Lecture: April 19. (Monday), 14:00 Prof. Dr. Gerrit Lohmann
Tutorial: April 19. (Monday),
Justus Contzen, Lars Ackermann
trailer Cellules de Bénard (1min),
Rayleigh–Bénard convection made with mix of cooking oil and small aluminium particles (5 min),
Was haben Benard-Zellen mit Kochen zu tun? (3 min, German)
Rayleigh Benard Thermal Convection with LBM (5 min),
Rayleigh Benard Thermal Convection 3D Simulation (2 min)
Sketch,
Clouds,
Cartoon
Bifurcation youtube (20 min)
Bifurcation Khan academy (13 min) [Bifurcation Khan academy](https://www.youtube.com/watch?v=ovJcsL7vyrk
Content in the script: Rayleigh-Bénard convection, Lorenz system, nonlinear dynamics, bifurcations, multiple equilibria
Reading/learning (the sections with a star are voluntary). It might take 120 min.
r=24
s=10
b=8/3
dt=0.01
x=0.1
y=0.1
z=0.1
vx<-c(0)
vy<-c(0)
vz<-c(0)
for(i in 1:10000){
x1=x+s*(y-x)*dt
y1=y+(r*x-y-x*z)*dt
z1=z+(x*y-b*z)*dt
vx[i]=x1
vy[i]=y1
vz[i]=z1
x=x1
y=y1
z=z1
}
plot(vx,vy,type="l",xlab="x",ylab="y",main="LORENZ ATTRACTOR")
r=5000/150000
#r=1/10
Bev=85000000
K=1
dt=0.01
N=150000/Bev
vN=c(0); vNp=c(0); vt=c(0)
vN[1]=N; vNp[1]=0; vt[1]=0
for(i in 2:100000){
N1=N+r*N*(1-N/K)*dt
vNp[i]=r*N*(1-N/K)
vN[i]=N1
vt[i]=i*dt
N=N1
}
plot(vt,vN,type="l",xlab="time [days]",ylab=" ",main="Logistic growth Corona: N(t)", lwd=2, lty="solid", cex.main=3, cex.lab=3, cex.axis=3,cex.lab=3)
plot(vt,vNp*Bev/100,type="l",xlab="time [days]",ylab=" ",main="New infections/100: intensive care medicine",cex.main=3, cex.lab=3,cex.axis=3,cex.lab=3)
max(vNp[]*Bev/100)
## [1] 7083.333