Biome-specific fire emission rates of NO_x from MODIS and GOME-2/OMI satellite-derived data sets

Biomass burning as a source of NO_x emissions

Why important?

NO_x radicals play key roles in tropospheric chemistry

- Nitric oxide (NO) and nitrogen dioxide (NO₂) are coupled in the atmosphere
- $NO + O_3 -> NO_2 + O_2$ $NO_2 + hv \rightarrow NO + O$
- $O + O_2 + M -> O_3 + M$
- $N_2 + O_2 = NO + NO$
- NO_x and O_3 are both toxic and the exposure to these hazardous gases impacts on human health

How to measure?

NO₂ amounts and distributions are retrieved by passive and active remote sensing techniques in the UV/VIS, near IR, IR, and microwave regions ground based, ship and aircraft borne, satellite based Differential Optical Absorption Spectroscopy (DOAS)

How to estimate globally?

bottom-up approach: aggregate divers local statistics burned area, fuel load, combustion completeness, emission factor

top-down approach: using atmospheric understanding inversion and partitioning of satellite-derived tropospheric NO₂ columns

1. Temporal correlation between fire radiative power and tropospheric NO₂ columns

Fig.1: Global mean tropospheric NO₂ vertical columns (2007-2011) retrieved from GOME-2 measurements

Fig. 3: Temporal variability of MODIS Terra (red) and Aqua (orange) derived FRP (monthly means) and GOME-2 (turquois) and OMI (blue) derived TVC NO₂ (monthly means)

Moderate to high correlation coefficients are also apparent in central South America (CSA), northern Australia (NAU), and southeast Asia (SEA). In general, FRP and TVC NO₂ are higher during early afternoon, as indicated by MODIS Aqua and OMI observations.

Universität Bremen

x 10¹⁵

GOME2 NO

Terra FRP

www.iup.uni-bremen.de/doas

Stefan F. Schreier^{1*}, Andreas Richter¹, Johannes W. Kaiser², and John P. Burrows¹

¹ Institute of Environmental Physics/Remote Sensing, University of Bremen, Germany ² King's College London, UK; ECMWF, UK; MPI for Chemistry, Germany

*Email: schreier@iup.physik.uni-bremen.de

NO_2 is produced from NO by its reaction with ozone (O_3) NO_2 is photolyzed to produce NO and an oxygen atom (O) O reacts with molecular oxygen (O_2) to produce O_3 Molecular nitrogen (N_2) and O_2 participate to form NO

Fig.2: Correlation coefficients describing the temporal relationship (2007-2011) between FRP (Terra MODIS) and TVC NO₂ (GOME-2)

> The highest correlation coefficients of r >0.8 are found in Africa, south of the equator (ASE) and north of the equator

Estimation of fire emission rates of NO_v

1. Temporal correlation between fire radiative power (FRP) and tropospheric NO₂ vertical columns (TVC NO₂)

Monthly means of FRP are analyzed for temporal correlation with monthly means of TVC NO₂

- 5 consecutive years from 2007 to 2011
- 1° x 1° grid (to overcome the effects of horizontal transport of NO₂) Globally and for characteristic biomass burning regions

The aims of the study

To establish an empirical relationship between FRP and TVC NO₂ as a tool to estimate fire emissions of NO_x. The correlation of FRP and TVC NO₂ is studied globally and for selected regions, and fire emission rates (FERs) for a total of 11 different types of vegetation are derived for the morning (early afternoon) by making use of the linear relationship between MODIS Terra (Aqua) FRP and TVC NO2 from GOME-2 (OMI) over characteristic biomass burning regions.

Pixel-wise subtraction of y-intercepts for removing 'background' Comparison of estimated NO_x emissions with GFED3.1 database

Inclusion of a global land cover map for biome-specific analysis Inclusion of a population density data set for exclusion of strongly anthropogenically influenced 1° x 1° boxes

Estimation of fire emission rates by computing the best fitting leastsquares regression lines for each land cover type using all 1° x 1° boxes having r > 0.3 and population density < 100 persons km⁻²

2. Conversion of TVC NO₂ into NO₃ emissions and comparison with bottom-up NO₃ emissions

Fig. 4: Mean y-intercepts of the best fitting least-squares regression lines (2007-2011) for pixels with r > 0.3 (GOME-2 vs. MODIS Terra)

Fig. 6: Comparison between converted NO_x emission rates, retrieved from the GOME-2 (blue) and OMI (red) measurements, and GFED3.1 NO_x emission rates. Here, the lifetime of NO_x is assumed to be 8 hours (GOME-2) and 4 hours (OMI).

 NO_2 .

Acknowledgements

• GOME-2 lv1 data have been provided by EUMETSAT

- MODIS data have been retrieved from: http://neespi.gsfc.nasa.gov/data/s4pa/Fire/
- population density was infered from: <u>http://sedac.ciesin.columbia.edu/data/collection/gpw-v3</u>
- global land cover classification was provided by: <u>http://glcf.umd.edu/data/landcover/</u>
- S. F. Schreier gratefully acknowledges funding by the ESSReS

www.earth-system-science.org

ESS S

2. Conversion of TVC NO_2 into NO_x emissions and comparison with bottom-up NO_x emissions

 $\boldsymbol{P} = \boldsymbol{TVC[NO_2]} * \boldsymbol{M} * [\boldsymbol{NO_2}]/[\boldsymbol{NO}] * \boldsymbol{A_b} / \boldsymbol{NA} * \boldsymbol{\tau} \qquad [g NO_x s^{-1}]$

P ... production rate of NO_x, M ... molar mass of NO_x, $[NO_2]/[NO] = 0.6$, $A_b \dots$ pixel area, $NA \dots$ Avodagro's number, τ ... lifetime of NO_x, assumed to be 8 hours (GOME-2) and 4 hours (OMI)

3. Fire emission rates (FERs) of NO_x

The distribution of gradients is smooth and shows only moderate variation, indicating that a robust link exists between FRP and TVC

High y-intercept values can be interpreted as a clear signal of NO_{x} emissions from other sources (e.g. anthropogenic, lightning, soil).

The comparison between GFED3.1 and NO_x emissions derived in this study indicate that emissions lay within an order of magnitude. NO_{x} emissions derived from satellite measurements are higher in Africa south of the equator and lower in central South America.

Fig. 7: Global land cover map (from GLCF) used for the distinction of the different land cover types (labels are shown in Table 1)

Longitude

• OMI lv2 data were provided by: <u>http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omno2_v003.shtml</u>

Instruments and data retrieval

Global Ozone Monitoring Experiment-2 (GOME-2)

- on board MetOp-A (EUMETSAT) since October 2006

- spectral range: 240-790 nm at 0.2-0.4 nm resolution
- pixel size in nadir-viewing geometry: 80 x 40 km² - local equatorial crossing time: 9:30 a.m

Retrieval of tropospheric NO_2 vertical columns (TVC NO_2) 1. Differential Optical Absorption Spectroscopy (DOAS) for retrieving the slant column densities (SCDs)

- spectral fitting window: 425-497 nm (GOME-2), see Richter et al. (2011) and 405-465 nm (OMI), see Bucsela et al. (2006)
- 2. The reference sector method is used for removing the stratospheric part from the NO₂ SCDs 3. Pixel-wise measurements with cloud fraction > 0.2 are removed (using FRESCO+)
- 4. Tropospheric SCDs are converted into tropospheric vertical columns (**TVC NO**₂) by using airmass factors (AMFs)

MODerate resolution Imaging Spectroradiometer (MODIS)

- on board Terra (10:30 a.m.) and Aqua (1:30 p.m.) satellites (NASA), 36 spectral bands ranging from 0.4-14.4 µm differences in 4- and 11-um black body radiation are used to derive active fires at 1 km² horizontal resolution the MODIS fire products additionally offer the radiant component of energy release, the so-called fire radiative power (FRP)

3. Fire emission rates (FERs) of NO_x

FERs of NO_x for the dominating types of vegetation burned are 1.21 (3.22), 0.77 (2.11), 1.14 (2.57), and 1.03 (1.77) g NO_x s⁻¹ MW⁻¹ for wooded grassland, grassland, cultivated crops, and broadleaf deciduous forest, respectively, in the morning (early afternoon) In the case of wooded grassland, the gradients of the lines for the African regions show good agreement, whereas FERs are higher in southeast Asia and lower in central South America. Here, the lifetime for GOME-2 (OMI) is assumed to be 8 hours (4 hours).

Tab. 1: Mean gradients (fire emission rates), in g NO_x s⁻¹ MW⁻¹, for each land cover type and the selected regions for MODIS Terra FRP vs. GOME-2 (left) and MODIS Aqua FRP vs. OMI (right). Only pixels with r > 0.3 and population density < 100 persons km^{-2} are included in the analysis

	alebel			004		
land cover type	giobai	ANE	ASE	CSA	NAU	SEA
1 broadleaf evergreen forest	1.12 / 1.83	1.37 / 2.91	-	1.18 / 1.72	-	0.74 / 2.15
2 coniferous evergreen forest	1.08 /1.92	-	-	-	-	-
3 high latitude deciduous forest	1.13 / 2.10	-	-	-	-	-
4 tundra	0.55 / -	-	-	-	-	-
5 mixed coniferous forest	0.96 / 4.97	-	-	-	-	-
6 wooded grassland	1.21 / 3.22	1.37 / 4.26	1.44 / 4.97	0.83 / 1.43	-	2.19 / 2.57
7 grassland	0.77 / 2.11	0.77 / 2.38	0.86 / 2.41	-	0.69 / 1.23	-
8 bare ground	0.73 / 0.76	-	-	-	-	-
9 shrubs and bare ground	0.57 / 1.28	-	0.67 / 1.24	-	0.60 / 1.34	-
10 cultivated crops	1.14 / 2.57	0.95 / 3.61	1.54 / 3.52	0.77 / 0.70	-	-
11 broadleaf deciduous forest	1.03 / 1.77	1.27 / 3.58	1.27 / 3.42	0.76 / 1.18	-	-

Conclusions

• The strong correlation between the two independent geophysical parameters FRP and TVC NO₂ has been investigated for the morning and early afternoon conditions

• After the conversion of TVC NO₂ into mass concentrations of NO_x, the use of a population density data set and a global land cover map enabled the estimation of fire emission rates of NO_x for different types of vegetation on a 1° x 1° grid

• The main results show that the highest FERs are found for wooded grassland, whereas the lowest values are found for tundra. Further, we found differences amongst the selected regions for certain land cover types (e.g. cultivated crops)

• Future work will be undertaken in order to enable the estimation of global fire emissions of NO_x by using the retrieved FERs

Selected references

DeFries R.S. and Townshend J.R.G., in International Journal of Remote Sensing, 15:17, 3567-3586, 1994 Justice C.O. et al., in Remote Sensing of Environment, 83, 244-262, 2002 Richter A. and Burrows J.P., in Advances in Space Research, 29:11, 1673-1683, 2002 Callies J. et al., in Proceedings of SPIE, 5549, art. no. 07, 60-70, 2004 Bucsela E.J. et al., in IEEE Transactions on Geoscience and Remote Sensing, 44, 1245-1258, 2006 Wang P. et al., in Atmospheric Chemistry and Physics, 8, 6565-6576, 2008 Richter A. et al., in Atmospheric Measurement Techniques, 4, 1147–1159, 2011

Ozone Monitoring Instrument (OMI)

- on board EOS-Aura (NASA) since July 2004
 - 270-500 nm at 0.63 nm spectral resolution
 - 13 x 24 km² at nadir point
 - local equatorial crossing time: 1:30 p.m.

Fig. 8: Mean TVC (NO₂) FRP gradients (FERs) for grassland and wooded grassland within ANE (blue), ASE (red), CSA (green), NAU (turquois), and SEA (yellow). Data are shown for MODIS Terra FRP vs. GOME-2 TVC NO₂

