Advection

Diffusion / Dispersion

Adsorption / Retention

Degradation / Transformation

Species transport model

• Specified: Description of groundwater flow

⇒ Θ = Θ(x, t) Moisture content
q = q(x, t) Darcy velocity

• Seek: c = c(x, t) [M/L3] : Species concentration in the water-filled part
of REV)

• Main principle: Conservation of mass for the species Temporal change
of concentration is equal to the flux through the domain boundaries
plus the effect of sources/sinks

• Equation of mass conservation

∂(Θc)

∂t
+∇ · J = Q

J = J(x, t) [M/L2/T ] : Mass flux

Q = Q(x, t) [M/L3/T ] : Sources/sinks
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Advection

• Transport of dissolved substances by the movement of solute

J = Θqc

• Does not change the shape of the concentration front

• Frequently takes place in a complex setting:

– unsaturated

– heterogeneous media with preferred flow directions

– cracks

– density driven flow

Molecular diffusion
Material-dependent property

• Mass flux is proportional to the gradient of the concentration (Fick’s
Law)

J = −ΘDmol∇c

• Temperature-dependent

• Usually several orders of magnitude smaller than the dispersion or ad-
vection (there exist a few exceptions)

• Effective diffusion coefficient D [L2/T ] in porous media is lower than
the molecular diffusion coefficient in open water due to tortuosity of
the media

• Causes species transport also without moving water!

• Irreversible process
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Mechanical dispersion
Possible reasons:

• Microscopic heterogeneities in the porous medium:

– Distribution of pore sizes

– Varying pore geometry

• Macroscopic heterogeneties in the porous medium:

– Layering

– Differences in the permeability

– Anisotropy in the geological structure of the domain

• Causes spreading of the contaminant

• Scale-depending process

• Analogy to diffusion: Fick’s law

• Anisotropy (longitudinal / transversal dispersion differ!)

J = −ΘDmech∇c

Dmech = Dmech(v), v := q/Θ

Non-reactive one-component species transport
Species transport equation

∂(Θc)

∂t
−∇ · (ΘD∇c−Θqc) = 0.

with D = Dmol +Dmech Generalization: Sources/sinks term Q

∂(Θc)

∂t
−∇ · (ΘD∇c−Θqc) = Q.

Boundary conditions

• Dirichlet: c(t,x) = g1 on (0, T ]× Γ1
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• Neumann: (D∇c) · n = g2 on (0, T ]× Γ2

• Mixed: q3c3 = −D∇c+ qc on (0, T ]× Γ3

• Retention by means of adsorption (but possibly

– non-equilibrium,

– mobile, reactive sorbents, ...)

• Degradation (but possibly

– not at constant rates,

– microbially catalyzed

– temperature-dependent, ...)

Retention by means of adsorption

• Adsorption or sorption is the process of attachment of molecules of
fluid or dissolved solid to solid matrix Adsorption substantially affects
the mobility and spreading velocity!

• The mechanism of adsorption can be chemical (reactions) or/and phys-
ical (e.g. electric forces)

• Adsorption is not a homogeneous reaction (i.e. within a fluid phase)
but rather inhomogeneous (fluid-solid)

• The rate of adsorption is influenced by the species concentration and
properties, composition of the solid matrix, pH values, etc. (and is
generally time- and space-dependent)

• The rate of adsorption may be (compared to the transport) fast (⇒
equilibrium assumption) or slow (⇒ kinetics)
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Equilibrium adsorption

Definition 3.4. Adsorption isotherm is a function describing the rela-
tionship between the dissolved concentration c = c(x, t) [M/L3] and
the adsorbed concentration s = s(x, t) [M/M ] of the species at fixed
temperature and under conditions of chemical equilibrium

s(x, t) = f(c(x, t)).

• Adsorbed concentration is spatially immobile

• The measurement of adsorbed concentration is conducted in a labora-
tory by means of batch-tests: Solutions in different concentrations are
mixed with the soil, and the residual species concentration in the fluid
is measured

• The simplest relation (particularly useful at low concentration) is a
linear one:

s = Kdc,

where Kd [L3/M ] denotes a distribution coefficient

• Non-linear Freundlich isotherm with exponent N :

s = Kdc
N

• both are empiric functions assuming that the solid matrix has an un-
limited adsorbing capacity ⇒ when fitting experimental data, no ex-
trapolation in unmeasured ranges is allowed!

• Langmuir isotherm uses a concept of a finite number of attachment
sites on solid matrix

• Once the maximum capacity Smax [M/M ] is reached, no adsorption
takes place:

s =
Kdc

1 + Kd
Smax

c
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Implications for the transport equation

∂(Θc)

∂t
−∇ · (ΘD∇c−Θqc) = −ρb

∂f(c)

∂t
.

with deposit density ρb[M/L3] (total mass/total volume) and the ad-
sorption isotherm f .
Adsorption inhibits and slows down the transport.

In the linear case f(c) = Kdc, and constant Θ and ρb, one can describe the
process using a constant retardation coefficient R:

∂(Θc)

∂t
+ ρb

∂(Kdc)

∂t
= Θ

∂c

∂t
+ ρbKd

∂c

∂t
= (Θ + ρbKd)

∂c

∂t

Dividing by Θ yields the retardation coefficient R = 1 + ρbKd
Θ

.

Non-equilibrium adsorption

Definition 3.5. Kinetics is the process of adsorption that is slow com-
pared to transport; in this case the equilibrium conditions cannot be reached
and a so-called kinetic adsorption model must be used

∂(Θc)

∂t
−∇ · (ΘD∇c−Θqc) = −ρb

∂s

∂t
.

As the simplest model for adsorption kinetic one can take e.g.

∂s

∂t
= k(f(c)− s)

with the rate factor k[1/T ].

Biodegradation
What are the main processes for the microbiological attenuation of organic
contaminants?

• Redox reactions (chemical reactions resulting in electron exchanges be-
tween atoms) influence the concentration distributions of donors an
acceptors of electrons

• Contaminant concentrations
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• Biomass concentration and activity

• Inhibiting factors (temperature, toxicity)

• ...

0th order model

∂(Θc)

∂t
−∇ · (ΘD∇c−Θqc) = −R

constant loss of a fixed amount R.
It can be used in special cases as a simplification of the Monod model,
e.g. if cD >> KD, constant activity of the biomass, e.g. due to limited
availability of nutrients

1st order model

∂(Θc)

∂t
−∇ · (ΘD∇c−Θqc) = −kc

or more general as a reaction network

∂(Θci)

∂t
−∇ · (ΘD∇ci −Θqci) = yci−1 − kci

Destruction of the first order with rate k [1/T], parent species concentra-
tion ci−1 and stoichiometric coefficient y.
It can be used as an approximation if cD << KD, and constant biomass
activity, e.g. due to limited availability of nutrients

Degradation using Monod kinetics

Simplest form of an one-component model: Assumption of constant
biomass concentration, no limiting due to reaction partners:

∂(Θc)

∂t
−∇ · (ΘD∇c−Θqc) = −ΘµmaxcX

c

K + c

with the maximum growth rate µmax[1/T ], biomass concentration cX , and
the half-saturation constant K[M/L3].
This kinetics is also known as the Michaelis-Menten kinetics.
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Monod kinetics

Monod kinetics even more general:

Reaction rate arbitrary electron donators, acceptors, inhibitors, and dy-
namic biomass:

Rr = Rr(c1, . . . , cNS , cXr)

= µmaxrcXr
∏

i∈Ir⊂{1,...,NS}

(
ci

KMi+ci

)∏
j∈Jr⊂{1,...,NS}

(
KIj

KIj+cj

)
.

Benzene remediation example

Figure 3.4: Lab experiments for determining the degradation rates for BTEX
(Schirmer et al. 2000).

Donator (k = 0.006)

Donator (k = 0.06)

Donator (Monod)

t = 10 d t = 20 d t = 50 d

Figure 3.5: Simulation of benzene remediation (Schirmer et al. 2000).
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