Lecture: Tuesday, 10-12; Prof. Dr. Gerrit Lohmann; Dr. Martin Werner
Description
This lecture will give an overview about the climate system and its changes during the past, focussing on the last few million years. We begin by describing the external astronomical forcing of the climate system and the observed response, as represented by proxy evidence for paleoclimatic variations. The main components and processes of the climate system, as well as available different dating and analyses methods for paleoclimate research will be explained. Key paleoclimate archives, e.g. ice cores, marine sediment cores and different terrestrial records, will be discussed. The general overview will be supplemented by a presentation of some of the latest research results and most important open questions within the related fields of paleoclimate research. We will show that the past climate dynamics broadens our view of the climate system in general, including the positive and negative feedbacks determining climate sensitivity. Such an approach is necessary to put our recent and expected future climate change into a long-term perspective.
German Version:
Diese Vorlesung gibt einen Überblick über das Klimasystem und seiner Veränderungen in der Vergangenheit. Wir beginnen mit der Beschreibung des äußeren astronomischen Antriebs des Klimasystems und der beobachteten Reaktion, die in Umweltarchiven beobachtet wurden. Die Hauptkomponenten und -prozesse des Klimasystems sowie verschiedene Datierungs- und Analysemethoden für die Paläoklimaforschung werden erläutert. Wichtige Klimaarchive, z.B. Eisbohrkerne, marine Sedimentbohrkerne und verschiedene terrestrische Aufzeichnungen werden diskutiert. Es wird gezeigt, dass die langfristige Klimadynamik unsere Sicht auf das Klimasystem im Allgemeinen erweitert, einschließlich der positiven und negativen Rückkopplungen, die für die Stabilität des Klimas wichtig sind. Wir stellen weiterhin da, wie sich die letzten Dekaden und die erwarteten künftigen Klimawechsel in eine langfristige Perspektive einordnen.
Content
feedback mechanisms in the climate system; the role of the global atmosphere and ocean circulation for long-term climate change; Holocene climate; Climate modes like ENSO and NAO; deglaciation; Glacial climate; Milankovitch theory of the ice ages; Cenozoic climate changes; Biogeochemical cycles; Proxy data; Isotopes
Learning outcome
Advanced knowledge of the climate system, applications in the fields of climate. Programming skills and usage of the climate data operators. Practicals complement the lessons.
Time table
1) Oct 19 Challenges of climate change (GL)
Content: Intro and warming up, climate change, consequences
2) Nov 2 Global water cycle (MW)
– > shifted because of illness
5) Nov 23 Global water cycle (MW)
Content: Water in the Earth system components, Oxygen Isotopes and ice cores, signature in ice cores, drilling ice cores
6) Nov 30 The Last Glacial Maximum (MW)
Content: Climate of the LGM, circulation, reconstructions of atmospheric gas composition
8) Dec 14 Vegetation and dust (MW) digital
Content: Aridity and dust,
vegetation dynamics, land use, terrestrial biosphere
Submission of Exercise 3 “Glacial climate”
9) Dec 21 Climate variability and data analysis (GL) digital
Content: Different kind of data: historical, reanalysis, paleoclimate data; Model data; Variability, Atmospheric blocking; NAO, statistical climate reconstructions in the Holocene; Energy balance model
Discussion of Exercises 1 “Tropic of Cancer” and 2 “Earth orbital variations” by students
no lecture on Dec 28 and Jan 4
10) Jan 11 The last 100 million years (GL) digital
Content: Cenozoic climate change, Climate warming backwards, Eocene-Oligocene and Miocene transitions, Cretaceous warm planet
Ocean gateways and Greenhouse gases as potential drivers
Energy balance and transport in the atmosphere-ocean system
11) Jan 18 Regional and global changes (MW) digital
Content: Regional and global signals: Monsoons, Permafrost
Discussion of Exercise 3 “Glacial climate”
12) Jan 25 Archives of climate change (MW) digital
Content: Carbon from the underground; Permafrost; Archives of climate change
13) Feb 1 The current debate (GL) digital
Climate Change: The scientific debate and uncertainties of climate change projections, scientific controvercies, political and non-scientific debate, carbon footprint
Summary and outlook
Questions about the course and exam
Literature:
Bradley, R., Paleoclimatology-Reconstructing climates of the Quaternary,
Saltzman, B., Dynamical Paleoclimatology - A generalized theory of global climate change, Academic Press, San Diego, 2002, 354 pp.
Ruddiman, W.F. Earth’s Climate Past and Future
Paleoclimate, Global Change and the Future, 2003 Keith D. Alverson, Raymond S. Bradley, Thomas F. Pedersen(Editors)
Broecker, W. S.,THE GLACIAL WORLD ACCORDING TO WALLY
Storch and Zwiers, 1999: Statistical analysis in climate reasearch. Cambridge University Press, ISBN 0-521-45071-3 StorchZwiers_book.pdf book review frontmatter
Mudelsee M (2014) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham Heidelberg New York Dordrecht London; xxxii + 454 pp. ISBN: 978-3-319-04449-1, link link2
Ensure access to affordable, reliable, sustainable and modern energy
One-dimensional EBM (link) This notebook is part of The Climate Laboratory by Brian E. J. Rose, University at Albany.
The Warming Papers: The Scientific Foundation for the Climate Change Forecast David Archer and Raymond Pierrehumbert (Eds.). Book about Global warming papers: Global warming is arguably the defining scientific issue of modern times, but it is not widely appreciated that the foundations of our understanding were laid almost two centuries ago with the postulation of a greenhouse effect by Fourier in 1827. The sensitivity of climate to changes in atmospheric CO2 was first estimated about one century ago, and the rise in atmospheric CO2 concentration was discovered half a century ago. The fundamentals of the science underlying the forecast for human-induced climate change were being published and debated long before the issue rose to public prominence in the last few decades.
The Warming Papers is a compendium of the classic scientific papers that constitute the foundation of the global warming forecast. The paper trail ranges from Fourier and Arrhenius in the 19th Century to Manabe and Hansen in modern times. Archer and Pierrehumbert provide introductions and commentary which places the papers in their context and provide students with tools to develop and extend their understanding of the subject.
The book captures the excitement and the uncertainty that always exist at the cutting edge of research, and is invaluable reading for students of climate science, scientists, historians of science, and others interested in climate change.