Lecture: Tuesday, 10-12; Prof. Dr. Gerrit Lohmann; Dr. Martin Werner

Description

This lecture will give an overview about the climate system and its changes during the past, focussing on the last few million years. We begin by describing the external astronomical forcing of the climate system and the observed response, as represented by proxy evidence for paleoclimatic variations. The main components and processes of the climate system, as well as available different dating and analyses methods for paleoclimate research will be explained. Key paleoclimate archives, e.g. ice cores, marine sediment cores and different terrestrial records, will be discussed. The general overview will be supplemented by a presentation of some of the latest research results and most important open questions within the related fields of paleoclimate research. We will show that the past climate dynamics broadens our view of the climate system in general, including the positive and negative feedbacks determining climate sensitivity. Such an approach is necessary to put our recent and expected future climate change into a long-term perspective.



German Version:

Diese Vorlesung gibt einen Überblick über das Klimasystem und seiner Veränderungen in der Vergangenheit. Wir beginnen mit der Beschreibung des äußeren astronomischen Antriebs des Klimasystems und der beobachteten Reaktion, die in Umweltarchiven beobachtet wurden. Die Hauptkomponenten und -prozesse des Klimasystems sowie verschiedene Datierungs- und Analysemethoden für die Paläoklimaforschung werden erläutert. Wichtige Klimaarchive, z.B. Eisbohrkerne, marine Sedimentbohrkerne und verschiedene terrestrische Aufzeichnungen werden diskutiert. Es wird gezeigt, dass die langfristige Klimadynamik unsere Sicht auf das Klimasystem im Allgemeinen erweitert, einschließlich der positiven und negativen Rückkopplungen, die für die Stabilität des Klimas wichtig sind. Wir stellen weiterhin da, wie sich die letzten Dekaden und die erwarteten künftigen Klimawechsel in eine langfristige Perspektive einordnen.



Content

feedback mechanisms in the climate system; the role of the global atmosphere and ocean circulation for long-term climate change; Holocene climate; Climate modes like ENSO and NAO; deglaciation; Glacial climate; Milankovitch theory of the ice ages; Cenozoic climate changes; Biogeochemical cycles; Proxy data; Isotopes

Learning outcome

Advanced knowledge of the climate system, applications in the fields of climate. Programming skills and usage of the climate data operators. Practicals complement the lessons.

Formalities

Ort: NW1 S3032 (PEP Raum)

Code no. 01-01-03-CliS2-V

StudIP

Assignment to study programmes: Optional compulsory for MSc Environmental Physics, for MSc Physik (Umweltphysik), MSc Space Sciences and Technologies (Physics for Space Observations)

Workload /credit points: 3 CP, 90 h

• lecture: 28 h (2h x 14 weeks)

• repeating the lectures/learning/reading: 28 h (2h x 14 weeks)

• example homework: 24 h (6 x 4h)

• additional preparation for exam: 10 h


 

 

Course and examination performance

We encourage active participation, some exercises, etc.

Examination achievements:

You have to pass the oral exam. Room: see below (20-25 min)

The exam is based on the the general content of the lecture and exercises. The procedure follows the rules of pep.

 
 

Preliminary time table

 

1) Oct 18 Challenges of climate change (MW)(online)

Content: Intro and warming up, climate change, consequences

 

2) Oct 25: Global water cycle (MW):

no lecture

 

3) Nov 1 Ice Ages and Astronomical theory (GL)

Content: Basics in astronomy (Keppler’s laws), Orbital parameters, Dynamics of ice ages, Termination

Overview articles by A. Berger, Labeyrie et al., Wally, GL, wikipedia, Link to the physics experiment with a gyro

Here is Exercise 1 “Tropic of Cancer” to be submitted to GL until Nov 8. Please build groups and send the solutions electronically as pdf, word or LaTex. No handwriting.

 
 

4) Nov 8 Ice Ages and Astronomical theory (GL)

Content: Earth orbital variations, Glacial-interglacial changes, Mid-Pleistocene transition

Exercise with orbits and links

 

5) Nov 15: Global water cycle (MW)

Content: Water in the Earth system components, Oxygen Isotopes in ice cores and marine sediments, deep ice cores: drilling, dating, analyses

 

6) Nov 22: The Last Glacial Maximum (MW)

Content: Climate of the LGM, circulation, reconstructions of atmospheric gas composition

Exercise 3 “Glacial climate” “Glacial climate”

netcdf file: PI.nc, netcdf file: LGM.nc

 

7) Nov 29 Climate variability and data analysis (GL)

Content: Different kind of data: historical, reanalysis, paleoclimate data; Model data; Variability, Atmospheric blocking; NAO, statistical climate reconstructions in the Holocene; Energy balance model

Exercise “Analysing atmospheric teleconnections”

 

 

 

 

8) Dec 6: Biogeochemical cycle, vegetation and dust (MW)

old Vegetation and dust

Content: Aridity and dust,
vegetation dynamics, land use, terrestrial biosphere

 

9) Dec 13: Climate variability and extremes (GL)

Statistical analyses: EOF, CCA, GEV,

 

10) Dec 20 Climate teleconnectivity and Feedback analysis (GL)

Content: significance testing, atmospheric and oceanic far field effects; Energy; Feedback analysis

One-dimensional EBM (link) based on “The Climate Laboratory” by Brian E. J. Rose.

 
 

11) Jan 10 The last 100 million years (GL)

Content: Cenozoic climate change, Climate warming backwards, Eocene-Oligocene and Miocene transitions, Cretaceous warm planet

Ocean gateways and Greenhouse gases as potential drivers

Energy balance and transport in the atmosphere-ocean system

 

12) Jan 17 Regional and global changes (MW)

Content: Regional and global signals: Monsoons, Permafrost

 

13) Jan 24 Archives of climate change (MW)

Content: Carbon from the underground; Permafrost; Archives of climate change

 

14) Jan 31 The current debate (GL)

Climate Change: The scientific debate and uncertainties of climate change projections, scientific controvercies, political and non-scientific debate, carbon footprint

Ensure access to affordable, reliable, sustainable and modern energy

Summary and outlook

Questions about the course and exam

 

 

 

Oral Exam on xxx

 


 

Literature:

Bradley, R., Paleoclimatology-Reconstructing climates of the Quaternary,

Saltzman, B., Dynamical Paleoclimatology - A generalized theory of global climate change, Academic Press, San Diego, 2002, 354 pp.

Ruddiman, W.F. Earth’s Climate Past and Future

Paleoclimate, Global Change and the Future, 2003 Keith D. Alverson, Raymond S. Bradley, Thomas F. Pedersen(Editors)

Broecker, W. S.,THE GLACIAL WORLD ACCORDING TO WALLY

Storch and Zwiers, 1999: Statistical analysis in climate reasearch. Cambridge University Press, ISBN 0-521-45071-3 StorchZwiers_book.pdf book review frontmatter

Mudelsee M (2014) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham Heidelberg New York Dordrecht London; xxxii + 454 pp. ISBN: 978-3-319-04449-1, link link2

Rasmus E. Benestad, Deliang Chen & Inger Hanssen-Bauer, 2007: Empirical-statistical downscaling. pdf from Academia.edu

Permafrost video

The Warming Papers: The Scientific Foundation for the Climate Change Forecast David Archer and Raymond Pierrehumbert (Eds.). Book about Global warming papers

IPCC report: Deutsche Zusammenfassung, Kernaussagen, Deutsche Zusammenfassung 2007; Deutsche Version 2007, AR5 IPCC Report, Technical Summary

James Hansen, global climate change

Enter the Anthropocene: Climate Science in the Early 20th Century podcast