Content of Lectures (selected)

Dynamics courses
The focus of the course is to identify the underlying dynamics for the atmosphere-ocean system. This is done through theory, numerical models, and statistical data analysis. It has been recognized that the atmospheric and oceanic flow binds together the interactions between the biosphere, hydrosphere, lithosphere and atmosphere that control the planetary environment. The fundamental concepts of atmosphere-ocean flow, energetics, vorticity, wave motion are described. This includes atmospheric wave motion, extratropical synoptic scale systems, the oceanic wind driven and thermohaline circulation. These phenomena are described using the dynamical equations, observational and proxy data, as well basic physical and mathematical concepts. Practicals complement the lessons.
(link to Dynamics II)




Abrupt climate change: Modelling and Theory
One can define abrupt climate change in the time and frequency domain. a) Time domain: Abrupt climate change refers to a large shift in climate that persists for years or longer, such as marked changes in average temperature, or altered patterns of storms, floods, or droughts, over a widespread area that takes place so rapidly that the natural system has difficulty adapting to it. b) Frequency domain: An abrupt change means that the characteristic periodicity changes. Also the phase relation between certain climate variables may change in a relatively short time. For both types of changes examples will be provided. The content of the course will include concepts, time series analysis as well as modelling using simplified climate models.
The script is based on: Lohmann, G., 2009: Abrupt Climate Change Modelling. In Meyers, Robert (Ed.) Encyclopedia of Complexity and Systems Science, Vol 1, pp 1 - 21. Springer New York. ISBN: 978-0-387-75888-6.



Paleoclimate Dynamics
In attempting to account for long-term paleoclimatic variations, we are led to broaden our view of the climate system and to restructure our approach to a fuller theory of climate. We begin by describing the external forcing of the climate system and the observed response, as represented by proxy evidence for paleoclimatic variations. One focus of the course is to identify driving mechanisms for climate change. This is done through numerical models of the Earth system and statistical analysis of instrumental and proxy data. Special areas: feedback mechanisms in the climate system; the role of the global oceanic thermohaline circulation for paleo and recent climate variations; deglaciation; Holocene climate; Glacial climate; Climate modes like ENSO and NAO; Milankovitch theory of the ice ages. Practicals complement the lessons.
Literature:
Dynamical Paleoclimatology - a generalized theory of global climate change, B. Saltzman, Academic Press, San Diego, 2002, 345 pp.
The nature of mathematical modeling, N. Gershenfeld, Cambridge University Press, Cambridge, 2003, 344 pp.
Selected Literature
  Geological Time Machine (Berkley)
  Tectonic Reconstructions
 


Dynamical system concepts and their application in climate sciences
Dynamical systems theory provides powerful tools to help understand problems related to the complex climate system. The efforts include the stability of fluid flows, bifurcation theory, regime shifts, and the dynamics of simplified climate models.
www.atmos.ucla.edu/tcd/RESEARCH/research_dyn.html#flowstab
www.atmos.ucla.edu/tcd/RESEARCH/research_dyn.html#planorbs



Mathematics Introductory Course for the Master Programme "Environmental Physics"
Divergence and integral theorems (divergence and curl operator, vector integration, theorems of Gauss and Stokes)
(Overview, Worksheet)
also:
Basic Linear Algebra (vectors, matrices, dot and cross products, matrix inverse, eigenvalues/eigenvectors, gradient operator, vector spaces)
Ordinary differential equations (chain rule, integral, solutions of ODEs, logistic equation)
Partial differential equations (transport equation, diffusion, advection, wave equations)




Einführung in Atmosphäre und Klima

  • Dynamische Grundgleichungen
    Strömungsmechanischen Erhaltungsgleichungen
    Zustandsgleichungen
    Der Einfluß der Erddrehung

  • Abgeleitete Gleichungsformen: Vorticity
    Rossby und Kelvin wellen
    Teleconnections

  • Allgemein Klima
    Klimamodelle
    Energiebilanzmodelle mit Übung
    Konzeptmodelle im Klimasystemv Boxmodelle, Stochastic climate model
    Erdsystemmodellierung (e.g., What is the difference between weather and climate?
    Let us take the football league as an example. Predicting the outcome of the next game is difficult, but predicting who will end up as German champion is (unfortunately) relatively easy.)

  • Paläoklimadynamik
    Archive
    Statistische Analyse von instrumentellen und geowissenschaftlichen Daten
    Wasserkreislauf

  • Some thoughts on creativity
    IPCC WG1 , IPCC Zusammenfassung , Teil 1, Teil 2, Teil 3




    Einführung in die Ozeanographie

    Diese Vorlesung verfolgt mehrere Ziele:
    1. eine Vorstellung der physikalischen Grundlagen zur Ozeanographie
    2. Beispiele und Rechnungen zur Dynamik des Ozeans; Beispiele von Meßmethoden
    3. die Erlernung und Anwendung von R, Matlab, Fortran als mathematisch-numerisches Werkzeug.

    Literatur
  • R. H. Stewart, 2008: Introduction To Physical Oceanography, http://oceanworld.tamu.edu/home/course_book.htm J. Marchal, R. A. Plumb, 2008. Atmosphere, Ocean and Climate Dynamics: AnIntroductory Text. Academic Press, 344 pp
  • A. E. Gill, 1982: Atmosphere–Ocean Dynamics, Academic Press, Orlando
  • G. Lohmann, 2009, Vorlesungsskript
  • Klimaänderungen, 2007, Synthesebericht zum Sachstandsbericht (wird verteilt)
  • T. F. Stocker, 2002. Einführung in die Klimamodellierung, Skript Universität Bern
  • R. Müller, 2009: Klassische Mechanik -- vom Weitsprung zum Marsflug (de Gruyter)