Lecture/Reading: Monday, 14-16; Prof. Dr. Gerrit Lohmann, Dr. Monica Ionita

Room: NW1 N3310

Tutorial: Monday, 16-17; Smit Doshi, Dr. Qiyun Ma

Description

The focus of the course is to identify the underlying dynamics for the atmosphere-ocean system. This is done through theory, numerical models, and statistical data analysis. It has been recognized that the atmospheric and oceanic flow binds together the interactions between the biosphere, hydrosphere, lithosphere and atmosphere that control the planetary environment. The fundamental concepts of atmosphere-ocean flow, energetics, vorticity, wave motion are described. This includes atmospheric wave motion, extratropical synoptic scale systems, the oceanic wind driven and thermohaline circulation. These phenomena are described using the dynamical equations, observational and proxy data, as well basic physical and mathematical concepts. Exercises complement the lessons.

German Version:

In den letzten Jahren wurde erkannt, dass Wechselwirkungen zwischen Klimakomponenten wie der Atmosphäre und des Ozean für die Klimaforschung essenziell sind. Der Schwerpunkt des Kurses liegt auf den theoretischen Grundlagen der Dynamik im Atmosphäre-Ozean-Eissystem. Die grundlegenden Konzepte von Strömungen, Energie, großskalige Wirbel und Wellenbewegung werden beschrieben. Dies umfasst atmosphärische Wellenbewegungen, die ozeanische windinduzierte Strömung und die thermohaline Zirkulation. Anhand von Beispielen werden die grundlegenden Methoden erlernt.

Content

Fluid dynamics, ocean circulation, wind-driven and thermohaline circulation; atmosphere dynamics, dynamical system theory, non-dimensional parameters, bifurcations and instabilities; Gravity, Rossby, and Kelvin waves; Conceptual models, Analytical and Programming techniques; Time series analysis

Learning outcome

Advanced dynamics of the ocean and atmosphere, applications in the fields of climate dynamics and fluid mechanics. Programming skills (R studio) and usage of the climate data operators. Theoretical concepts in physics of climate, temporal and spatial scales of climate dynamics

Formalities

Code no. 01-01-03-Dyn2-V

Assignment to study programmes: Compulsory for MSc Environmental Physics, Optional compulsory for MSc Physik

Workload /credit points: 3 CP, 90 h

• lectures and preparation: 24 h (2 h x 12 weeks)

• repeating the lectures/learning/reading: 24 h (2 h x 12 weeks)

• example classes: 9 h (1 h x 9 weeks)

• example classes homework: 27 h (3 h x 9 weeks)

• additional preparation for exam: 6 h

Course and examination performance

There are two parts: Course achievements and examination achievements (Studienleistungen und Prüfungsleistungen)

Course achievements:

50% of the points of the exercise sheets are required. Furthermore, we require active participation with at least one time showing a solution.

Working in study groups is encouraged, but each student is responsible for his/her own solution. If the solution is typewritten (e.g. with LaTex, Rmarkdown, or word), we allow up to 3 persons to be listed on a solution sheet. Send in your solutions in form of a PDF to our email addresses (one PDF per group!).

Examination achievements:

You have to pass the written exam Sept. 26, 10-12.

The exam is based on the exercises and the general content of the lecture. The procedure follows the rules of pep.

 

 

Time table

1) April 25, no lecture, but some preparation

 

4) May 16 (MI)

Content: Angular momentum and Hadley Cell, Wind-driven ocean circulation

16:00 Tutorium about solutions of Exercise 1; Exercise 3 distributed

 

6) May 30 (GL)

Content: Deep ocean circulation, Conceptual models

Box model and climate scenarios

16:00 Tutorium about solutions of Exercise 3; Exercise 5 distributed

 

 

no lecture on June 6, holiday in Germany

 

 

7) June 13 (CS)

prepare

Content: Programming in bash, climate data operators

Exercise 6 distributed and start of the work

 

8) June 20 (MI)

Content: Climate variability and dynamics

16:00 Tutorium about solutions of Exercises 4 & 5;

Exercise 7 distributed

 

9) June 27 (GL)

Content: Shallow water equations and Waves

16:00 Exercise 8 distributed (GL)

 

10) July 4 (GL, MI) (AWI day)

8:56 train from Bremen

9:45 Start in the Glaskasten with coffee and tea

10:00-11:00 AWI and the challenges of climate research (GL), Glaskasten

11:15-12:30 Lab tour in Building D

12:45-13:45 Lunch break in the Mensa of the University of applied Science

14:00-15:00 Dynamics of tipping points, Glaskasten

15:15-16:00 Tutorium of Dynamics II related to Exercise 7, Exercise 9 distributed

16:28 Train to Bremen

 

11) July 11 (GL)

Stochastic Climate Model

14:15 Lecture

16:00 Tutorium about solutions of Exercise 8

Test exam: 2 h at home. The pdf will be electronically distributed.

 

12) July 18 (GL)

14:15 Inverted lecture, questions about the course and text exam

15:15 Tutorium Programming in Exercise 6 (bash, climate data operators) (CS)

16:00 Tutorium for the solutions of Exercise 9


 

13) Exam written on Sept. 9, 10-12.

 

Literature:

  • Lohmann, G., 2020: Climate Dynamics: Concepts, Scaling and Multiple Equilibria. Lecture Notes 2020, Bremen, Germany. (pdf of the script)
  • Holton, J.R., and Hakim, G. J., 2013: Introduction to Dynamical Meteorology, Academic Press, Oxford (UK). —Fifth edition / Gregory J. Hakim. ISBN 978-0-12-384866-6 pdf
  • Marchal, J., Plumb, R. A., 2008. Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Academic Press, 344 pp; videos pdf
  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. An Introduction to R derived from an original set of notes describing the S and S-PLUS environments written in 1990–2 by Bill Venables and David M. Smith when at the University of Adelaide. Online document at https://cran.r-project.org/doc/manuals/r-release/R-intro.html.
  • Torfs, P., and & Brauer, C., 2014: A (very) short introduction to R
  • Fieguth, P., An Introduction to Complex Systems Society, Ecology, and Nonlinear Dynamics. Publisher textbook page at Springer ISBN 978-3-319-44605-9 1st ed. 2017, XII, 346 p. 243 illus., 178 illus. in color. link
  • Gill, A., Atmosphere-Ocean Dynamics, Academic Press
  • Dutton, J.A., The Ceaseless Wind, Dover
  • Olbers, D.J., Ocean Dynamics, Springer
  • Cushman-Roisin, B., ENVIRONMENTAL FLUID MECHANICS
  • Cushman-Roisin, B. & Beckers, J.-M., Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects
  • Stewart, R. H., 2008: Introduction To Physical Oceanography, online Version:  http://oceanworld.tamu.edu/home/course_book.htm
  • Stocker, T. F., 2011. Introduction to Climate Modelling. Springer. SBN 978-3-642-00773-6
  • Saltzman, B., Dynamical Paleoclimatology - A generalized theory of global climate change, Academic Press, San Diego, 2002, 354 pp.
  • Gershenfeld, N., The nature of mathematical modeling, Cambridge University Press, Cambridge, 2003, 344 pp.
  • Goose, H., Climate system dynamics and modelling, Cambridge University Press, Cambridge, 2015, 358 pp.
  • Pruscha, H., 2013: Statistical Analysis of Climate Series Analyzing, Plotting, Modeling, and Predicting with R, VIII, 176 p. (link)
  • Kämpf, J., 2009: Ocean Modelling for Beginners Using Open-Source Software. Springer. (link)
  • Kaper, H.G., Engler, H., 2013: Mathematics and Climate. SIAM. Includes bibliographical references and index. ISBN 978-1-611972-60-3
  • Hantel, M., 2013: Einführung Theoretische Meteorologie. ISBN 978-3-8274-3055-7 DOI 10.1007/978-3-8274-3056-4 Springer, Heidelberg.
  • Fluid Mechanics (link to Films NCFMF) (link to MIT class) (link to waves)
  •  

    Alles gut gemacht