Lecture/Reading: Monday, 14-16; Prof. Dr. Gerrit Lohmann

Tutorial: Monday, 16-17; Justus Contzen, Lars Ackermann

Description

The focus of the course is to identify the underlying dynamics for the atmosphere-ocean system. This is done through theory, numerical models, and statistical data analysis. It has been recognized that the atmospheric and oceanic flow binds together the interactions between the biosphere, hydrosphere, lithosphere and atmosphere that control the planetary environment. The fundamental concepts of atmosphere-ocean flow, energetics, vorticity, wave motion are described. This includes atmospheric wave motion, extratropical synoptic scale systems, the oceanic wind driven and thermohaline circulation. These phenomena are described using the dynamical equations, observational and proxy data, as well basic physical and mathematical concepts. Exercises complement the lessons.

German Version:

In den letzten Jahren wurde erkannt, dass Wechselwirkungen zwischen Klimakomponenten wie der Atmosphäre und des Ozean für die Klimaforschung essenziell sind. Der Schwerpunkt des Kurses liegt auf den theoretischen Grundlagen der Dynamik im Atmosphäre-Ozean-Eissystem. Die grundlegenden Konzepte von Strömungen, Energie, großskalige Wirbel und Wellenbewegung werden beschrieben. Dies umfasst atmosphärische Wellenbewegungen, die ozeanische windinduzierte Strömung und die thermohaline Zirkulation. Anhand von Beispielen werden die grundlegenden Methoden erlernt.

Content

Fluid dynamics, ocean circulation, wind-driven and thermohaline circulation; atmosphere dynamics, dynamical system theory, non-dimensional parameters, bifurcations and instabilities; Gravity, Rossby, and Kelvin waves; Conceptual models, Analytical and Programming techniques; Time series analysis

Learning outcome

Advanced dynamics of the ocean and atmosphere, applications in the fields of climate dynamics and fluid mechanics. Programming skills (R studio) and usage of the climate data operators. Theoretical concepts in physics of climate, temporal and spatial scales of climate dynamics

Formalities

Code no. 01-01-03-Dyn2-V

zoom

Assignment to study programmes: Compulsory for MSc Environmental Physics, Optional compulsory for MSc Physik

Workload /credit points: 3 CP, 90 h

• lecture: 24 h (2h x 12 weeks)

• repeating the lectures/learning/reading: 24h (2h x 12 weeks)

• example classes: 11 h (1h x 11 weeks)

• example classes homework: 20 h (2h x 10 weeks)

• additional preparation for exam: 11 h

Course and examination performance

There are two parts: Course achievements and examination achievements (Studienleistungen und Prüfungsleistungen)

Course achievements:

50% of the points of the exercise sheets are required. Furthermore, we require active participation with at least one time showing a solution in the chat room. Working in study groups is encouraged, but each student is responsible for his/her own solution. If the solution is typewritten (e.g. with LaTex, Rmarkdown, or word), we allow up to 3 persons to be listed on a solution sheet.

link

Examination achievements:

You have to pass the exam in September Room: see anouncement

The exam is based on the exercises and the general content of the lecture. The procedure follows the rules of pep.

Time table

no lecture on May 10

 

no lecture on May 24, holiday in Germany

 

7) June 7

Content: Box model and climate scenarios

 

8) June 14

Content: Shallow water equations and Waves

 

9) June 21

Content: Stochastic climate model

 

10) June 28

Content: Climate variability, dynamics, and applications

 

11) July 5

Test exam

 

12) July 12

Inverted lecture, questions about the course and the text exam via chat & video

 

13) Exam in August/September

Please sign in the document that you can enter the building. Please be already at 9:55 in the room. You are allowed to use a calculator & pen. Collaboration or use of alternative sources of information is not allowed.

 

Literature:

  • Holton, J.R., Introduction to Dynamical Meteorology, Academic Press
  • Gill, A., Atmosphere-Ocean Dynamics, Academic Press
  • Dutton, J.A., The Ceaseless Wind, Dover
  • Olbers, D.J., Ocean Dynamics, Springer
  • Cushman-Roisin, B., ENVIRONMENTAL FLUID MECHANICS
  • Cushman-Roisin, B. & Beckers, J.-M., Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects
  • Marchal, J., Plumb, R. A., 2008. Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Academic Press, 344 pp; videos pdf
  • Stewart, R. H., 2008: Introduction To Physical Oceanography, online Version:  http://oceanworld.tamu.edu/home/course_book.htm
  • Stocker, T. F., 2011. Introduction to Climate Modelling. Springer. SBN 978-3-642-00773-6
  • Saltzman, B., Dynamical Paleoclimatology - A generalized theory of global climate change, Academic Press, San Diego, 2002, 354 pp.
  • Gershenfeld, N., The nature of mathematical modeling, Cambridge University Press, Cambridge, 2003, 344 pp.
  • Goose, H., Climate system dynamics and modelling, Cambridge University Press, Cambridge, 2015, 358 pp.
  • Pruscha, H., 2013: Statistical Analysis of Climate Series Analyzing, Plotting, Modeling, and Predicting with R, VIII, 176 p. (link)
  • Kämpf, J., 2009: Ocean Modelling for Beginners Using Open-Source Software. Springer. (link)
  • Kaper, H.G., Engler, H., 2013: Mathematics and Climate. SIAM. Includes bibliographical references and index. ISBN 978-1-611972-60-3
  • Hantel, M., 2013: Einführung Theoretische Meteorologie. ISBN 978-3-8274-3055-7 DOI 10.1007/978-3-8274-3056-4 Springer, Heidelberg.
  • Fluid Mechanics (link to Films NCFMF) (link to MIT class) (link to waves)
  • Lohmann, G., 2020: Climate Dynamics: Concepts, Scaling and Multiple Equilibria. Lecture Notes 2020, Bremen, Germany. (pdf of the script)

  •