Lecture: April 19. (Monday), 14:00 Prof. Dr. Gerrit Lohmann

Tutorial: April 19. (Monday),

Justus Contzen, Lars Ackermann

 
 

before April 19:

Watch videos for Rayleigh-Bénard convection and the Lorenz system

Bifurcations

Bifurcation youtube (20 min)
Bifurcation Khan academy (13 min) [Bifurcation Khan academy](https://www.youtube.com/watch?v=ovJcsL7vyrk

 
 

April 19, 14:00: Lecture 2 (online G. Lohmann, 45 min)

After the lecture: Read the script about Fluid-dynamical Examples and Stability Theory (Chapter 2)

Reading/learning (the sections with a star are voluntary). It might take 120 min.

 
Reading Bifurcation theory

 

April 19, Tutorial (online 30 min)

Exercise 2 introduced, questions to the exercise (15 min)


Further stuff with RStudio (15 min)

 

Homework 1: Solve Exercise 2

This might take 2 h.

 


 

Literature:

  • Holton, J.R., and Hakim, G. J., 2013: Introduction to Dynamical Meteorology, Academic Press, Oxford (UK). —Fifth edition / Gregory J. Hakim. ISBN 978-0-12-384866-6 pdf
  • Marchal, J., Plumb, R. A., 2008. Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Academic Press, 344 pp; videos pdf
  • Lohmann, G., 2020: Climate Dynamics: Concepts, Scaling and Multiple Equilibria. Lecture Notes 2020, Bremen, Germany. (pdf of Chapter 2) (pdf of the full script)
  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. An Introduction to R derived from an original set of notes describing the S and S-PLUS environments written in 1990–2 by Bill Venables and David M. Smith when at the University of Adelaide. Online document at https://cran.r-project.org/doc/manuals/r-release/R-intro.html.
  • Torfs, P., and & Brauer, C., 2014: A (very) short introduction to R
  • Fieguth, P., An Introduction to Complex Systems Society, Ecology, and Nonlinear Dynamics. Publisher textbook page at Springer ISBN 978-3-319-44605-9 1st ed. 2017, XII, 346 p. 243 illus., 178 illus. in color. link
  • Lorenz model

    r=24
    s=10
    b=8/3
    dt=0.01
    x=0.1
    y=0.1
    z=0.1
    vx<-c(0)
    vy<-c(0)
    vz<-c(0)
    for(i in 1:10000){
    x1=x+s*(y-x)*dt
    y1=y+(r*x-y-x*z)*dt
    z1=z+(x*y-b*z)*dt
    vx[i]=x1
    vy[i]=y1
    vz[i]=z1
    x=x1
    y=y1
    z=z1
    }
    plot(vx,vy,type="l",xlab="x",ylab="y",main="LORENZ ATTRACTOR")

    r=5000/150000
    #r=1/10
    Bev=85000000
    K=1
    dt=0.01
    
    N=150000/Bev
    
    vN=c(0); vNp=c(0); vt=c(0)
    vN[1]=N; vNp[1]=0; vt[1]=0
    
    for(i in 2:100000){
    N1=N+r*N*(1-N/K)*dt
    vNp[i]=r*N*(1-N/K)
    vN[i]=N1
    vt[i]=i*dt
    N=N1
    }
    
    plot(vt,vN,type="l",xlab="time [days]",ylab=" ",main="Logistic growth Corona: N(t)", lwd=2, lty="solid", cex.main=3, cex.lab=3, cex.axis=3,cex.lab=3)

    plot(vt,vNp*Bev/100,type="l",xlab="time [days]",ylab=" ",main="New infections/100: intensive care medicine",cex.main=3, cex.lab=3,cex.axis=3,cex.lab=3)

    max(vNp[]*Bev/100)
    ## [1] 7083.333