Room: NW1 N3130

#### Prof. Dr. Gerrit Lohmann / Dr. Silke Thoms / Prof. Dr. Thomas Jung / Prof. Dr. Mihalis Vrekoussis

Module section 2 / Theoretical Basics

### Compulsory for MSc Environmental Physics (3 CP, 90 h)

• presence (lecture & example classes): 28 h (2 SWH x 14 weeks)
• preparation, learning + examples: 28h
• preparation for exam: 10h

### Content:

1. 21.4. (MV) INTRODUCTION: Earth system model components, definitions, processes.

2. 28.4. (ST) NUMERICAL APPROXIMATIONS I: Finite differences: Ordinary differential equations (Runge-Kutta etc)

3. 5.5. (ST) NUMERICAL APPROXIMATIONS II: Finite differences: Partial differential equations (Arakawa Grids etc)

4. 12.5. (ST) EXAMPLES: waves, diffusion, boundaries

5. 19.5. (TJ) NUMERICAL APPROXIMATIONS III: Finite Volume and Finite Elements and spectral methods (atmosphere and ocean)

6. 26.5. Holiday – No lecture

7. 2.6. (MV) ATMOSPHERIC CHEMISTRY I: Chemistry Transport Models (chemical processes including types of models, box models, grids, coordinates)

8. 9.6. ATMOSPHERIC CHEMISTRY II: Inverse methods MV/ND

### 11) RANDOM SYSTEMS (Stochastic differential equations, Lattice Gases) (GL, 30.6.)

#### Lecture, Exercises, and Information

1. 7.7. (TJ) DATA ASSIMILATION (Kalman filters etc)

2. 14.7. (TJ) HIGH-PERFORMANCE COMPUTING (scalability, Moore’s law)

3. 21.7. SUMMARY (GL, MV, ST, TJ)

### Formalities

Code no. 01-01-03-MES-V

Assignment to study programmes: Compulsory for MSc Environmental Physics, Optional compulsory for MSc Physik

### Literature:

• Gershenfeld, N., The nature of mathematical modeling, Cambridge University Press, Cambridge, 2003, 344 pp. link
• Alles gut gemacht